
TOWARDS A LOGICAL FRAMEWORK 
FOR ENGINEERING DESIGN PROCESSES 

Filippo A. Salustri, Ph.D.,P.Eng. 
Ryerson University 
Toronto, Canada 
salustri@ryerson.ca 

Abstract 
This paper reports on a new aspect of the author's ongoing research to develop 

a logical framework for engineering design processes. Since this is a new project, 
the goal of this paper is to describe the nature of the problem being studied, to 
sketch the architecture ofthe system being developed to address it, and to identify 
various areas of application. Reasoning about design processes is found to be a 
task essentially about reasoning about product knowledge. A recently developed 
logic, called ALX3, has been found to provide all the basic mechanisms for 
representing design processes. ADPM will extend ALX3 to support directly the 
kinds of knowledge needed for design processes to occur. Some examples from 
the area of automotive engineering are used to indicate some of ADPM's benefits 
in practical environments. 

Keywords: action logic, design process, design science, knowledge-based systems 

1. Introduction 
The goal of all the author's research is to fonnalize the design endeavor 

without limiting creativity and innovation. The author's previous research has 
developed a model of designed products; the Axiomatic Infonnation Model 
for Design (AIM-D) [Salustri, 1996] uses axiomatic set theory to establish a 
logically rigorous product model. Now, the author is pursuing an Axiomatic 
Design Process Model (AD PM) intended to fonnalise portions of a generalized 
design process. Since ADPM is a new project, the goals of this paper are to 
describe the nature of the problem being studied, to sketch the architecture of 
the proposed solution, and to identify various areas of application. 

Design science pursues fonnalisms for design using scientific methods. De­
sign has important subjective and objective components, the relative importance 
of which depend on the particular discipline. Engineering design is constrained 

http://dx.doi.org/10.1007/978-0-387-35494-1_19


202 

by the laws of nature and the need for robustness and efficiency. It seems likely, 
then, that engineering design (just "design" hereunder) would benefit most from 
scientific formalism. However, the kinds of experiments needed to scientifically 
study real-world design processes is rarely feasible. Thus, until the field ma­
tures further, researchers must rely on theoretical techniques, includingformal 
methods. 

A fundamental requirement of scientific theories is internal logical consis­
tency. This is typically afforded through the use of mathematics. One might 
therefore expect a reliance on mathematics in design science. However, design 
is an endeavor, not a phenomenon, and there are many substantive distinctions 
between the two. These issues have been examined by many researchers (e.g. 
[Simon, 1981; Alexander et aI., 1977]. The author believes that a meaningful 
design science can be based on various forms of symbolic, rather than mathe­
matical, logic, and that theorizing about design processes is a reasoning task 
about product knowledge. As such, logic, especially model theory will be shown 
to be a much more naturalfit than mathematics. 

This paper will motivate the use of model theory as a proper foundation of a 
logic of design processes and examine how three fundamental kinds of design 
tasks - synthesis, analysis, and evaluation - may be addressed by a particu­
lar logic, called ALX3, which is the foundation of ADPM. Various possible 
application domains are then examined. 

2. Fundamentals 

The author's approach for ADPM is based on two observations. Firstly, 
other efforts to formalize design processes have imposed either too much or 
too little formal structure. Formalisms based on heuristics, such as [Hubka and 
Eder, 1992; Pugh, 1991], are very flexible but not logically rigorous. Others, 
such as [Sub, 1990; Park and Cutkosky, 1999], have relied on highly structured 
systems that are nonetheless only naively connected to formal systems. Still 
others that have relied heavily on mathematical interpretations, such as [Zeng 
and Gu, 1999], allow reliable reasoning at the expense of flexibility: the logic 
becomes prescriptive, rather than descriptive. It is would be best to find a design 
process structure that does not limit the flexibility of its application. 

Secondly, recent results of protocol analyses [McNeill et aI., 1998] suggest to 
the current author that a design process consists of concurrent subprocesses that 
work towards a common overall goal but with potentially opposing perspectives 
even if there is only one designer. 

These observations have led the author to propose the following hypothesis: 
A design process is a discrete-event system occurring as the result of multiple 
"agents" acting towards a common general goal, each agent having its own 
priorities, context, and domain knowledge. This hypothesis applies to single 



A Logical Framework/or Design Processes 203 

designers as well as groups. The author believes that a single designer's cog­
nitive processes may be modeled (in a limited way) as a group of interacting 
agents. 

ADPM is not intended to fonnalise entire design processes. Rather, it is 
a fonnal framework for fragments of tasks such as: reasoning about design 
and design research, fonnulating new design methods, teaching design, and 
development of computer-based design aids. The goal of AQPM is to aid in 
thinking about design at both abstract and practical levels so as to improve the 
robustness of design processes and the efficacy of human designers. 

There are various ways to represent a general design process with the lan­
guage of mathematics, such as in [Zeng and Gu, 1999]. The author's own 
mathematical representation may be posed as 8i+1 = D 8;) . 

The state of a design process, 8, specifies the design problem and its solution. 
D, the design process, operates on the sum1 of all previous states to some point 
i-thereby providing access to the design history - and transfonns it into the 
next reasonable state. The process itself is responsible for detennining when a 
design is complete (i.e. when the final state has been reached). 

Now, however, it is very difficult to specify the kinds oftasks (e.g. synthesis, 
analysis, and evaluation tasks) that should occur to transfonn one state into 
another. This is because of the limitations of mathematical process representa­
tions that do not treat issues like non-detenninism and concurrency of executing 
actions. Instead, we would like to be able to write a set of rules that govern the 
possible actions that can be taken at some point in a design process such that the 
results of taking one action can be evaluated with respect to criteria governing 
the successful completion of the overall process. 

3. ADPM, Version 1.0 
Although mathematical approaches seem restricted, the state-transition rep­

resentation on which they are based is both sensible and commonplace in the 
literature. By adopting this paradigm for design processes, we can begin to 
fonnalize individual actions without placing undesireable limitations on the 
overall processes. To maintain flexibility, we need to describe possible states 
without enforcing a prescriptive overall process. Furthennore, the author be­
lieves that a discrete-event fonnulation can provide a good foundation upon 
which to build a fonnalism for design processes. That is, that there are some 
kinds of crisply distinguishable events that occur during a design process that 
mark substantive changes to a design. More specifically, ADPM assumes the 
following representation of the universe2 of design processes. 

The state of a design is a set of first-order logic statement that describe a 
problem's requirements and the parameters that describe a product able to meet 
them. Generally, the initial state has no satisfied requirements and no defined 



204 

parameters, and the final state has a fully specified set of parameters satisfy the 
known requirements. It is then possible to select and order sequences of states 
that identify the shortest path from an initial to a final state. Actual paths in 
"real-life" design processes will likely be different. Development of strategies 
for keeping actual paths as close as possible to the ideal should improve design 
processes by shortening lead-times and increasing resource utilization. 

A key feature of a design process is that it creates information; i.e. during 
the process, some information is not known. This suggests that a three-valued 
first-order logic is needed with constants T (true), ..L (false), and -j (unknown). 
Three-valued logics are well understood constructs. 

It then becomes a simple matter to define axioms that identify various kinds 
of states (e.g. initial and final states). For example, we can specify that one a 
requirement is satisfied in some state, then it is satisfied in every subsequent 
state (assuming all subsequent actions are both correct and correctly executed)3 

With such an axiom, we eliminate any action that would cause a satisfied 
requirement to become violated. A computerized designer's aid embedding this 
rule could warn a designer that an action will yield undesirable results. Clearly 
such a capability would be advantageous. 

However, there is a problem. The state in which r is evaluated has not been 
specified, which means that r is in fact true in every state. This is not our 
intention. This problem can be avoided by using a second-order logic able to 
represent statements about statements. However, second-order logic both less 
well-developed and more complex than first-order logic. As a result, the author 
prefers not to have to depend on it at this time. 

There is another kind of solution to this problem, fortunately, that remains 
within the bounds offirst-order logic and maintains our intuitive notion of design 
as state transformation: model theory. 

4. A Model Theoretic Solution: ADPM, Version 2.0 
Model theory treats the relation between formal languages and its interpreta­

tions (or models) [Chang and Keisler, 1977]. It is typical to consider each model 
in a particular theory as a description of a "possible world," i.e. a description of 
the way things could be, the extent of which is restricted to only the domain of 
the formal language. A model theory allows the description of states and the 
relationships that allow one state to be transformed into another. Model theory 
is, then, a way of describing one logic with another logic, thereby circumvent­
ing the need for higher-order logics. In the case of ADPM, the formal language 
is AIM-D, the author's product formalism. 

A possible world can represent the state of a design agent. An agent is said 
to know a fact if that fact is necessarily true in all worlds the agent considers 
possible, and possibly true if it is true in only some of those worlds. Model 



A Logical Framework for Design Processes 205 

theory also eliminates the need for three-valued logic: facts are only either true 
or false, and an agent either knows or does not know it. These capabilities are 
exactly what is needed to construct a formalism of design processes as described 
above; thus, model theory is used to develop ADPM. 

To see the potential of a model theory for design, consider a recent experience 
of the author. A team of designers at an automotive manufacturer was charged 
with designing a new engine. The team included one designer for the engine 
block, and another for the cylinder head. Typically, the block designer begins by 
establishing key parameters, including the block deck height, which is passed 
to the cylinder head designer. Based on the total engine package height, the 
head designer can set a maximum height for the cylinder head. Once the design 
team had finished their preliminary work, a mockup of the engine was built. It 
was too tall. Multiple iterations over most of the design were required before 
they found that the block designer and head designer had each assumed the 
engine gasket was their own responsibility. This resulted in an engine that had 
two gaskets. The extra gasket made the mockup too tall. 

The real problem faced by these two designers was a lack of common knowl­
edge (CK) about the gasket, and it can be proved that the problem would have 
been trivially solved if they had had CK. Model theory provides the apparatus 
to define and manipulate CK [Fagin et aI., 1995]. Some of the ways in which 
model theoretic formalisms can be applied to engineering design situations will 
be discussed in Section 6. 

Model theory is typically used for two tasks. Firstly, it can validate a formal 
language (AIM-D, in this case) by showing the correctness of all its models. 
Thus, model theory can be used to logically verify product models. 

Secondly, model theory can also search for sequences of transitions (paths) 
from an initial to a final state (called model checking). Such systems are called 
process logics and action logiCS, and have found application in artificial intel­
ligence (AI) [Chen and De Giacomo, 1999] and distributed agent technologies 
[Singh et aI., 1999]. In design engineering, such systems can help create, man­
age, and modify design processes. 

To be appropriately expressive, a logic for design processes must include 
aspects of modal logic to distinguish between necessity and possibility, temporal 
logic to account for the passage of time, dynamic logic to represent actions, and 
deontic logic to include notions of obligation (Le. a designer is obliged to act 
in certain ways under certain circumstances). Many of these kinds of logic 
are typically combined in action logics. The author has surveyed a number 
of recently developed action logic. Almost all have been found substantially 
lacking in one regard or another. For example: 

• [Henriksen and Thiagarajan, 1999] have developed an action logic with­
out branching time (needed to represent process alternatives); 



206 

• [Harel and Singennan, 1999] report on a logic with support for branches 
and concurrency of multiple agents, but it has only a weak fonn of logical 
negation and lacks modal operators; 

• the process logic in [Chen and De Giacomo, 1999] is specificallyonly for 
model checking and does not support contradictions (which often occur 
during design processes); and 

• [Huang et al., 1996] describe an sound, complete, and decidable action 
logic that supports bounded rationality (i.e. designers can be fallible), 
but without support for belief operators and time. 

Furthennore, all these logics are based on propositional (not first-order) logic, 
and none of them support deontic operators. First-order logic is required for 
two reasons. Firstly, first-order logic allows quantification over the domain (e.g. 
facts like Agent A knows that there exists a component that provides support for 
bending moments), which is not possible with propositional logic. Secondly, 
first-order logics can be used to model processes built up from primitive or 
atomic actions. The actions taken as atomic need not be computable per se; so 
it is possible to build a fonnalism that includes the "atomic" action: establish the 
sUbfunctions of the product's main junction description as a task to be perfonned 
by a human. Of course, this task may be redefined in time as a composite task 
made up of other, more primitive ones. This approach allows top-down - rather 
than bottom-up - development of fonnalisms for design. 

Since no logic was found to be sufficient for modeling design processes, it 
seemed the author would have to develop a new one "from scratch." Fortunately, 
however, the author has found a new action logic, called ALX3 [Huang, 1994], 
that is ideal for modeling design processes. ALX3 is a sound and complete 
first-order action logic for agent groups that can represent many kinds of design 
process knowledge, and that is flexible enough to support knowledge operators, 
accessibility relations, goals, etc. Perhaps most importantly, it requires only 
bounded rationality of its agents: unlike other logics, an agent in ALX3 need 
not have perfect or complete knowledge of its environment, nor need it be able 
to reason perfectly. As such, ALX3 is consistent with human designers. ALX3, 
then, will be taken as the underlying logic for ADPM. 

5. Kinds of Design Tasks 

ALX3 is a general logic. To apply it successfully, it will have to be made 
specific to design's needs. ADPM will be a specialization of ALX3 for design 
process modelling. As such, ADPM will include: (a) a representation of state 
based on AIM-D, and extended with ontologies for product function [Yang 
and Salustri, 1999] and for design parameters; and (b) an ontology of design 



A Logical Framework/or Design Processes 207 

actions based on primitive actions that single agents might carry out to reach 
their assigned goals. 

The design action ontology is particularly germane to this paper. In Sec­
tion 2, the author hypothesized that a design process occurs via multiple agents 
that can be broadly classified by whether their tasks are of synthesis, analy­
sis, or evaluation, and identified by the changes they incur on design states. 
States change through the addition or removal of parameters and requirements. 
Adding parameters and requirements indicates design's evolution; removing 
them eliminates recognized falsehoods from the design state space. 

Synthesis tasks refine a design space by adding/removing design parameters 
to/from a design state, and by refining the ranges of parameter values. These 
tasks are typically inductive or abductive. Induction is reasoning about actions, 
whereas abduction is reasoning about state. In both cases, the reasoning agents 
are neither omniscient nor perfect reasoners. Courses of action are determined 
by an agent's preferences and beliefs.ALX3, which supports preferences and 
beliefs, is again well-suited for these kinds of tasks. 

Analysis tasks refine a design problem by adding/removing requirements 
and constraints to/from a state. Analysis is deductive in nature; deduction is 
immediately supported by ALX3. Deductive processes do not change the state 
of a design, but they change what an agent knows about a particular state. For 
example, a stress analysis of a part does not change the behaviour of the part 
(i.e. the state), but it does inform the agent regarding that behaviour. 

Finally, evaluation tasks determine the veracity of the agents' knowledge 
of a design with respect to its requirements, performance, and other operational 
criteria. In ADPM, a design is complete when a state is reached such that 
all the values of (known) parameters satisfy the (known) requirements. The 
requirements would be specified as logical formulre. To know if all the require­
ments are satisfied, it is sufficient to evaluate the logical conjunction of those 
requirements in a context containing all the parameters. 

There is no necessary relation between the requirements that are known in a 
particular ADPM model, and the requirements that need to be met to ensure a 
well-designed product. The strategies needed to ensure this are the subject of 
ongoing research by the author. 

6. Examples and Applications 
ADPM will find application in a wide range of design-oriented reasoning 

tasks. This section outlines some of them. 

6.1 The Role of Common Knowledge 
A fact is common knowledge (CK) when (a) it is known by all agents, hu­

man or otherwise, and (b) every agent knows that they know the fact, every 



208 

agent knows that they know that they know the fact, etc. The resulting infinite 
deduction indicates that an agent can never attain CK [Fagin et al., 1995], yet 
it is also evident that both human and software agents can act as if they have 
large amounts of CK. This paradox can be resolved if either the knowledge that 
agents have, and believe to be CK, is not really CK as defined, or the formalisms 
currently available are too simplistic to capture "real" CK. It happens that both 
cases are true, depending on the situation. 

Existing theories of CK have found application in the fields of artificial 
intelligence and economics, distributed agent systems, and natural language 
processing and cognitive science. There are features of these theories that 
may also be applied to design. CK arises through shared experiences, i.e. 
simultaneous changes in the states of a group of agents [Fagin et aI., 1999]. 
However, there is no experience that is strictly speaking simultaneous to its 
participants, which means CK should be unattainable. 

Sometimes, only shared knowledge is needed to solve a problem, which 
requires only a finite deduction. The kind of coordination problem of this sort 
is exemplified in Section 4. The number of deductions is directly proportional to 
the number of agents sharing a condition. This raises the interesting possibility 
tuning the roles of designers in teams to minimize the number of agents that can 
share a condition, thus lowering the number of iterations required to remedy it. 
This could shorten product development times in the long run. 

Secondly, exact simultaneity of action, which assumes infinitely precise 
knowledge of the times when events occur, is not necessary to achieve CK in 
practice. The human mind naturally operates in a relatively vague mode, accept­
ing as simultaneous any events that appear so. This temporal resolution allows 
us to approximate events as simultaneous. Determining appropriate temporal 
resolutions for design tasks and processes could help to simplify scheduling, 
workflow, and organizational structures. 

Thirdly, the author has found that temporal resolution can be extended to 
treat other aspects of design process knowledge. This explains why agents can 
agree on a common process model in general, yet disagree about the model's 
details: at a coarse level, any number of different models can appear the same. 
The same logical apparatus that treats temporal resolution may then be used 
to quantify the compatibility of other kinds of models of varying abstraction, 
which may help tune the information flow in design processes, especially in 
multi-model design environments. 

Fourthly, CK can arise when agents are in a common situation. This copres­
ence explains why "face to face" meetings are preferred for coordinated tasks, 
negotiation, and conflict resolution. Through the formalism of CK, tools may 
be developed to improve the efficiency and effectiveness of meetings. 



A Logical Framework/or Design Processes 209 

Finally, CK may be implicit by being distributed over multiple agents. By 
identifying islands of expertise, tools may be developed to help structure design 
teams, manage workflow, and other organizational aspects of design enterprises. 

Although ALX3 does not deal specifically with CK and its variations yet, 
it does support all the necessary mechanisms. The author will undertake to 
translate appropriate theoretical results from the CK literature into the ALX3 
framework; this will become an essential part of ADPM. 

6.2 Example: Engine Design 
Consider again the engine design case discussed in the example in Section 

4. 
The author and a colleague were contracted by the auto maker to help improve 

their design process capabilities. Details of that work are reported in [Lock­
ledge and Salustri, 1999]). We developed a matrix representation that captured 
bi-directional causal relations between engine systems and components. The 
relations can be seen as actions that change the state of the design. Since ALX3 
can represent actions, ADPM could formalise much of the dynamic structure in 
[Lockledge and Salustri, 1999] (which remains largely informal). It is expected 
that ADPM's application to this area will bring to light other patterns of actions, 
and thus stimulate further improvements to design processes used by the client. 

ALX3 also supports goals, preferred states, and knowledge operators5 . With 
these, one can envision systems that can track progress of designers using tools 
such as that described above, and suggest actions that will lead to goal states 
most efficiently. Such a system could also warn stakeholders of particular facts 
when design data changes, and could route appropriate information to them 
only as and when they need it. One can envision agents that would know (to an 
extent) the nature of design changes and ensure that the appropriate designers 
were notified and the most preferred actions taken. Such systems could lighten 
the administrative burden on designers and allow them to focus more on the 
technical aspects of design problems. 

6.3 Simulating Design Processes 

Design processes can be simulated by devising agents that carry out vari­
ous goal-oriented strategies for the sake of collaboratively designing a product. 
The agents would have very limited capabilities. Teams of software and hu­
man agents could operate together: the software providing the logical aspects, 
and the humans to provide the creativity and intuition. Such simulated design 
exercises might yield interesting data regarding the viability of various design 
strategies (e.g. "opportunistic" design), or suggest new methods and organiza­
tional structures that can then be transfered into real design situations. 



210 

This kind of research is particularly interesting when applied to single de­
signers. As the author has hypothesized, the cognitive process of design may be 
modeled as a set of agents working towards a common general goal but possibly 
with conflicting specific goals. This could explain the results of recent protocol 
analyses. Changes in the designer's cognitive state trigger actions constitute 
tasks which depend on the current state, inc1udings domain and general knowl­
edge. It would also be reasonable, in this case, to assume that all the agents 
"running" in a designer's mind have completely common knowledge. 

A logical formalism of design may also suggest new approaches to protocol 
analysis: wherein actions, goals, preferences, knowledge, and beliefs can each 
be identified and modeled, thanks to logics like ALX3. 

6.4 Application Domains 
There are many possible application domains for a logic like ADPM. ADPM 

could provide design researchers with a structure within which to reason about 
particular methods, representations, and design processes. The reasoning 
capabilities that may emerge from ADPM constitute a synthetic technique as 
well as an analytic technique. If design patterns [Alexander et aI., 1977] can 
be established, it may be possible to constitute new generalized design pro­
cesses that differ substantially from those currently in use, as well as design 
processes customised on a per-enterprise basis, taking into account particular 
aspects of specific design environments. Also, in combination with other AI 
techniques such as case-based reasoning [Maher et aI., 1995], abductive rea­
soning [Roozenburg, 1992], and distributed artificial intelligence [Singh et aI., 
1999], it may be possible to construct intelligent agents that can act as de­
signers' aids and operate in symbiosis with (groups ot) designers. Products 
are affected by the design processes that create them which in tum are af­
fected by organisational structure. It should also be possible to deduce some 
of the properties of a design enterprise that could support logically sensible 
design processes. In this way, design research may find application in areas 
like enterprise re-engineering, a point emphasised in the literature on enterprise 
integration (e.g. [Dabke, 1999]), wherein frameworks for product development 
are used to ensure enterprise models are effective from both the business and 
technical perspectives. Finally, it should be possible to create a "naive" version 
of ADPM, constituted as rules and guidelines, that can be effectively taught. 
The prospect of enabling design engineering students with a more structured 
mental framework should lead to more able designers. 

7. Conclusions 

An overview of the Axiomatic Design Process Model (AD PM) project has 
been presented. 



A Logical Framework for Design Processes 211 

ADPM can (a) facilitate reasoning about design in a systematic manner, (b) 
lead to new computer-based design aids, (c) develop new and custom design 
and product development processes, and (d) lead to innovative techniques to 
teach design. Clearly, ADPM is embryonic. This paper has established the 
problem being studied, laid out and justified the tools to be used, and indicated 
the possible benefits that may be achieved. A great deal of work remains to be 
done. It is hoped that as the project matures, it will find use in various areas of 
design engineering research and practice. 

Acknowledgments 
The author gratefully acknowledges the National Sciences and Engineer­

ing Research Council of Canada for funding this work under grant number 
OGPO 194236. 

Notes 
1. Here, sum intends some kind of merging interrelated knowledge bases of all available information. 

2. The universe of a system of logic, such as that being discussed here, is the collection of all entities 
about which one makes statements within the system. 

3. Assuming linear time and a partial temporal ordering on states, 11', such that S1I't means that state 8 

precedes state t: VCr E R) [fer E S) • r] -+ 3t [(r E t) • (811't) • rJJ, where r is a requirment and 8 and 
t are states. 

4. The block deck height is the distance from the bottom of the engine to the top of the block. 

S. For example, K. p means that agent i knows that p is the case. 

References 
Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A Pattern Language: Towns, Buildings, 

Construction. Oxford University Press, London. 
Chang, C. and Keisler, H. (1977). Model Theory, volume 73 of Studies in Logic and the Foun­

dations of Mathematics. Elsevier, Amsterdam. 
Chen, X. and De Giacomo, G. (1999). Reasoning about nondeterministic and concurrent actions: 

A process algebra approach. Artificial Intelligence, 107:63-98. 
Dabke, P. (1999). Enterprise integration via corba-based information agents. IEEE Internet Com­

puting, 3(5):49-57. 
Fagin, R., Halpern, J., Moses, Y., and Vardi, M. (1995). Reasoning about Knowledge. MIT Press, 

Cambridge, MA. 
Fagin, R., Halpern, J., Moses, Y, and Vardi, M. (1999). Common knowledge revisited. Annals 

of Pure and Applied Logic, 96:89-105. 
Harel, D. and Singerman, E. (1999). Computation paths logic: An expressive, yet elementary, 

process logic. Annals of Pure and Applied Logic, 96: 167-186. 
Henriksen, J. and Thiagarajan, P. (1999). Dynamic linear time temporal logic. Annals of Pure 

and Applied Logic, 96: 187-207. 
Huang, Z. (1994). Logicsfor Agents with Bounded Rationality. PhD thesis, University of Ams­

terdam. 



212 

Huang, Z., Masuch, M., and Polos, L. (1996). Alx, an action logic for agents with bounded 
rationality. Artificial Intelligence, 82:75-127. 

Hubka, V. and Eder, W. (1992). Engineering Design: General Procedural Model of Engineering 
Design. Edition Heurista, Zurich. 

Lockledge, 1. and Salustri, F. (1999). Defining the engine design process. 1. Engineering Design, 
10(2):109-124. 

Maher, M., Balachandran, M., and Zhang, D. (1995). Case-Based Reasoning in Design. Lawrence 
Erlbaum Assoc. 

McNeill, T., Oero, 1., and Warren, J. (1998). Understanding conceptual electronic design using 
protocol analysis. Research in Engineering Design, 10(3):129-140. 

Park, H. and Cutkosky, M. (1999). Framework for modeling dependencies in collaborative en­
gineering processes. Research in Engineering Design, 11(2):84-102. 

Pugh, S. (1991). Total design: integrated methods for successful product engineering. Addison­
Wesley, England. 

Roozenburg, N. (1992). On the Logic of Innovative Design, pages 127-138. Delft University 
Press, Netherlands. 

Salustri, F. A. (1996). A formal theory for knowledge-based product model representation. In 
Finger, S., Tomiyama, T., and Mantyla, M., editors, Knowledge-Intensive CAD II: proceedings 
of the IFIP WG 5.2 workshop, London. Chapman & Hall. 

Simon, H. A., editor (1981). The Sciences of the Artificial. The MIT Press, Cambridge, Mas­
sachusetts, 2nd edition. 

Singh, M., Rao, A., and Oeorgeff, M. (1999). Formal Methods in DAI: Logic-Based Represen­
tation and Reasoning, pages 331-376. MIT Press, Cambridge, Mass. 

Suh, N. P. (1990). The Principles of Design. Oxford University Press, New York. 
Yang, B. and Salustri, F. (1999). Function modeling based on interactions of mass, energy and 

information. In Kumar, A. and Russell, I., editors, Proc. 12th Florida Artificial Intelligence 
Research Symposium, special track on Reasoning about Function, pages 384-388. 

Zeng, Y. and Gu, P. (1999). A science-based approach to product design theory part i: formula­
tion and formalization of design process. Robotics and Computer Integrated Manufacturing, 
15:331-339. 

Filippo A. Salustri received his doctorate in mechanical engineering in 1993 from the University 
of Toronto. He spent one and one third years at Wayne State University in Detroit as an assistant 
professor of engineering. Currently, he is an assistant professor in Industrial and Manufacturing 
Systems Engineering at the University of Windsor, Canada. His industrial collaborations have 
included Henry Ford Hospital (Detroit), Ford Motors (Dearborn) and Spar Aerospace (Toronto). 
His primary areas of research are design theory and the development of knowledge-based systems 
for engineering applications. 


	TOWARDS A LOGICAL FRAMEWORKFOR ENGINEERING DESIGN PROCESSES
	1. Introduction
	2. Fundamentals
	3. ADPM, Version 1.0
	4. A Model Theoretic Solution: ADPM, Version 2.0
	5. Kinds of Design Tasks
	6. Examples and Applications
	6.1 The Role of Common Knowledge
	6.2 Example: Engine Design
	6.3 Simulating Design Processes
	6.4 Application Domains

	7. Conclusions
	Acknowledgments
	Notes
	References




