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Abstract We discuss the problem of geometric design of curved ducts with variable cross­
section by transfinite interpolation with integro-differential constraints. This 
work is a contribution to a research program including numerical simulation and 
preliminary design of an experimental apparatus for studying fluid-dynamics of 
air in internal combustion engines of new conception. The proposed geometric 
modeling approach is based on piecewise multivariate transfinite interpolation 
of assigned cross-sections, via combination of section-generating functions with 
univariate quintic Hermite's polynomials. The volume mapping produced by 
such transfinite interpolation is composed with a local section scaling extracted 
from a one-parameter family of affine transformations, where the diagonal coef­
ficients depend on the ratio between the areas of the starting and current sections. 
An approriately chosen point sampling of the duct generated by the composition 
of volume mapping and section scaling is employed to generate a cell decompo­
sition of the duct volume with tetrahedral elements. Such elements are used for 
numerical simulation of the fluid-dynamics problem. 

Keywords: Solid modeling, transfinite interpolation, integration constraints, geometric pro­
gramming 



22 F. Bernardini, G. Cenciotti, A. Paoluzzi 

Introduction 
In this paper we discuss the geometric design of a free-form duct, i.e. a 

curved duct with variable cross-section. The problem is being studied in order 
to allow fluid dynamics simulations of the air flow inside curved ducts, with the 
goal of minimizing pressure losses at the inlet and outlet of internal combus­
tion engine of heavy trucks. Despite the difficulty in establishing an optimum 
trade-off between the conflicting requirements of aerodynamic efficiency, com­
pactness, and discharge conditions suitable for efficient combustion, very few 
studies have been conducted on the fundamental physics of the flow evolving 
in such geometries [Gori, 2000]. 

In our approach, the duct geometry is generated by continuous transfinite 
piecewise interpolation of given sections, under suitable differential constraints 
(continuity of second-order partial derivatives on the surface and/or constant 
thickness of the duct envelope) as well as under integral constraints (constant 
area of interpolated cross-sections.) The preliminary choice of the form of the 
duct will be followed by the numerical simulation with various codes. Such 
simulation will allow to evaluate and possibly change the shapes of the cross 
sections which are used as input to the transfinite modeling described here. 

Problem statement. Let two smooth parametric surfaces 80 and 8 1 be 
given, with 

Let also two fields No and N1 of vectors normal to the surfaces 80 and 81 

be assigned, with: 

[0, If -+ w3 

[0, If -+ w3 

No(u, v) = h(8u 80 (u, v) x 8v 80 (u, v)), 
N1(u,v) = h(8u 81(u,v) x 8v 81(u, v)), 

with h E 3? and two fields Bo and B1 of vectors normal to the surfaces No 
and Nl , respectively: 

[0, 1]2 -+ 3?3 

[0, 1f -+ 3?3 

Bo(u, v) = h(8u No(u, v) x 8v No(u, v)), 

Bl(u,v) = h(8u Nl (u,v) x 8v Nl (u, v)). 
, 

Our goal is to generate the solid obtained by quintic Hermite's interpolation 
of surfaces 80 and 81 with extreme values of first and second derivatives given 
by No, N1 and Bo, B1, respectively. In other words, we want to generate the 
vector function V, depending on three real parameters u, v, w E [0,1], defined 
as: 

V : [0, 1] x [0, 1] x [0, 1] -+ E 3 , such that: 
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Figure 1. Some views of the unconstrained interpolated duct. 

V(u,v,O) = Bo(u,v), 

8w V(u, v, 0) = No(u, v), 

8ww V(u, v, 0) = Bo(u, v), 

V(u,v, 1) = Bl(U,V), 
8wV(u,v,I) = N 1(u,v), 

8wwV(u,v, 1) = B 1(u,v), 

23 

under the constraint that the area of given "cross-sections" (for w fixed) be 
constant and equal to the area of initial section: 

Area(w) = { dB = ( dB = Area(O), 
JV(DX{W}) J Ba(D) 

for each w E [0,1]. 

where D = [0,1] x [0,1]. In the following we will refer to the function V 
above as volume map, 

Approach. Of course, the more difficult part of the problem is given by 
the constraint of constant area for each cross-section of the solid generated by 
the volume map V. The volume map without such constraint would be con­
structed in a natural way as a quintic Hermite's transfinite blending of maps 
Bo(u,v), B1(u,v), No(u,v), N 1(u,v), Bo(u,v) and B 1(u,v), according to 
the approach described in [Paoluzzi, 1999]. The solution described here uti­
lizes methods of transfinite blending, i.e., of interpolation in functional spaces. 
Such methods are not new, and can be primarily referred to Coons' and Gor­
don's function interpolations [Coons, 1967; Gordon, 1968]. 

Our approach has been implemented using the functional design language 
Plasm [Paoluzzi et aI., 1995], developed at the University of Rome "La Sapien­
za" between the years 89 and 94 [Paoluzzi et aI., 1995]. 'Such language is a geo­
metric extension ofa subset of the functional language FL [Backus, 78; Backus 
et aI., 1989; Backus et aI., 1990] by John Backus (the FORTRAN inventor) 
and others, that was developed at Almaden's IBM Research Division in the 
late eighties. PLaSM is characterized by a multidimensional approach [Fer­
rucci and Paoluzzi, 1991; Paoluzzi et aI., 1993] to geometric data structures 
and algorithms, so it works with geometric objects of dimension 1,2,3 (curves, 
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surfaces, solids) as well as with manifolds of higher dimensions. The language 
defines an algebraic calculus on geometries and allows for implementing para­
metric representations of multivariate manifolds in a natural and compact way. 
PLaSM is currently undergoing a re-definition and extension [Cenciotti et al., 
1999] in order to allow for strong typing based on classes and objects. A 
book [Paoluzzi et al., 2001] on the language is being published by J. Wiley. 

1. Transfinite Interpolation 

Parametric curves and surfaces are usually defined (see e.g. [Bartels et al., 
1987]) as vector-valued functions, component-wise generated from some vec­
tor space of polynomial (or rational) functions over the field of real numbers. 
In this section curves, surfaces, and multivariate manifolds are viewed in a 
unified framework as vector-valued functions generated from the same vec­
tor spaces, but over the field of polynomial (or rational) functions itself. This 
choice implies that the coefficients of the linear combination which uniquely 
represents a curved mapping in a given basis are not real-valued vectors, but 
function-valued vectors. 

This approach is a strong generalization, which contains the standard para­
metric curves and surfaces as special cases. For example, the standard cubic 
Hermite interpolation for curves, where two extreme points and tangents are 
interpolated, can be in such extended approach applied to surfaces, where two 
extreme curves of points are interpolated with assigned derivative curves, or 
even to volume interpolation of two assigned surfaces with assigned normal 
fields. Notice that such an approach is not new, and is quite frequently used 
in CAD applications, mainly to ship and airplane design, since the times that 
Gordon-Coons patches were formulated [Coons, 1967; Gordon, 1968]. It is 
sometime calledfunction blending [Gordon, 1968; Lancaster and Salkauskas, 
1986], or transfinite interpolation [Gordon, 1969; Goldman, 1987]. 

Parametric maps q> : U Y used in Computer Graphics and CAD usually 
belong to the space of rational (i.e. ratio of polynomial) functions of bounded 
integer degree n. Since the space Zn of such functions is a finite-dimensional 
vector space over the field Zn itself, then each q> E Zn can be expressed 
uniquely as a linear combination of n + 1 basis functions ¢>i E Zn with coor­
dinate functions Xi E Zn, so that 

q> = Xo¢>o + ... + Xn¢>';'; 

Therefore a unique coordinate representation 

q> = (Xo, ... ,Xn)s 

of the mapping is given after a basis B = {¢>o,... ,¢>n} c Zn has been cho­
sen. The power basis, the cardinal (or Lagrange) basis, the Hermite basis, the 
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BernsteinlBezier basis and the B-spline basis are the most common and useful 
choices for such a basis. 

The coordinate functions Xi may be easily generated, as will be explained 
in the following subsections, by using the "geometric handles" of the mapping, 
usually data points Pi E Y, to be interpolated or approximated by the set CP(U). 

Only greek letters, either capitals or lower-case, will be used in the sequel to 
denote functions. Please notice that B and H are also greek upper-case letters 
for f3 and 'fI, respectively. 

1.1. Univariate case 

Let consider the simple univariate case cp : U C X -+ Y, where the di­
mension P of domain X is one. To generate the coordinate functions Xi it is 
sufficient to transform each data point Pi E Y into a constant vector-valued 
function, so 

Xi = where U -+ Y : u H- Pi· 

Using the functional notation with explicit variables, the constant function is 
such that 

for each parameter value u E U. 

1.2. Multivariate case 
Let consider a multivariate mapping cp : U -+ Y, where U C X and X is a 

p-dimensional space. Since cp depends on P parameters, in the following will 
be denoted as cpp. 

With transfinite blending the p-dimensional map cpP of degree n is computed 
by linear combination of n + 1 coefficient maps (each one depending on P - 1 
parameters) with the univariate basis of degree n. In other words: 

cpP = cpg-l¢o + ... 

The coordinate representation of cp with respect to the basis Bn = (¢o, . .. ,¢n) 
of degree n is so given by n + 1 maps depending, on P - 1 parameters: 

iF..p (iF..P-l iF..P-l) 
':I!' = ':I!'o· , ••• , ':I!'n 13n 

and so on, inductively on the dimension of the component maps, until the basic 
1-dimensional case is reached. 

As an example of transfinite blending consider the generation of a bicubic 
Bezier surface mapping B ( Ul, U2) as a combination of four Bezier cubic curve 
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3 

B(Ul, U2) = L Bk(ud 
k=O 

where 

0:::; k:::; 3, 

is the BemsteinlBezier cubic basis. Analogously, a three-variate Bezier vol­
ume mapping B(Ul, U2, U3), of degree n3 on the last parameter, may be gener­
ated by univariate Bezier blending of surface maps Bk(UI, U2), some of which 
possibly reduced to a curve map or even to a constant point map: 

n3 

B(Ul,U2,U3) = LBk(Ul,U2) 
k=O 

The more interesting aspects of such approach are flexibility and simplicity. 
Unlike tensor-product method, there is no need that all component geometries 
have the same degree, or that all are generated using the same function ba­
sis. For example, a quintic Bezier surface map may be generated by blending 
both Bezier curve maps of lower (even zero) degree together with Hermite 
and Lagrange curve maps. Furthermore, it is much simpler to combine lower 
dimensional geometries (i.e. maps) than to meaningfully assembly the multi­
index tensor of control data (i.e. points and vectors) to generate multivariate 
manifolds with tensor-product method. 

1.3. Quintic Hermite's polynomials 

We give here the parametric representation ofa quintic Hermite's curve c(u) 
which interpolates two extreme points PI and P2, with two extreme tangent 
vectors ti and t2 and two extreme normal vectors 01 and 02: 

c(U) = [ u5 u4 u3 u2 U 1 ] H5 g5 

where 

-6 6 -3 -3 1 1 PI 2 
15 -15 8 7 

23 
-1 P2 

-10 10 -6 -4 1 tl 
H5= 2 and 

0 0 0 0 0 
g5 = 

t2 2 
0 0 1 0 0 0 °1 
1 0 0 0 0 0 °2 
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and where the matrix H5 can be easily derived from the constraint set: 

c(O) = PI, c(l) = P2, c'(O) = tI, c'(I) = t2, c"(O) = nl, c"(I) = n2· 

Hence the Hennite's basis of quintic polynomials is: 

[h8(u) ... = [u5 u4 u3 u2 u 1] H5 

with 

hg(u) = -6u5 + 15u4 - lOu3 + 1 

hf(u) = 6u5 - 15u4 + lOu3 

= -3u5 + 8u4 - 6u3 + u (1) 

hg(u) = -3u5 + 7u4 - 4u3 

15 3 4 3 3 1 2 
- -u + -u - -u +-u 
222 2 

hg(u) 1 5 4 1 3 = -u -u --u 
2 2 

The basic volume map is so given by: 

V(u, v, w) = [hg(w) hf(w) ... 

So(u, v) 
Sdu,v) 
No(u, v) 
NI(u, v) 
Bo(u,v) 
BI(u,v) 

with 

So, SI,No,NI, Bo,BI E P'2 C --+ 

V E P'3 C {!R3 --+ !R3 } 

Actually, the PLaSM implementation is a mapping of this kind: 

SO(UI, ... ,ud-d 
Sl(Ul, ... ,ud-d 
NO(Ul, ... ,Ud-l) 
NI(uI, ... ,Ud-t) 
BO(UI, ... ,Ud-l) 
BI(UI, ... ,ud-d 

with 

M E C --+ d q 

so it works in the general case of d-variate manifolds. 
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2. Constrained Volume Map 
In our approach the duct internal volume is generated by two surface in­

terpolation steps, using three given surfaces. The desired volume map is so 
obtained by the union of a first solid map interpolating the base section surface 
with a middle section surface, and a second solid map interpolating the middle 
section surface with the rotated and translated base section surface (see Fig­
ures 2b and 2c). An example ofthe final constrained duct interior is illustrated 
in Figures 4a, 4b and 4c, showing it from different points of view. 

Figure 2. Input maps. (a) 2D curves; (b) embedding in 3D; (c) surfaces to be interpolated. 

2.1. Constant-area constraint 
In the first phase of computation an initial sequence of interpolated sec­

tions is generated. Each section corresponds to one of the w values of a user­
specified uniform discretization. Successively, a proper affine transformation 
is applied to each section to satisfy the constant cross-section constraint. 

First we get the solid V{[O, 1]3) generated by the basic volume map applied 
to the standard 3-cube, so to obtain an unconstrained duct. Then a family 

Z : [0,1] -+ Af f3 : w 1-+ Z{w) 

of affine transformations, depending on a parameter w E [0,1], is properly 
applied to each cross-section. Each Z (w) is an uniform dilatation in the x, y 
directions ofa local frame {ex(w), ey(w), ez(w)}, with 

qx(w) 
ex(w) = Ilqx(w)II ' qx(w) = V(e, 0, w) - V(O, 0, w), 

qy{w) 
ey{w) = Ilqy(w)II ' qy(w) = V(O, e, w) - V(O, 0, w), 

qz(w) 
ez(w) = Ilqz{w)II ' qz{w) = V(O, 0, e + w) - V(O, 0, w), 

and e -+ 0. Notice that the local frame {ex(w), ey(w), ez(w)} is extracted 
from the tangent 3-manifold to V([O, 1]3) at V(O, 0, w). 
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Figure 3. Basis on the tangent 3-manifold at V(O,O,w) with the corresponding cross-
sections B(w) and (Z(w)(B(w)). 

Each Z(w), w E [0,1], is applied to the point set B(w) = V([O, 1]2 x {w}). 
See Figures 3a and 3b to clarify this point. 

The family of maps Z (w) is defined by composition of elementary affine 
transformations depending on the parameter w. In particular, as usual in graph­
ics, translations T(t{w)) and inverse T( -t{w)), rotations R{w) and inverse 
RT{w), and a scaling S(s{w), s(w), 1) are composed together: 

Z(w) = T(-t(w)) a RT(w) a S(s(w), s(w), 1) a R(w) a T(t(w)) 

with 

and where 

with 

t(w) = V(O, 0, 0) - V(O, 0, w), 

[ 
s(w) 

S{w) = 

s{w) = 
Area(O) 

= 
Area(w) 

° s{w) 

° 

f50([O,1)2) dB 

fV([0,lj2 X{w}) dB 

The surface integral is computed using a general polynomial-integrating al­
gorithm described in [Bernardini, 1991]. The algorithm allows an efficient 
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computation of integrals of polynomial functions over polyhedral domains of 
any dimension. This is easily computed in PLaSM by a single primitive 

INTEGRAL:pol.complex:<i1 ,i2, ... ,id> 

which returns the value of the domain integral of the monomial 

The domain may have non full dimensionality, e.g. a piecewise-linear curve 
or surface in !)13. In particular, when the expression is 

INTEGRAL:pol.complex:O 

the volume of the input complex is computed. When the input is the piece­
wise linear approximation of a curve or surface its lenght or surface area are 
computed. 

2.2. Maps composition 

The constrained volume map V* is now obtained by composition of the 
volume map V previously discussed with a family of affine transformations 
depending on one parameter. In particular, we have that 

V* : [0,1]3 -+ !)13 

is easily defined as: 

V*(u, v, w) = (Z(w) 0 V)(u, v, w) 

with V quintic transfinite Hermite's interpolation ofinput maps, and Z : [0, 1] -+ 
AJ J3, the family of affine transformations previously given. 

Figure 4. Some views of the final constrained duct. 

2.3. Volume Elements 
Another issue to analyze is how to sample the domain of the volume map. 

Different techniques may be used according to decomposition properties we 
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like to obtain. Among the approaches to triangulation given in literature, we 
focused our attention over two groups of algorithms: a priori methods and 
adaptive methods. 

A priori methods. In this class of methods we include the ones that 
generate a discretization independently from the geometric model to map and 
approximate. The easiest method is to use some uniform grid, which tends to 
accumulate points where curvature is bigger. A better approach is given by an 
incremental refining of the domain, where the domain is subdivided in quasi­
disjoined slices and each of them doubles the number of volume elements. This 
method is able to produce a better resolution where curvature is smaller. 

Adaptive methods. In this class of methods we concentrate on regular 
triangulations decomposition techniques. They can be used to dynamically 
vary accumulation of points in subregions of a map domain using weights on 
points. Weights can be assigned according to properties of the mapping func­
tion in that regions (such as curvature, derivatives values, and so on). In this 
way it is possible to obtain a discretization that fits with desired properties 
of the geometric model in localized subregions of the initial domain. Edels­
brunner and Shah [Edelsbrunner and Shah, 1992] introduced an incremental 

. algorithm for building a regular triangulation of a set S of weighted points. At 
each step they insert a new point in the triangulation, checking first for regu­
larity conditions over present simplices and flipping facets after the insertion. 
In our case, we need not only regularity conditions among points and facets, 
but also to introduce strong regularity constraints among domain points, in or­
der to interface FEM simulation codes. In the on-going new implementation 
of PLaSM with MzScheme [Felleisen et aI., 1998] and C++, regular triangula­
tions have been introduced in its geometric kernel, based on a set of libraries 
developed at Purdue University, and recently merged into the language envi­
ronment. The main current issue is to find a suitable weighting function to 
obtain better discretizations of map domain subregions, taking advantages of 
regular triangulations power. 

3. Example 

The prototype problem set up to develop the approach described in this pa­
per required the generation of a duct interpolating two extreme circular sections 
lying on two orthogonal planes, and passing through any intermediate cross­
section, defined by a closed Bezier curve. In our approach, we generate the 
two segments of duct by interpolating from both the extreme sections to the 
intermediate one. 
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3.1. Curves 

The curves generating the prescribed extreme and intermediate sections are 
defined in 2D. Curve CO ( u) is a circle of radius 2 and starting angle - curve 
LO (u) is a degree 7 Bezier curve which is symmetric with respect to the y axis. 

3.2. Sections 

Function sez 0 defines a 2D stripe of constant thickness 0.5. Functions 
sezl, sez12 and sez2 define the initial, intermediate and final sections, 
respectively, appropriately embedded, translated and rotated in 3D space. 

First segment. The volume map that generates the duct segment interpo­
lating sections sezl and sez12 is illustrated in the following. It is a Hermite 
map with constant normal vector fields at the two extremes. 

Second segment. The volume map that generates the second section of 
the duct, from the intermediate to the final sections, is generated in the same 
way as the first section. Derivative continuity across the intermediate section 
is preserved by specifying identical interpolated normal fields on the two sides 
of the common cross-section. 

Aggregation. The 3D tube is finally defined by stitching together the 
two parts tubel and tube2. 

Transformation pipeline. Recall that V indicates the Hermite map 
that generates the solid. The scaling transformation S(w), w E [0,1] are de­
fined w.r.t. the origin, and scale uniformly in the x and y directions, while 
leaving z untouched. To apply the scaling correctly to the section 

B = V([O, 1]2 x {w}) 

we need first to move the center of scaling to .the origin and the section on 
the plane z = 0, then apply the scaling, and finally apply the inverse rigid 
transformation. 

We assume that the centers of transformation are the points V(O, 0, w} for 
w E [0,1]. For each section of the discretization we generate a triplet of 
orthonormal vectors, defining a local coordinate system. 

Function differences generates the sequence of vectors difference of 
two sequences of vectors or points. In a similar way, function intrin­
sic_frames generates the squence oflocal frames, one for each cross section 
of the dicretization. 

The transformation pipeline for each discrete section is generated by the 
function affine_transformations. 
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Constrained· volume map. The pipeline of affine transformations that 
satisfy the constant cross-section area constraint if finally composed with the 
volume map. The details of such implementation go beyond the scope of the 
present paper. It is anyway interesting to notice that all the implementation 
amounts to three pages of PLaSM code, and that it was developed and tested 
in less than one week. 

4. Conclusion 

In this work we have proposed an analytical solution to the modeling of 
free-form ducts with cross-sections of constant area, based on the composition 
of transfinite volume maps with section scaling aiming to satisfy such integral 
constraint. 

This application of the language PLaSM to the geometric modeling of ducts 
with variable cross-section allowed to evaluate the use of language in gener­
ating complex form features by a fully parameterized functional programming 
approach. The solid duct generation described in this paper can be in fact com­
pletely parameterized with respect to number, position and orientation of the 
given key-sections, and even to their shape. Furthermore, the transfinite solu­
tion given here can also generate an optimal decomposition of the duct interior 
with finite tetrahedral elements. Such a model can be used to simulate the 
fluid-dynamics problem. 

We like to emphasize the fact that such geometric programming approach 
allows not only to define some geometric object in a fully parameterized way, 
but also to define compact new methods for geometric shape generation, even 
when subject to constraints of great mathematical complexity. 
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