
Spatial Modeling and Reasoning for 
Automatic Dimensional Inspection 

Aristides A. G. Requicha and Steven N. Spitz 

University of Southern California, Los Angeles, CA 
Proficiency Ltd., Jerusalem, Israel 

Abstract: This paper reports on a system that bridges the gap between computer aided 
design and metrology activities in the life cycle of a mechanical product. It 
completely automates the process of programming coordinate measuring 
machines. Accessibility of surface features to probes is efficiently computed 
by using computer graphics hardware. This information is used by a high-level 
planner based on constraint satisfaction techniques to determine setups, probes 
and probe orientations. High-level plans are refined so as to produce operation 
sequences and probe paths by using a combination of probabilistic roadmaps 
and travelling salesperson techniques. Experimental results are presented for 
industrial parts. 

Key words: Coordinate Measuring Machines, CMM, quality control, process control, 
tolerances, accessibility, direction cones, constraint satisfaction, setup 
planning, path planning 

1. INTRODUCTION 

Dimensional inspection is a product's life-cycle activity that seeks to 
determine if a manufactured part is within the dimensional tolerances 
specified by the designer. It serves both for quality and process control: its 
output may be a yes/no decision on whether a workpiece is acceptable, or 
information that can be correlated with the parameters that control the 
manufacturing process. Dimensional inspect jon tasks in modem production 
systems are often performed by Coordinate Measuring Machines (CMMs), 



182 A.A. G. Requicha and s.N. Spitz 

which are versatile and well-suited to automatic operation. A CMM is 
essentially a very precise 3-D digitizer that produces a stream of x,y,z 
coordinates of points on the bounding surfaces of the object being measured. 
Today, CMMs are typically programmed manually, by teaching or with the 
help of interactive offline tools. Both methods tend to be time-consuming 
and error prone. The work reported in this paper automates the entire process 
of planning and programming CMM operations. Given a toleranced solid 
model of a part, plus a description of the task (as a set of surface features and 
associated tolerances to be checked), the system described here produces all 
the information required to perform the task: setups, probes, probe 
orientations, and probe paths. Inspection planning problems have been 
addressed by several researchers-see e.g. (Brown 1990, Keowon 1998, Lim 
1994, Limaiem 1997, Merat 1992) and the references in (Spitz 1999)-but 
the planners developed thus far have been incomplete and impractical for 
objects of industrial complexity. 

In the following sections we discuss the architecture of our planner, 
accessibity analysis, high-level planning, and low-level planning. Then we 
present experimental results, and draw conclusions. 

2. ARCHITECTURE 

We define an inspection task to be performed by a measurement graph. 
The root node corresponds to the task. Below the root are tolerance nodes, 
then surface features and finally faces. A path from the root to a leaf is 
called a measurement. Thus, a measurement is a triplet (tolerance, feature, 
face number) or, symbolically M = (T, F, #). Here, T might be a flatness 
tolerance, F a planar feature, and # the face number corresponding to the 
feature. (A feature may be composed of several faces; for simplicity of 
exposition we will assume that each feature has a single face associated with 
it, and ignore face nodes in the sequel.) The input to our planner is a model 
of a CMM, a set of probe models, a measurement graph, and a solid model 
of the workpiece, including tolerancing information equivalent to that 
prescribed in the ANSI Y14 standards. 

We divide the planning task into two, high- and low-level planning. The 
high-level inspection plan (HLIP) contains information on how to setup the 
part on the machine, which probes to use, and which features to inspect. The 
HLIP is refined into a low-level plan (LLIP) in which the points to be 
measured are identified and sequenced, and the probe paths are computed. 
The two planners are described below, in Sections 4 and 5. But first we look 
at accessibility analysis, which is a crucial geometric computation that drives 
all the planning. 



Spatial Modeling and Reasoningfor Inspection 183 

3. ACCESSIBILITY ANALYSIS 

We say that a point on the surface of a 
workpiece is accessible to a probe if the probe 
tip can contact the point without otherwise 
colliding with the part. A surface feature is 
accessible if all of its points are accessible. 
Figure 1 shows a probe oriented along two 
different directions accessing a point on the 
part's surface. The set of all accessible 
directions constitutes a direction cone called a 
global accessibility cone or GAC. Accessibility 
is a necessary condition for a probe to be able to 
inspect a feature. However, it is not sufficient, 
as shown by the 2-D example of Figure 2. The 

Fig. 1 - Accessibility probe can touch the vertical surface without 
colliding with the part, but it is impossible to 

move the probe into the desired position without collisions. In other words, 
the point to be inspected is not approachable. Accessibility does not 
guarantee approachability, but it can be computed fast, while approachability 
requires full-fledged path-planning algorithms. 

We distinguish between straight probes, i.e., probes in which the 
orientation of the stylus (the thin part in Figure 1) is fixed with respect to the 
ram (the thicker, upper part), and orientable or bent probes, as in Figure 2. It 
is easier to compute the GAC of a point if we replace a straight probe with a 
semi-infmite line. Project the entire workpiece on a unit sphere centered at 
the point. The complement of this projection corresponds to the set of 
directions along which the semi-infinite line does not intersect the 
workpiece, i.e., to the GAC. In the actual computation, we replace the unit 
sphere with a cube and use standard computer graphics hardware, invoked 
through the OpenGL interface, to compute the projections on the six faces of 

the cube. 
For bent probes, accessibility 

computations are considerably more 
complicated. We need to find two inter­
related GACs, one for the stylus, which can 
be approximated by a finite line segment, and 
another for the ram, which can be abstracted 
as a semi-infinite line. It turns out that it is 

Fig. 2 - Approachability possible to carry out these computations also 
by using graphics hardware, including z 

buffers. Details are given in (Spitz 2000b). 



184 

Line abstractions for probes are 
optimistic, because they ignore the 
finite thickness of the probes. Non-zero 
thickness can be taken into account by 
growing the part by the radius of the 
stylus (or the ram). This is an instance 
of the familiar robotics procedure of 
growing the obstacles and shrinking 
the robots. This growth operation is 
also known as a solid offset or as a 
Minkowski sum. Computing the 

A.A. G. Requicha and S.N. Spitz 

boundary of the result of a Minkowski Fig. 3 - Example ofGAC 

sum is expensive, but in our case we do 
not need to know the exact boundary. To find the directions along which 
there are collisions with the grown obstacle it suffices to project (polyhedral 
aproximations for) spheres located at the object's vertices, cylinders centered 
at the edges, and offset faces. As before, the complement of these directions 
is the desired GAC, and the computations can be done in hardware. 

Figure 3 provides an example of a GAC computation. Our work on 
accessibility analysis is described in more detail in (Spyridi 1990, 1991, 
1993, 1994a, 1994b, Spitz 1999a, 1999c, 2000b). 

4. HIGH-LEVEL PLANNING 

We represent (a set of) high-level plans as trees, with the following 
levels. 

Level 0: Root. 
Level I: Setups, i.e., how to orient the part on the machine table. 
Level 2: Probes, i.e., which of the available physical probes to use. 
Level 3: Probe orientation. 
Level 4: Surface feature to be inspected. 
Level 5: Measurement, i.e., (Tolerance, Feature) tuple. 

A specific high-level plan corresponds to a complete traversal of the plan 
tree, e.g., by proceeding depth-first. We cast the planning activity into a 
constraint satisfaction problem (CSP). The associated variables are the 
measurements which constitute the leaves of the tree. Each measurement has 
a domain whose elements are triples of the form (s,p, 0), where s is a setup, 
p a probe, and 0 a probe orientation. 

We impose one hard constraint-accessibility, as an approximation for 
approachability-and several soft constraints that seek to ensure that the 



Spatial Modeling and Reasoning/or Inspection 185 

solution is of high quality, in tenns of both efficiency of plan execution, and 
accuracy of the measured data. These are called same constraints because 
they prescribe that measurements be made in the same-setup, or with the 
same-probe, or in the same-orientation for the probe. These constraints 
reflect the fact that the major sources of inaccuracies and of wasted time are 
changes of setup, probe and probe orientation. The .same constraints are 
arranged hierarchically, and the planner attempts to satisfy the most 
important of them, when not all can be satisfied. 

For simplicity, we assume here that the probes are straight. (How to deal 
with bent probes is explained in (Spitz 1999a, 1999b).) This assumption 
implies that the probe orientation and the setup orientation coincide, and we 
can represent a measurement domain by a list of (physical) probes, each with 
an associated direction cone containing setup directions. Planning proceeds 
in two conceptual phases: knowledge acquisition and plan extraction. We 
acquire knowledge by computing values for the variable domains, primarily 
through accessibIlity analysis. This can be done once for all features, but it is 
an expensive procedure, and our planner architecture allows for lazy 
evaluation, in which GACs are computed when needed. Given initial values 
for the domains, we extract an HLIP by using clustering techniques. To 
understand why clustering is needed, observe that two features can be 
inspected in the same setup with the same straight probe only if their GACs 
have a common direction, i.e., if they have a non-empty intersection. 
Typically, it is impossible to fmd a common direction for all GACs, and thus 
we look for groups of GACs that have non-empty intersections. Each group 
corresponds to a possible setup, which can be any direction in the group's 
intersection. The clustering and plan extraction operations are relatively 
complicated; details are given in (Spitz 1999a, 1 999b). 

The overall activity of the high-level planner can be summarized as 
follows. 

Initialize the knowledge base (with probe infonnation, GACs, etc.). 
Loop until done 

Extract a plan, primarily by using clustering to solve the CSP. 
If the plan is valid, report success. 
If not, perfonn incremental knowledge acquisition and keep looping. 

Validation is required because we make numerous approximations to 
ensure low computation times, especially in accessibility analysis, and some 
of these approximations are optimistic and may introduce false solutions. We 
validate the plan by using collision detection software, which executes 
swiftly because we (pessimistically) replace the probe and ram by grown 
lines (i.e., cylinders capped by hemispheres) that totally enclose the actual 
probe and ram. 



186 A.A. G. Requicha and S.N. Spitz 

5. LOW-LEVEL PLANNING 

Construction of a low-level inspection plan (LLIP) begins with 
linearization of a HLIP to obtain a sequence of setups, in which several 
measurements are to be performed. For each feature, a set of points to be 
contacted by the probe are selected, and then path planning begins. (Point 
selection is currently done in a naIve, random and uniformly distributed 
pattern, but more sophisticated approaches are easy to incorporate in the 
planner.) The goal in path planning for each setup is to visit each of the 
selected points without undesirable collisions with the workpiece and as 
rapidly as possible. We solve this problem by combining path planning 
techniques from robotics with travelling salesperson (TSP) algorithms from 
the optimization field. 

We construct a roadmap, which is a graph whose nodes are points to be 
visited, and whose arcs are collision-free paths. This is done by using an 
insert-node operator that invokes a local planner and attempts to connect by 
a collision-free path the node to be inserted with all the previous nodes 
within a specified neighborhood. The local planner may simply test line 
segments between nodes for collisions (using the same approach as the 
validator discussed earlier), or it may incorporate CMM-specific heuristics. 
It does not have to be powerful, but it does have to be fast. After all the 
desired points are inserted in the roadmap, we check to see if it is a 
connected graph, which implies that there exists a path through the graph 
that solves the problem. If not, we insert nodes randomly, and continue until 
we have a connected graph or no solution is found within the allotted 
planning time. 

Once a connected roadmap is found, we use a TSP algorithm to find the 
shortest-distance path that visits all the points. The result is close to optimal 
for the specific roadmap (but not necessarily across all possible roadmaps). 

6. IMPLEMENTATION AND RESULTS 

The planner was implemented in C++ on a SUN Ultra 1 with Creator 3D 
graphics hardware, Solaris 2.S and 128 MB of memory. For collision 
detection we used the RAPID system (Gottschalk 1996). The parts were 
modeled with the ACIS solid modeler and then approximated with polyhedra 
by using the ACIS mesher. The TSP was solved by using greedy algorithms 
discussed in (Cormen 1990). 

The GAC shown in Figure 3 was found in less than 100 msec for a half­
line abstraction. For a more realistic thick probe abstraction the GAC 
computation time increased to approximately 1 sec. A high level plan for the 



Spatial Modeling and Reasoning/or Inspection 

part shown in Figure 4 took on 
the order of a minute to compute 
for straight probes and 
approximately twice as long for 
orientable (bent) probes. Note 
that the orientable probe plan 
executes faster, but takes longer 
to obtain. Low-level plans 
involving on the order of 100 
points to be visited typically are 
found in about 30 seconds. 

7. CONCLUSIONS 

Figure 4 - Part and probe simulation 

187 

We presented an overview of a novel planner that derives automatically 
all the required information for inspecting a part with a CMM from a 
toleranced solid model of the part plus a task specified by surface features 
and associated tolerances to be inspected. The planner is reliable and swift, 
and was tested with industrial parts. Insofar as we know, it is the most 
powerful CMM planner ever built. 

Perhaps most importantly, this research represents a shift from the 
traditional paradigm of geometric modeling applications, in which one 
attempts to solve the required geometric problems correctly and 
independently of their subsequent use. Here we are willing to accept 
approximate and even incorrect geometric solutions provided that they are 
obtained fast. This is possible because every plan is eventually verified and 
incorrect results are eliminated. In essence we are using a sophisticated 
version of the generate-and-test method, in which the generator is very 
powerful but not always right. Our experimental results suggest that this new 
approach is well-worth investigating for problems beyond CMM planning. 

ACKNOWLEDGEMENTS 

This research was supported in part by the National Science Foundation 
under grants DMI-96-34727 and DDM-87-15404. 



188 A.A. G. Requicha and s.N. Spitz 

REFERENCES 

Brown, C. W., and Gyorog, D. A. (1990). Generative inspection process planner for 
integrated production. In Cohen, P. H., and Joshi, S. B. (eds.): Advances in Integrated 
Product Design and Manufacturing, Proceedings of the ASME Winter Annual Mtg., PED-
47, pp. 151-162. 

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction to Algorithms, MIT 
Press, Cambridge, MA. 

Gottschalk, S., Lin, M. C., and Manocha, D. (1996). OBB-Tree: A hierarchical structure for 
rapid interference detection. In Rushmeier, H. (ed.): Proceedings ACM SIGGRAPH '96, 
pp.171-180. 

Kweon, S., and Medeiros, D. 1. (1998). Part orientations for CMM inspection using 
dimensioned visibility maps. Computer-Aided Design, Vol. 30, No.9, pp. 741-749. 

Lim, C. P., and Menq, C. H. (1994). CMM feature acessibility and path generation. Robotics 
and Computer Integrated Manufacturing, Vol. 32, No.3, pp. 597-618. 

Limaiem, A., and EIMaraghy, H. A. (1997). A general method for accessibility analysis. In 
Proc. IEEE In!'/ Con! on Robotics and Automation, pp. 2346-2351. 

Merat, F. L., and Radack, G. M. (1992). Automatic inspection planning with a feature-based 
CAD system Robotics and Computer Integrated Manufacturing, Vol. 9, No. I, pp. 61-69. 

Spitz, S. N. (1999a). Dimensional inspection planning for coordinate measuring machines. Ph. 
D. Dissertation, Computer Science Department, University of Southern California. 

Spitz, S. N., and Requicha, A. A. G. (1999b). Hierarchical constraint satisfaction for high­
level dimensional inspection planning. In Proc. IEEE Int'l Symp. on Assembly & Task 
Planning (ISATP '99), pp. 374-380. 

Spitz, S. N., Spyridi, A. 1., and Requicha, A. A. G. (1999c). Accessibility analysis for 
planning of dimensional inspection with coordinate measuring machines. IEEE Trans. 
Robotics & Automation, Vol. 15, No.4, pp. 714-727. 

Spitz, S. N., and Requicha, A. A. G. (2000a). Multiple-goals path planning for coordinate 
measuring machines. In Proc. IEEE Int 'I Con! on Robotics & Automation, pp. 2322-2327. 

Spitz, S. N., and Requicha, A. A. G. (2000b). Accessibility analysis using computer graphics 
hardware. IEEE Trans. Visualization & Computer Graphics, Vol. 6, No.3, in press. 

Spyridi, A. 1., and Requicha, A. A. G. (1990). Accessibility analysis for the automatic 
inspection of mechanical parts by coordinate measuring machines. In Proc. IEEE Int'l 
Can! on Robotics & Automation, pp. 1284-1289. 

Spyridi, A. 1., and Requicha, A. A. G. (1991). Accessibility analysis for polyhedral objects. In 
S. G. Tzafestas (ed.): Engineering Systems with Intelligence: Concepts, Tools and 
Applications, Kluwer Academic Publishers, Inc., Dordrecht, Holland, pp. 317-324. 

Spyridi, A. 1., and Requicha, A. A. G. (1993). Automatic planning for dimensional inspection. 
ASME Manufacturing Review, Vol. 6, No.4, pp. 314-319. 

Spyridi, A. 1. (1994a) Automatic generation of high-level inspection plans for Coordinate 
Measuring Machines. Ph. D. Dissertation, Computer Science Department, University of 
Southern California. 

Spyridi, A. 1., and Requicha, A. A. G. (I 994b). Automatic programming of coordinate 
measuring machines. InProc. IEEE Int'/ Con! on Robotics & Automation, pp. 1107-1112. 


	Spatial Modeling and Reasoning for Automatic Dimensional Inspection

	1. INTRODUCTION
	2. ARCHITECTURE
	3. ACCESSIBILITY ANALYSIS
	4. HIGH-LEVEL PLANNING
	5. LOW-LEVEL PLANNING
	6. IMPLEMENTATION AND RESULTS
	7. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES




