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Abstract: This paper investigates the possible role of the new field of computational 
topology for incorporating abstraction mechanisms in shape modelling. The 
effectiveness of computational topology techniques is exemplified with an 
application of discrete differential topology. In particular, a method is 
proposed for the extraction of a critical point configuration graph from a 
triangulated surface. Starting from the definition of the Reeb graph in the 
smooth domain, the concept of critical point is extended to critical areas, 
which may represent isolated as well as degenerated critical points in the 
discrete domain. The resulting graph effectively represents the surface shape 
and has been successfully used as a basis for model compression and restoring 
purposes. 
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1. INTRODUCTION 

Geometric modelling deals with the representation and manipulation of 
geometric objects in a computer and its foundations are set by the definition 
of formal properties which can be used to completely describe the shape of 
objects. Even if shape is surely characterised by a specific geometry, shape 
information is treated differently by the human brain to many other forms of 
information. Also experiments in human perception suggest that people use 
different models for shape interpretation, both high (specific) and low 
(generic) level, which are constructed using operations such as: grouping 
surface portions having a similar shape, identifying features, abstracting the 
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shape and then synthesising it using descriptive labels related to the semantic 
context (Falcidieno&Spagnuolo, 1998). 

Topology as the study of shape properties that do not change under 
deformation, gives a formal framework for the formalisation and solution of 
several problems related to shape and shape understanding. Since the 
beginning, the importance of topological aspects in modelling and analysis 
has been recognised in many computer application areas. Lately, this has 
caused the starting of this new field which has been called computational 
topology, term firstly introduced and described in (Dey et aI., 1998) and 
followed by authors such as (Hart, 1999; Axen&Edelsbrunner 1998). 

When using structured geometric models, such· as the CSG or B-rep 
models, several shape features and properties can be easily associated to 
groups of entities defined by topological and geometric relationships. 
Conversely, in many application areas we have to deal with complex models 
whose geometry is more and more frequently represented by triangular 
meshes. Triangular meshes are very flexible structures and can be used both 
in design and reconstruction processes, but they do not offer any partial 
structuring of the geometry which can be used to deduce global shape 
information. Consequently, there has been a growing interest and great 
research effort put in several problems related to the use of triangular 
meshes. These were, for example, the simplification and compression, or the 
optimisation and re-meshing for getting so-called quality meshes. In this 
context, it is interesting to investigate the possible role of computational 
topology for incorporating abstraction mechanisms in shape modelling. 

From a mathematical point of view, polyhedral meshes have been topic 
of research in general topology since decades and have formed a natural 
foundation for the development of algebraic topology, initially known as 
combinatorial topology (Engelking&Sielucki, 1992). Here, topological 
properties of the polyhedra, such as the Betti numbers and the related and 
well-known Euler equation, can be simply computed by counting the basic 
elements (simplices) of the polyhedra. These concepts have been widely 
used in solid modelling to approach problems related to the validity of 
complex data structures, to the extraction of features from models or to the 
reconstruction of surfaces from discrete data set. 

Among the different domains related to computational topology, this 
paper deals with some aspects of differential topology, which has been often 
used for surface coding and description. In this context, Morse theory sets 
the foundations for associating the topology of a given manifold to the 
critical points of a smooth function defined on the manifold. Starting from 
Morse theory, it is possible to defme a graph, the Reeb graph, which 
represents a smooth surface by coding the evolution of its contours and 
which is particularly interesting for shape understanding and compression 
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(Reeb, 1946; Shinagawa et aI., 1991a). Moreover, the juxtaposition of 
critical points on a surface is generally considered as one of the simplest way 
in which surface shape is perceived and organised (Pentland, 1986). The 
configuration of critical points has been used for shape description 
(Nackman, 1984; Pfaltz, 1990) as well as for driving the simplification of 
meshes while preserving the topology of a shape (Bajaj&Schikore, 1998). 

Using its original formulation, the Reeb graph is considered and adapted 
to handle triangular meshes with the aim of defining a shape analysis tool for 
triangular meshes. In particular, we propose the use of critical areas instead 
of critical points and extend the domain of applicability of the Reeb graph 
description to surfaces that do not belong to the Morse class. The set of 
possible relations among critical areas is also extended. In section 2, the 
basic concepts of Morse theory and Reeb graph are presented in the smooth 
domain, while the approach adopted to formulate a similar shape description 
in the discrete domain is given in section 3. An algorithm for computing the 
graph is briefly described in section 4, where the application to surface 
compression and restoring is also sketched. Conclusions are drawn in the 
final section. 

2. CRITICAL POINTS OF SMOOTH FUNCTIONS: 
MORSE THEORY AND REED GRAPHS 

Since its introduction, Morse theory has been considered as a 
fundamental tool for analysing the topology of smooth manifolds. The basic 
idea is that the topology of a given manifold can be described by analysing 
the critical points of a smooth function defined on the manifold. The 
simplest example of this relationship is the following well-known result: if a 
manifold is compact, then any continuous function defined on it has a 
maximum and a minimum. In applications related to geometric modelling, it 
is quite natural to choose the height function to study the surface shape. 
Intuitively, the height function of a smooth manifold M, embedded into the 
usual three-dimensional Euclidean space, is the real function, which 
associates its elevation to each point on the surface. The critical points of the 
height function will correspond to locations where the tangent plane is 
horizontal, while the level sets correspond to the intersections of the surface 
with planes orthogonal to the height direction. 

The height function, and in general any real smooth functionf, defined on 
a smooth manifold M, is called Morse function if all of its critical points are 
non-degenerate. A critical point is non-degenerate if the Hessian matrixH of 
f is non-singular at that point. In particular non-degenerate critical points are 
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isolated, therefore plateaux or volcano rims do not comply with the 
definition of Morse function (Milnor, 1963). 

An example of a simple Morse function is given in figure l(a), while 
figure 1 (b) depicts an example of a degenerate critical point, a so called 
"quadriped-saddle"; finally figure l(c) shows an example of non isolated 
critical points. 

(a) (b) (c) 
Figure 1. Examples of critical points: a simple minimum (a), a 4th order saddle (b) and a 

volcano rim (c). 

In general, the level sets may be shaped in arbitrarily complex ways, but 
if the height function is Morse, then their configuration can be quite simply 
classified and the associated manifold can be decomposed into a limited set 
of primitive topological cells (Milnor, 1963). Applications of this theory in 
computational contexts can be found, for example, in (Nackmann, 1984) 
where the shape of Morse functions is described by classifying the possible 
cycles occurring in the critical point configuration graph. These cycles 
correspond to regions of uniform behaviour of the first derivative, the so­
called slope districts, and have been classified into ten basic types. 

Using a similar approach, the shape of a manifold can be effectively 
represented using the Reeb graph, defined to code the evolution and 
arrangement of level curves (Reeb, 1946; Shinagawa et aI., 1991a). The 
Reeb graph of a real valued function/is defined as follows: 

Definition: Let / : M be a real valued function on a compact 
manifold M. The Reeb graph of M wrt/is the quotient space of Mx9l defined 
by the equivalence relation "-", given by: 

(Xj, / (Xl)) - (X2, / / (Xl) = / and Xl and X2 are in the same 
connected component 0/ r l (f (XJ) 

Therefore, all points of a compact manifold having the same value under 
a real function and whose pre-image belongs to the same connected 
component are collapsed into one element (see figure 2(a)). Moreover, since 
the contour topology changes only at critical levels of the height function, it 
is possible to associate a graph structure to the Reeb's quotient space, as 
follows. First of all, the node set is defined by those equivalence classes in 
the Reeb's quotient space, which correspond to critical levels of the height 
function. Then, an arc is defined by identifying all the equivalence classes 
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resulting from contours between two critical levels and belonging to the 
same connected component (Milnor, 1963; Biasotti et al., 2000a). 

In figure 2(a) the equivalence classes defined over the height function of 
a bi-torus are shown. In figure 2(b) the Reeb's quotient space is represented 
as a "traditional" graph where the equivalence classes are grouped into arcs 
if they are representative of diffeomorfic contours, as previously stated. 

h 

(a) (b) 
Figure 2. The Reeb graph of a bi-torus wrt the height function h: the equivalence classes are 

represented by the black solid line on the surface (a), and the corresponding graph 
representation is depicted in (b). 

Obviously, since the choice of the mapping function is not unique, a 
manifold can admit different Reeb graphs. However, if we have to describe 
the shape of a manifold surface M embedded into the Euclidean space, the 
Reeb graph of M under its "natural" height function codes the shape in terms 
of meaningful semantic labels, such as peaks, pits or passes. Moreover, 
under the assumption that the height function is Morse, the structure of the 
Reeb graph is rather simple: the nodes have almost degree three and the arcs 
of the graph can be oriented. 

This property is a consequence of a fundamental result of Morse theory, 
which establishes a link between the number of critical points and the 
topological type of the underlying manifold. Indeed, a Morse function 
defined on two-manifold satisfies the following Euler formula: 

maxima - saddles + minima = 2 ( 1 - g) = x(M) (1) 

where g represents the genus of the manifold (Milnor, 1963; Griffiths, 
1976). The value X(M) is called the Euler's characteristic of the manifold M, 
and is related to the manifold Betti numbers. 

The use of Reeb graphs in computer graphics has been firstly addressed 
in (Shinagawa et al., 1991a; Shinagawa&Kunii, 1991b). Even if there are no 
restrictions in the Reeb graph definition on the type of the function f 
associated to the manifold, several authors have in practice limited the use of 
Reeb graphs to Morse mapping functions. In the following section, it will be 
shown how a structure similar to the Reeb graph can be defined in the 
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discrete domain, starting from a triangular mesh and considering critical 
areas instead of critical points. 

3. CRITICAL AREAS OF TRIANGULAR MESHES 

The theories deriving by the adaptation of smooth techniques to discrete 
domains are often surprising, as many differential topology and geometry 
results have combinatorial analogues (Forman, 1993). In strictly 
mathematical formulations, the discrete Morse theory has been approached 
using slightly different approaches. Here, we are mainly interested in coding 
the shape of a triangular mesh in a topological structure defmed using the 
Reeb graph idea, and which keeps the same meaning as its smooth 
counterpart. 

First of all, let us restrict the context of the discussion to triangulated 
scalar fields, i.e. surfaces defined by function such as z=j (x, y); the 
extension to the three dimensional case will be discussed in the conclusive 
section. A formal and complete definition of critical points on a discrete 
mesh can be found in (Banchoff, 1970; Forman, 1993), where critical points 
are defined by taking into account the difference in elevation among a point 
and its star-neighbours (see figure 3). A simplified version of the critical 
point classification scheme has been used for example in (Bajaj&Schikore, 
1998; Takahashi et aI., 1995) for constructing topological structures to 
represent a given mesh. These approaches, anyway, do not consider all the 
possible configuration of edges around a point, and, for example,saddle 
points having more than two ascending directions, (see figure 3) are not 
considered. Thus, separating such saddle points in simpler ones a non-unique 
interpretation is introduced. 

Figure 3. The configuration of neighbours around a point which give rise to a maximum (a), 
and to a saddle in (b). 

Critical points can be detected also by studying the evolution of level 
sets, or contours, defined by intersecting the surface with a plane orthogonal 
to the height direction. The configuration and containment relationship 
among contours allows us to find critical points: for example, a contour 
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which does not contain any other contour will locate a maximum or a 
minimum point (Milnor, 1963; Lipschutz, 1969; Aumann et ai. 1991). 
Studying the evolution of contours provides a more global view of the 
surface shape with respect to local neighbourhood computation. Moreover, 
the frequency of the contours, i.e. their distance, behaves as a filter for 
discarding small ondulations which would cause the detection of many 
irrelevant critical points. Contours have been used also in (Shinagawa et aI., 
1991a; Shinagawa&Kunii, 1991b) for analysing smooth surfaces with a 
Morse height function. Given a generic continuous mesh, our approach is to 
compute a dense number of contour lines, to analyse the reSUlting critical 
areas, and finally to construct an extended Reeb graph representation from 
the topological adjacency relationship among critical areas. To correlate the 
distance between contours to the feature size, we have chosen to use the 
minimum vertical distance among vertices as a reference value. 

Figure 4. Critical areas defined on a triangulation constrained to contours. 

Therefore, the pre-image of any critical level of the height function 
associated to M will be, in general, represented by a level region of Cr(M). 
These regions are defined as the critical areas of M. 

Since we do not require the height function to be Morse, the flat regions 
of CT(M) correspond either to simply or to multiply connected areas, which 
define, respectively, simple or complex critical areas. Simply connected 
critical areas may correspond either to isolated or degenerate critical points 
of M. A multiply connected critical area corresponds to a degenerate critical 
level, and it divides the surface into two parts: an outer part defined by the 
surface not contained in the area, and as many inner parts as the multiplicity 
of the boundary. The critical areas are firstly classified as simple or complex 
and then each element is further classified as minimum, maximum or saddle 
according to the type of boundary edges and to the behaviour of the height 
function across the boundary. The complete classification scheme is 
presented in (Biasotti et aI., 2000a). 

In figure 5, a surface is depicted with its contour levels (a), and the 
classified critical areas (b). Simple maximum and minimum areas are 
depicted in dark grey and saddles in light grey; the complex maximum is 
depicted in grey. 
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(a) (b) 
Figure 5: Critical areas classification: the initial contour set (a) and the critical areas: simple 
maximum and minimum areas are coloured in dark grey. simple saddles in light grey and the 

complex maximum in medium grey (b). 

Since we are considering surfaces with boundary, it is necessary to give a 
unique interpretation to those critical areas touching the boundary. This is 
easily accomplished by considering a global virtual minimum point, which 
does not correspond to any real point in space, and which has the aim of 
assigning descending directions to· all edges on the surface boundary 
(Takahashi et al. 1995). 

Obviously, not all flat regions of Cr(M) correspond to critical points of 
the height function: ridges and ravines also produce flat zones, which can be 
anyway easily detected checking the number of ascending or descending 
directions out of the zone boundary. Details can be found in (Biasotti et al. 
2000a; Auman et al. 1991, De Martino&Ferrino, 1996). 

It is interesting to briefly discuss the validity of the Euler formula for the 
defined critical areas. With the introduction of the virtual minimum, the 
Euler formula is still satisfied, if the critical areas correspond to critical 
points, isolated or not, but with multiplicity equal to one (i.e. critical points 
such as the quadriped-saddle in fig. l(b) are not allowed). First of all, let us 
observe that the virtual minimum guarantees the topological equivalence 
between the surface and a 2-sphere. A generalised Euler formula can be 
introduced which takes into account the number of simple as well as 
complex critical areas. For each complex critical area, Ca. let us call h the 
number internal components of Ca and indicate mca=h-1. Let be P me the sum 
of all mCa values for each complex area, that is, P",e = Le mea' Then, our 
version of the Euler formula for triangulated surfaces becomes: 

maxima - saddles + minima - P me + mv = 2 (2) 

where mv is the contribution due to the virtual minimum. 
To explain the meaning of the value mCa introduced above and to 

intuitively justify the consistency of the generalised Euler formula in (2) 
with the formulation given in (1), let us consider the example depicted in 
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figure 6. Here, the highlighted complex maximum represents a critical level 
composed of non-isolated maxima of the height function. The complex 
maximum has only one inner component, and thus h= 1 and mca=O. 
Therefore, its contribution to the extended Euler's formula is O. Let us now 
consider a small rotation of the surface: this would cause the degenerate 
critical level to be decomposed into one maximum and one saddle, as shown 
in figure 6(b), and the contribution of this configuration to the Euler formula 
would be again O. Similarly, if we consider a complex maximum having two 
inner components (h=2, mca= 1) then the contribution to the Euler formula is 
-1. If we let the surface slightly rotate, then the critical point configuration 
would be made of two saddles and one maximum, and again, its contribution 
to the extended equation is -1. 

(a) (b) (c) (d) 

Figure 6: The circle in (a), totally composed of maximum points, is transformed by rotation 
into a maximum and a saddle point (b). Similarly, a complex maximum having two cycles and 

two inner components (c), is decomposed into two saddles and one maximum (d). 

Another way of justifying the Euler equation is to consider the relation 
between critical areas and Reeb graph nodes. By definition, all points 
belonging to a simply connected critical area are Reeb-equivalent and may 
therefore collapse into the same node. If the isolated critical points of M 
were known, moreover, a simple labelling of the graph's node set would be 
sufficient to distinguish them from degenerate critical points. Similarly, the 
behaviour of arcs incident to simple critical areas is equivalent to the 
behaviour of arcs incident to isolated critical points. Therefore, simple 
critical areas can be represented in an extended Reeb graph model by simple 
nodes as in the normal Reeb graph representation. Multiply connected 
critical areas correspond to macro-nodes: that is particular nodes having at 
least one arc connected to an inner node. Note that the equation in 2 can be 
easily extended to closed surfaces, by considering an analogous definition of 
critical area (Biasotti, 2000c). 
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4. CONSTRUCTION OF THE REED GRAPH 

In this section we will briefly sketch an algorithm to automatically 
construct the Reeb graph of a triangulation. The resulting shape 
representation is called Extended Reeb Graph (ERG) and is defined as a 
graph whose nodes correspond to simple critical areas, macron odes 
correspond to complex critical areas, and arcs represent the topological 
adjacency among critical areas. 

In the following, we will assume that the input is defined by a contour 
set, either given or computed. From an algorithmic point of view, the first 
step is the construction of a Delaunay triangulation constrained to the 
contours and the recognition of the critical areas, while the node created in 
correspondence to the virtual minimum, VM, initialises the ERG. Such a 
node does not correspond to any real point in the space, and we visualize it 
as a point having elevation smaller than any other point on the surface. The 
critical areas are detected by extracting the flat areas of the constrained 
Delaunay triangulation and the classification of critical areas, simple or 
complex, is done by checking the number of non-constrained edges in the 
boundary, as described in (Biasotti et aI., 2000a). 

To extract the arcs of the ERG, we have introduced the concept of 
influence zone, which is defined using the edge-adjacency relationship 
among contours; intuitively the influence zone of a given critical area spans 
the part of surface topologically adjacent to that area. In practice, influence 
zones for minimum and maximum areas are computed using an expansion 
process that connects diffeomorfic contours located between two critical 
levels (cfr. Section 2). Consequently, influence zones of maxima and minima 
are disjoint and cannot overlap. Influence zones of saddle areas delimit the 
surface portion where the topological change occurs. Therefore, saddle zones 
having the same elevation and being topologically adjacent, may have the 
same influence zone. In this case, the influence zone is unique for the 
saddles, and it will correspond to the same node in the ERG. 

All influence zones of the surface in figure 3 are depicted in figure 7(a). 
Then, using the notion of influence zone, a first set of ERG arcs is 

extracted from the adjacency relationships between the influence zones of 
simple maximum or minimum critical areas and saddle ones. In this manner 
the arcs connected to terminal nodes of the ERG are identified (see figure 
7(b)). To complete the ERG construction the links between saddles and, in 
general, complex areas have to be determined. Intuitively, arcs correspond to 
ascending paths between critical areas, which are determined by expanding 
the associated influence zones, following free directions in the outmost 
boundary component (see figure 7(c)). Free directions are those which do 
not correspond to an already identified arc. 
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VM 
(a) (b) (c) 

Figure 7: The influence zones (a), the first step of the ERG construction (b) and the final one 
(c). The virtual minimum is connected to the saddle at minimum elevation. 

In figure 8, an example of our characterisation method applied to a 
natural surface is shown. In (a) the initial surface is depicted with its contour 
lines in (b). Here, the critical areas are depicted in dark grey. The resulting 
ERG representation is shown in (c). 

(a) (b) 

(c) 
Figure 8: A mesh representing a terrain (a); the characterized model (b) and the resulting 

ERG representation (c). 

The ERG has been used for compression and decompression of triangular 
meshes (Biasotti et al., 2000b). The compressed model can be simply 
constructed by triangulating the critical levels identified by the ERG nodes. 
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The decompression step is aimed at associating appropriate restoring 
rules to the ERG, so that the reconstruction of the original shape from the 
graph can be done automatically. This problem is similar to surface 
reconstruction from cross section. In this case, however, the relationships 
stored in the ERG simplify the branching problem, but on the other side the 
sections are very sparse. Therefore, tools are needed to blend correctly the 
shape of one contour into the adjacent one, generating sufficiently dense 
intermediate contours among critical sections. As well as our approach to 
model compression is based on the shape analysis, also the approach to 
contour blending is based on the analysis of shape similarities between 
contours (Mortara&Spagnuolo, 2000). To summarize, the proposed 
approach to model simplification is strongly based on the comprehension of 
the surface shape, therefore using a top-down approach to model 
compression. In this case, data reduction is seen not simply as a matter of 
"quantity" but of "quality": a model may result too bulky for a specific 
application not only because it "contains too many points" but mainly 
because it is defined at a too low abstraction level. 

5. CONCLUSIONS 

The combination of geometry and topology provides interesting insight 
into several computer application problems that involve shape modeling and 
processing. Computational approaches to topological questions are 
increasing and we might foresee that computational topology will eventually 
develop into an area of computer science. 

In this context, we have described a new method for analyzing the shape 
of triangular meshes, based on an extended Reeb graph representation. The 
result is a high-level description of the surface shape, which provides a 
model compression mechanism of really great interest. 

We have shown examples produced with our first implementation. The 
natural next step is the extension of the method to handle fully 3D input. To 
this aim we are extending both the critical area classification and the ERG 
representation algorithm to three-dimensional surfaces without boundary 
(Biasotti, 2000c; Attene et aI., 2001). From the first results we can affirm 
that the presented shape classification is still valid for closed surfaces. In 
fact, starting from a Delaunay triangulation constrained to level sets; flat 
areas still correspond to surface's critical points. Also, influence zones can 
be defined analogously to the bi-dimensional case. The graph extraction 
algorithm differs from the bi-dimensional version because the virtual 
minimum introduction is not necessary in this case: for closed surfaces the 
construction process starts from the critical area at minimum elevation. 
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Moreover, for closed surfaces, cycles may appear in the ERG, due to surface 
holes. Finally, in figure 9 we present an example of ERG extraction for a 3D 
closed surface. 

(a) (b) 
Figure 9: The influence saddle zones ofa 3D model (a) and the graph representation obtained 

considerinfg only the critical sections (b). 
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