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Abstract This paper addresses the issue of generating mathematical models of flexible 
objects suitable for NRM simulation. These models should contain proper in­
formation not only on the objects geometry, but also on the physical properties 
'Of the material they are made of. This paper mainly addresses the geometrical 
issues of generating particle-based models of flexible objects, but basic meth­
ods for determining the material characterization in some special cases are also 
discussed. The ongoing research work performed by the authors and the related 
results are presented. 
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1. Introduction 

There is an increasing market demand for the simulation of non-rigid objects. 
In industrial sectors where traditionally CAD systems are used (i.e., automotive, 
aeronautics, ... ) there are situations where the simulation of non-rigid parts is 
required and not available (for example; the simulation of wires, seats, etc.). 
There are industrial sectors where CAD systems are not used since they do 
not support modeling of non-rigid products (i.e., textile, fashion, food, ... ). 
Finally there are novel sectors like the medical area, where the simulation of 
non-rigid bodies would support and improve several critical tasks, like training 
of procedures and pre-op simulation. 

The simulation of objects behaviour requires the creation of a model. Tra­
ditional geometric modeling is a mature technology but is not appropriate for 
non-rigid objects simulation because the generated models lack the kind of 
information which is needed by a non-rigid material simulator. Current solid 
models mainly carry information on the geometrical and topological aspects of 
the model's "outside" (its boundary), plus optional information of the overall 
volume and mass, assuming the model is rigid and made of a homogeneous and 
isotropic material. 
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Instead, a non-rigid material simulator needs detailed information on the 
physical properties of the model's "inside", which may also be made of a non­
homogeneous and anisotropic material, in order to compute its behaviour when 
it is subject to external forces or deformations. The geometry of a flexible object 
is not constant, but rather a function of time: 

shape = f(t) (1) 

The actual type of information needed to represent the model depends on the 
kind of simulation which has to be performed on it. Currently, there is not a 
common agreement on a method for performing non-rigid materials simulation. 
Various approaches and techniques are experimented by the researchers in this 
area. Most of these simulation techniques fall either into the Finite Element 
Methods (FEM) or into the Particle-Based methods (also known as spring-mass 
methods or as spring-mass-damper methods) [Cugini et at., 1999]. Our research 
group has traditionally developed and used a particle-based modeling technique 
since it offers a simple and general method for modeling objects [Denti et at., 
1995] [SIGGRAPH, 1999]. 

A number of research works based on particle-based simulations have been 
presented in the last few years. Most, if not all, of them use their own represen­
tation of the model, which is often very specific to the application. Especialy in 
the area of real-time simulations, where performances are the main issue, there 
is a strict coupling between the simulator and the data structures it uses, aimed 
at maximizing speed. Therefore, there are blood vessels simulators, liver sim­
ulators, and brain simulators [Westwood, 1999], cloth simulators [Volino and 
Thalmann, 1997] [Breen et at., 1993], pipe simulators, etc. Each simulator has 
its own specific model, represented in some proper way, and cannot simulate 
anything else. What we found is the lack of a general method for describing 
the model of a flexible object. 

Recently, the focus of our research has moved further addressing the issue of 
real-time simulation of non rigid-objects behaviour. Real-time simulation is a 
requirement in some applications, for example, in those applications supporting 
haptic interaction with non-rigid objects [Bordegoni and De Angelis, 1999]. 
Today, a real-time simulation is computationally too expensive to be performed 
on a complete phisically-based model, hence several real-time applications 
implement a physically-plausible material behaviour rather than a physically­
realistic one. 

This paper presents the research work we have developed addressing the 
issue of generating particle-based models of flexible objects 
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2. Issues 

First of all, let's see how a particle model is made and the kind ofinformation 
it carries. 

The particle-based model technique is based on a discretization of an ob­
ject volume into a set of point masses (particles) connected by links (often 
modelled as springs and dampers, i.e., attracting and repelling forces) [Witkin, 
1995]. Springs and dampers model the interaction laws among the particles de­
termining the dynamic behavior of the object material. The particle positions 
vary according to the forces applied. Summaryzing, the fundamental elements 
used in particle-based modeling are particles, masses and links (Figure 1). 

Figure 1. Particle-based model 

The first step to perform for modeling a non-rigid object is the definition 
of the grid of particles approximating the object volume. Once the volume 
has been discretized, the following step is the definition of the links between 
the particles. The main issue targeted by our work is the following: given an 
object of an arbitrary shape, how to discretize it into a particle-based model in 
order to allow physically-based simulation to be run on it? The aim is to find 
a discretizing method for placing particles and setting links that adapts to the 
object initial shape and material. 

Therefore, the main issues involved are geometrical ones (shape) and phys­
ical ones (constraints imposed on how the shape vary over space and time). 

2.1. Geometrical issues 

What we mean by "Geometrical issues" is how to place the particles in space, 
and how to connect them by links. This depends both on the geometry of the 
object to be discretized, and on the requested level of discretization. Often, this 
task is executed by users placing particles after particles in space. Of course, 
this task is tediuous and requires deep knowledge of particle-based modeling 
and related parameters. 

The "Geometrical issue" to address relates to mesh generation. Several 
methods and algorithms have been proposed in literature for solving the problem 
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of mesh generation [Ho-Le,1988]. Most of these methods take solid models in 
input and compute finite element meshes, using hexahedral for the discretization 
[Schneiders, 1999]. The result is a lattice of volumetric elements connected at 
discrete node points. Works on discretization of objects into particles are less 
common, and mainly concern surface discretization [Shimada et al., 1997]. 

Our method aims at producing any type of models. A homogeneous and 
isotropic volume is discretized adopting a regular segmentation using cubic 
cells (voxels). Conversely, non-homogeneous and anisotropic objects may be 
characterized by non-regular segmentations. 

Ifthe non-rigid object to be simulated is a box, it is straightforward to derive 
a particle-based model from it. It is sufficient to divide each side of the box into 
segments (not necessarily equal), and consider the 3D voxel grid implied by 
such division: each voxel vertex is the position of a particle, and each voxel edge 
or diagonal is a link. Real non-rigid objects can have any geometry. Geometries 
like primitives or specific objects can be discretized as well, developing ad-hoq 
subdivision strategies for each case. But how to deal with objects having an 
arbitrary shape? 

2.2. Physical issues 
What we mean by "Physical issues" is which values to assign to the various 

attributes of particles and links (i.e., masses, elastic constants, etc.). This de­
pends on the physical properties of the object to be simulated, and on the way 
its geometry has been discretized. 

By now, we do not know about any general method which is able to assign 
the proper values to the physical attributes of particles and links given as input 
an arbitrary discretization of a 3D object having an arbitrary shape and possibly 
made of a non-homogeneous and anisotropic material. It is also unknown a 
general and "abstract" way for describing the object properties to be mapped 
into the discretized model. 

3. Geometric modeling 

Since we do not know how to deal with the physical properties of an arbitrary 
discretized object, our approach to the geometrical issue is to discretize the 
objects over a regular voxel grid, which makes it possible to assign the physical 
attribute values in case the objects are made of homogeneous and isotropic 
materials. ' 

Given these limitations, the work we have done so far deals with objects of 
arbitrary shape. The object, in the form of a solid model, is imported into a 
modeler and then processed for generating the particle model. We are exploring 
different methods for performing the processing, which are described in the 
following section 3.1. 
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The work is based on the commercial solid modeler ACIS [Spatial, 2000], 
but the application has been thought to be "modeler-independent" so a different 
modeler might be used. 

3.1. Algorithms 
The common part of all algorithms we have developed is that the model is 

intersected against a regular grid of voxels (one at a time). Each time a voxel 
is intersected with the model, there are three possible cases: 

I The intersection is null. This means the voxel does not belong to the 
model, and can be ignored. 

2 The intersection is coincident to the voxel. This means the voxel is 
internal to the model. Like in the box case, a particle is placed at each 
vertex of the voxel, and a link is set for each edge or diagonal. 

3 The intersection is not null, but differs from the voxel. This is what we 
call "the broken voxels" and means that the voxel is across the model's 
boundary. 

The critical part of the work is how to deal with the broken voxels. As the 
broken voxels have in general more vertices and edges than a complete voxel, 
geometrical issues concern which vertices should be used as particles and how 
to connect them. 

The resolution ofthe physical model, that is the number of particles and links, 
should be minimized in order to reduce the computational cost during simulation 
time. Because of real-time constraints, we keep the number of relations between 
particles low. In fact, each relation implies a set of equations to be solved. 
Increasing the number of equations increases the computational time. In case of 
haptic applications, a processing delay would provoke a discrepancy between 
what the user expects of perceiving (visual and haptic) and what she really 
perceives. 

Besides, because the distribution of particles and links is more "dense" on 
the model's boundary than in its internal part, it is difficult assigning the values 
of the physical attributes. As already stated, determining and assigning the 
physical parameters to an arbitrary discretization is an open issue. 

Some algorithms we are experimenting for treating the broken voxels are the 
following ones: 

• the broken voxels are approximated for defect (ignored) or approximated 
for eccess (considered as they were full), depending on some set criteria 
(e.g. a treshold on the occupancy ratio). 

• the broken voxels are ignored or approximated for their bounding box, 
depending on some set criteria. 
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• the broken voxels' boundary is faceted by the modeler. In this case a 
huge number of particles and links is generated, which is undesirable. 

• the broken voxels are approximated by a convex polyhedron having a 
maximum number of faces and vertices known in advance and lower 
than in the previos case. 

In the following we present each of these algorithms. 

3.1.1 approximation by voxel. This simple algorithm just discards 
a broken voxel, or approximates it for the complete voxel that originated it, 
depending on a criteria. The adopted criteria is based on computing the ratio 
between the broken voxel's volume and the complete voxel's volume. If this 
ratio exceeds a given treshold the broken voxel is approximated for the full 
voxel, otherwise it is discarded. As special cases, if the treshold is set to 0.0 
every broken voxel is kept, while ifthe treshold is set to 1.0 every broken voxel 
is discarded. Figure 2 shows the different output of this algoritm when is run 
on the same object, same voxel grid using different values for the treshold. 

Figure 2. Voxel-Ievel approximation of a pipe slice using a threshold of 0.0, 0.5 and 1.0 

3.1.2 approximation by bounding box. This algorithm is a refinement 
of the previous one. The bounding box of the broken voxel is considered and 
its occupancy ratio is computed; if the ratio exceeds a treshold the broken voxel 
is approximated for its bounding box, otherwise it is discarded. Figure 3 shows 
the different output of this algorithm when run on the same object, same voxel 
grid but using different values of the treshold. 

This method always produce better results than the previous one relatively to 
the overall approximation ofthe original object's shape (see also Section 3.2), 
but arises issues in assigning physical properties to particles and links, as the 
approximated voxels differ from the complete ones. 

3.1.3 approximation by a mesh of polygons. Another solution is to 
keep the broken voxel "as is". The broken voxel's boundary is approximated for 
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Figure 3. Bound box-level approximation of a pipe slice using a treshold of 0.0, 0.5 and 1.0 

a triangle mesh by the modeler; a particle is placed at each triangle vertex and 
a link is created for each triangle side. Optional links can be added to connect 
particles belonging to different triangles. 

Figure 4. "Exact" approximation of a torus for a triangle mesh 

As it can be seen in Figure 4, the output of this algorithm is graphically nice, 
but depending on the broken voxels's geometry and the way the triangle mesh 
is generated it can produce a huge number of particles and links, making the 
simulation of the output model computationally too expensive. Furthermore, 
the "random" distribution of particles and links in the broken voxels arises open 
issues for the physical properties assignement. 

A refinement of this method attempts to reduce the number of polygons in 
the mesh. The bounding box of the broken voxel is determined, and each vertex 
of the mesh is classified depending on its position in the bounding box. The 
vertices of the mesh could lie on a vertex of the bound box, on an edge, on a 
face or be internal: the internal ones are discarded and the remaining ones are 
re-linked. 

This greatly reduces the number of vertices and links, but still produces a 
"random" mesh leaving the issue of assigning physical properties open. 

3.1.4 approximation by a convex polyhedron. The difficulties en­
countered in the previous algorithm led to search for a different solution. What 
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we actually want to do is to approximate the broken voxel with a polyhedron 
whose vertices always lie on the bounding box edges, as shown in Figure 5. 

Figure 5. Samples of broken voxels and their expected approximation 

This requirement not only reduces the number of generated vertices (i.e., 
particles), but also allows us to establish some rules for connecting them by 
links and to associate physical properties to them. 

The algorithm developed to accomplish this result is based on the primitive 
shown in Figure 6. 

Figure 6. The polyhedral primitive used 

This primitive is a convex polyhedron made of 24 vertices, each of them 
having one degree of freedom allowing it to move along one edge of a box. As 
a special case, this primitive can generate the box itself, as well as other convex 
shapes contained in the box. Examples are shown in Figure 7. 

The algorithm approximates each broken voxel using this primitive. At first, 
the primitive is configured so that it is coincident to the broken voxel's bounding 
box (three vertices of the primitive lie on each vertex of the box). Then, for 
each vertex of the box a search process is performed, aimed at finding a better 
approximation by sliding the three primitive vertices associated with that box 
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Figure 7. Sample shapes generated by the primitive 

vertex, along the box edge corresponding to their given degree of freedom. The 
main steps of this search process follow. 

• Each one of the three vertices is moved away from its initial position, 
along its associated box edge, until it gets in touch with the broken voxel 
(the search is successful) or it reaches the opposite end of the edge (the 
search fails). 

• If the search is successful for all the three vertices, the three vertices 
define a triangle of the approximating polyhedron and a particle is placed 
on each vertex of the triangle. 

• If the search fails for one or more vertices, a number of cases requiring 
some special handling are generated. Not all the cases are implemented 
yet: when one of these special cases is encountered, if its handling is 
implemented it is treated accordingly, otherwise the voxel is discarded 
(approximated for defect). Figure 8 shows the output of this algorithm 
run on a sample object. 

Figure 8. Approximation of a sphere by the polyhedral primitive algorithm 

Whichever algorithm was chosen, at the end of the process a reduction pass 
is performed, in order to discard redundant (coincident) particles and links, 
preserve the model integrity and speed up its computation. 
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This pass must also deal with the physical properties associated with the 
particles and their links, to avoid information loss and changes in the object 
behaviour: for example when discarding a particle coincident with another one, 
its associated mass has to be "transferred" into the remaining one to preserve 
the total object mass. 

3.2. Result evaluation 
In order to show how the various algorithms work, we need to run them on 

one or more common test cases and compare their output. In order to properly 
compare the various algorithms, a purely visual evaluation of their output is not 
enough and too subjective; a numerical method of error evaluation is needed. 

3.2.1 chosen criteria. Comparing the volumes of the original model 
and the discretized model may seem a good idea, but it is not: even two totally 
different models may happen to have the same volume. 

Computing the following formula: 

- occupancy(disc.model,voxeli)/ 
original model volume (2) 

(where N is the number of voxels) seems to be a better idea: in this case, 
the computed value (the "error") is zero if, and only if, the two models are 
coincident. 

3.2.2 algorithm comparison. In order to show how the various algo­
rithms behave, a few objects were considered and a set of tests was performed 
for each object. A "set of tests" corresponds to executing all the algorithms on 
the same object, eventually changing algorithm parameters but without chang­
ing the resolution of the voxel grid, and computing the resulting "error" as in 
formula (2). In the following Table 1, each row corresponds to a set of tests run 
on the same object. 

Table 1. Errors computed for some objects. Columns (algorithms): v voxel based, b bounding 
box, polyh polyhedral primitive, t treshold value. 

pipe 
sphere 

v, to. 25 
66.3% 
41.0% 

V, to. 5 
52.6% 
30.3% 

V, to. 75 
73.15% 
46.2% 

b.tO.25 
16.5% 
30.1% 

b. to. 5 
12.5% 
24.9% 

b.tO.75 
22.2% 
34.9% 

po/yh 
6.8% 

20.1% 

The error for the triangle mesh algorithm is not computed but can be consid­
ered null as the triangle mesh is self-generated by the modeler (hence it basically 
corresponds to the broken voxel itself). 
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As it could be expected, given a treshold the bound box-approximation algo­
rithm always produces better results than the voxel-approximation algorithm, 
and a treshold of 0.5 is always the best choice for both. However, whichever 
treshold is chosen, the polyhedral primitive algorithm gives better results. 

3.2.3 resolution dependence. Another group of tests was performed 
to show how the resolution of the voxel grid influences the results. Here, all 
the tests were performed on the same object (a sphere), but using a different 
resolution of the voxel grid for each set of tests. Table 2 sums up the results. 

Table 2. Error, number of particles and number of links as a function ofthe yoxel grid resolution. 
The yoxels are cubical and their side (the grid step) is expressed as a fraction of the sphere 
diameter. 

grid voxel bbox polyh polyh polyh mesh mesh 
step to. 5 to. 5 particles links particles links 
0.3 34.4% 28.8% 32.9% 128 472 610 1940 
0.2 31.0% 18.9% 35.2% 176 1204 562 1868 
0.15 22.9% 11.6% 15.5% 540 3904 858 3408 
0.1 14.5% 10.0% 10.9% 1132 9808 1458 7904 

As expected, the volumetric error reduces as the resolution increases, but 
the geometrical issue is not the only one to be considered. The four rightmost 
columns of Table 2 report the number of particles and links generated by the 
polyhedron algorithm and by the triangle mesh algorithm: these numbers can't 
exceed the computational capacity of the employed simulator. 

That's why our current work aims to refine the "polyhedron" algorithm, 
rather than just increasing the resolution of the discretization: the objective is 
to get a reasonably nice result, while keeping the resolution as low as possible. 

4. Physical parameters modeling 

Up to now, we do not know of any method for automatically setting phys­
ical parameters, given the physical properties of the material and an arbitrary 
discretization of the object. As a first approximation, we apply some simplifi­
cations to the model and the physical rules so as to get a simpler and "lighter" 
model. This can be of use, for example, 'in our real-time simulator of non-rigid 
materials integrated with haptic rendering [Bordegoni and De Angelis, 1999] 
and related applications. 

Our current work includes a basic treatment of physical properties at least 
for isotropic materials discretized over a regular grid. In this case, it is safe 
to state that all the particles have the same mass, and all the "similar" links 
(i.e. those having same length and orientation in space) have the same physical 
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properties. Thus, if some values for the physical attributes are given, they can be 
properly associated to particles and links during the discretization phase. Also, 
if during the algorithm execution some particles or same links of the same kind 
collapse together, their physical attributes are treated accordingly to determine 
the physical attributes of the resulting particle or link (e.g. masses of particles 
are summed together). 

In the case of isotropic materials discretized over a regular grid, different 
methods can be used for determining the physical attributes to be associated to 
particle and links: 

• Interactive adjustment done by an expert user; 

• Measure parameters. 

Concerning the first method, we are implementing an application for tuning 
the non-rigid model parameters. The application is integrated with haptic de­
vices [Bordegoni and De Angelis, 1999]. The user can set the parameter values 
(constant of traction, compression, damping, ... ) using a graphical user inter­
face and immediately touch the object model wearing the haptic devices. The 
model is better and better approximated by adjusting the parameters according 
to the impression of resemblance between the real object and its corresponding 
model. 

According to the second method, physical parameters can be measured 
through some experimental tests. For example, fabric mechanical properties can 
be measured by means of the Kawabata evaluation system [Kawabata, 1980]. 

With the first method, the validation of the model is immediately done by 
the user setting the parameters. The second method requires the model to be 
compared with experimental results. 

5. Conclusions and future work 
The work done so far is able to produce a reasonable discretization of an 

arbitrary shape model over an arbitrary resolution, though there is room for 
improvement of the algorithms. 

However, there is only a basic treatment of physical properties, and only 
isotropic materials discretized over a regular grid can be handled. The future 
work will target open issues like these: 

• how to represent the physical properties of a non rigid, eventually non 
isotropic, material in a general way? 

• how to map the physical properties of an object made of a non rigid 
material into its arbitrarily discretized model? 
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