
Communicating to a Manufacturing Device
using MMS/CORBA

T.Ariza, F.J. Fernandez and F.R.Rubio
matere@trajano.us. es jjj}@trajano.us. es rubio@cartuja. us.es
Dept. lngenieria de Sistemas y Automatica.
Escuela Superior de lngenieros. Univ. de Sevilla. Spain

Abstract: The advantages of distributed systems are also applied to manufacturing
systems due to their inherent distribution. However, the heterogeneity found in
the current hardware and software and the underlying communication between
the different components of the system make the development of these systems
a difficult task. MMS allows a uniform communication with different
hardware systems. On the other hand, CORBA makes the communication
between several objects easier, reducing the implementation cost to a
minimum. By joining both technologies a communication method between
devices can be achieved. This method is location transparent and specific
physical features independent. The MMS implementation over CORBA allows
new devices to be added in a natural way, making use of the inheritance
available in object oriented programming and the facility supplied by CORBA
in the communication. In this work, this implementation has been used in
order to communicate to a real device.

Keywords: Distributed Manufacturing System, Object Oriented Programming, CORBA,
MMS,JAVA.

1. INTRODUCTION

Distributed systems have been widely introduced in manufacturing due to
their flexibility, reliability, incremental growth and better price/performance
rate. But the main problem that arises is the communication between several
interconnected elements, which are very different.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35492-7_50

© IFIP International Federation for Information Processing 2002
G. L. Kovács et al. (eds.), Digital Enterprise Challenges

http://dx.doi.org/10.1007/978-0-387-35492-7_50

Communicating to a Device using MMSICORBA 453

MMS is an application layer protocol that homogenises the use of the
devices that compound the system. MMS makes use of this approach to
specify the services that a user can invoke to communicate with these
devices. On the other hand, distributed object methodologies, where
CORBA is framed, provide all the object oriented methodology advantages
in distributed systems. CORBA can make the MMS service user application
to request the service easier, as it allows to structure the system in objects
and at the same time to have these objects distributed along the several
components of the system, making the distribution transparent to the user.
JavaiDL has been chosen to implement CORBA objects. It automatically
creates the skeleton and the stub starting from the IDL specification.

This work intends to show how using the MMS services and CORBA for
the communication between devices makes the construction of distributed
manufacturing systems easier. The creation of new VMD objects for new
devices can be based on the existent objects using inheritance. An
application that uses these objects does not have to worry about the
communication, nor the location of the rest of elements. This has been used
in order to build the VMD object for a specific manufacturing device, the
RX-90 Robot by Stiiubli Unimation.

2. BACKGROUNDS

In this section a brief revision of the MMS protocol and the CORBA
architecture is introduced. They are the bases of the work that is mentioned
in this paper.

2.1 MMS

In distributed heterogeneous systems, where each device has different
features, carries out different tasks and is probably owned by a different
manufacturer, the need to interconnect all devices that compound the system
rises in order to achieve the integration of each one in the whole system.

Manufacturing Message Specification (MMS) is a communication
language to aid the interconnection of devices in a heterogeneous
environment. It is a protocol that falls in the application level standardised
by ISO (International Standard Organisation).

Although MMS is not a complete Object-Oriented language, as it does
not support all the features of the Object-Oriented programming, it splits the

454 T.Ariza, F.J. Fernandez and F.R.Rubio

system into objects and presents a well defined interface for each one. The
most important object in the system is the Virtual Manufacturing Device
(VMD). The VMD hides the real manufacturing device to the programmer.
The system is structured in a set ofVMDs.

MMS is also based on the client/server model. The VMD acts as a server,
and so carries out a set of services that are described in the MMS protocol.
The clients are the requesters of the services provided by the VMD.

A particular implementation of the MMS server must provide the
mapping between the VMD model, which is an abstraction, and the
functionality of the real manufacturing device.

. Client (Server

RequeiJt (1) Rnponse (3)

Confirm (4)

Figure 1. System based on MMS

Indication (2)

The scheme of a system based on the communication protocol MMS is
showed in figure 1.

Each MMS server manages a set of objects associated to the VMD. Some
of the most important are the following:

- The Domain Object: It represents a subset of the capabilities of the
VMD which is used for a specific purpose.

- The Program Invocation Object: It is a dynamic element which most
closely corresponds to an execution thread in a multi-tasking
environment.

- The variable Object: It is used to model real variables of the VMD.

Communicating to a Device using MMSICORBA 455

Other important objects that are managed by the VMD are events. The
event management services provide facilities that allow a client MMS-user
to define and manage event objects at a VMD and to obtain notifications of
event occurrences.

A revision ofMMS can be found in [5,13] and a complete description of
all these services and the protocol specification in [6,7].

2.2 CORBA

The Common Object Request Broker Architecture (CORBA) is a
distributed object architecture that allows software objects to interact across
networks. CORBA was first introduced in 1991 by the Object Management
Group (OMG). It is an international consortium of over 800 software
vendors, developers and end users.

The aim of this group is to specify an open software bus on which object
components written by different vendors can interoperate regardless of the
implementation language, location or host platform.

The object bus provides an Object Request Broker (ORB) that lets clients
invoke methods on remote objects either statically or dynamically.

As a result of their work, OMG approved a set of specifications -called
CORBA 2.0- in late 1994.

The Object Management Architecture (OMA) [10] specified by OMG, is
shown in figure 2 and consists of the following elements:

- Object Request Broker (ORB): It provides the mechanisms by which
objects transparently make and receive requests and responses. In doing
this, the ORB provides interoperability between applications on different
machines in heterogeneous distributed environments and seamlessly
connects multiple object systems.

- Object Services: It provides basic operations for the logical modelling
and physical storage of objects. The operations provided by Object
Services are made available through the ORB.

- Domain Interfaces: They represent vertical areas that provide
functionality of direct interest to end-users in particular application
domains.

456

Noll·SI611dardlted
A p p ti r oti nn· '!' orilic

luro.rac..,.

AP!Ilication
Objects

Collecli011t Security LICe Cicle

T.Ariza, F.J. Fernandez and F.R.Rubio

Vtrtiral
Domoin-sp.Oiic

l.ur..-r., ..
HorhOJ\t.'ll

niU lu.l(>rfacc.-.s

Gotttmon
Facilities

C011c:wr011ey L!coaoiaa

Tl'IAttcliectt Ptnilllnee J.elllicclhipt l!alemalitllion Mane.aem=l
Canmoo Object Services (CORBA Sa-vices)

Figure 2. The Object Management Architecture (OMA) specified by
OMG.

Common Facilities: Services of direct use to application objects. It
provides a set of generic application functions that can be configured to
the specific requirements of a particular configuration.
Application Objects (AO): They are specific components to end-user
applications. It corresponds to the traditional notion of an application.
AOs represent individual related sets of functionality.

The object specification is carried out using the Interface Definition
Language (IDL). It is a descriptive language used to define the interface
through which a client may access a server. IDL provides operating system
and programming language independent interfaces to all the services and
components that reside on a CORBA bus.

The method invocation used by the CORBA's implementation is shown
in figure 3. The following components are necessary to carry out the
invocation:

Communicating to a Device using MMSICORBA

---.-----.----::-

r:::: I Repositoty

,__________...

Stubs
ORB

nlerfac Object
Adaptrr

Figure 3. Object's method's invocation.

457

- Client IDL Stub: Client code used by an object to encode invocations in a
form which can be handled by the ORB, and to decode replies received
via the ORB.

- Skeleton: Server code up-called by the ORB, capable of decoding
requests transmitted by the ORB, converting it into an invocation of the
implementation object, and encoding the results to be sent back to the
client via the ORB.

- Object Adapter: It defines how an object is activated. It can do this by
creating a new process, creating a new thread within an existing process,
or by reusing an existing thread or process.

More information regarding CORBA can be found in [10,11,12] and
about CORBA applied to manufacturing systems in [4,9].

3. AIM OF THE WORK

The objective of this work is to implement the VMD object for the RX-
90 robot. However, the development has consisted in two phases. In the first
one, a generic VMD has been carried out conforming to ISOIIEC 9506 part
I [6] and part 2 [7]. This generic VMD (presented in [2,3]) can be inherited
by other classes in a natural way. Doing this, the construction of a specific

458 T.Ariza, F.J. Fernandez and F.R.Rubio

VMD is more straightforward and it is suitable not only to build the VMD
for the RX-90 but for whatever manufacturing device that it is necessary.

Figure 4. RX-90 Robot

The specific VMD for the RX-90 is built starting with the generic VMD,
conforming to ISOIIEC 9506 part 3 standard [8], taking into account that this
implementation must be used as the base to build other specific VMD's for
robots making the least number of changes possible.

The prototype includes the parts concerning the VMD, Domains,
Program Invocations, variables and events (this last one, only in the generic
VMD). It does not include Semaphore, Operator Station, or Journal objects,
but the system could be extended to them.

The main objective is to build classes that can be used as the base for the
implementation of VMD objects that represents other different devices. In
addition to this, a MMS client has been developed, which can be used in the
future in order to build control distributed systems.

4. SYSTEM DESCRIPTION

The scheme of the system architecture is shown in figure 5. As the
standard describes, the MMS client also carries out MMS services, its
behaviour is as a server from this point of view.

Communicating to a Device using MMSICORBA 459

MMS SC!IVOr

/ 1r
wo

()

lr!...,.£nn>llm<WIJ

(o.-...)(._,,..,.,)

SKELETON STUB I
ORO

I I
SKELETON II STUB I

MMSOiant

Client Servan1
ffSASServi!O'

rtf.,..nc;41

Figure 5. System Architecture

On the server side the components are the following:

- MMS Server: CORBA object that can be accessed through the object
bus. The services provided by this object are the services specified in the
MMS standard for the server. The description of this object is specified
using the Interface Definition Language (IDL).

- VMD: the MMS Server delegates in the VMD to resolve the MMS
services.

- Skeleton: It allows the clients to call the MMS Server methods using the
ORB.

- Stub: It is used in order to carry out the remote invocation to the methods
of the MMS Client Servant object so that the server can notify the events
to the client when they happen and carry out requests of MMS services
that the client can accomplish.

- Real Device: It is the physical device that is hidden by the MMS Server
object. In this work the RX-90 [1] device is used.

460 T.Ariza, F.J Fernandez and F.R.Rubio

On the client side, the following components can be identified:

- MMS Client: It is responsible for calling the services using CORBA. Its
task is to get the server references and to register the client servant in the
ORB.

- MMS Client Servant: It carries out the client services and receives
requests from the MMS servers.

- Skeleton: It allows the MMS Client Servant object methods to be called
through the ORB.

- Stub: It undertakes the responsibility for calling the remote methods of
the MMS Server object.

The VMD is divided in three different layers, which are the following:

- Generic VMD: It corresponds to ISOIIEC 9506 parts 1 & 2 that include
the general services ofthe VMD.

- Robot VMD: It corresponds to ISOIIEC 9506 part 3 that include the
companion standard for robots.

- RX-90 specific part: This is the layer that depends on the specific device.

5. IMPLEMENTATION

A prototype for this work has been built, where the programming
language JAVA has been used. JAVA language has the following features:

- Object Oriented programming language: It has the benefits of this
methodology (reusability, facility in the integration, debugging and
maintenance). Throughout, e.g. no coding outside of class definitions,
including main(). An extensive built-in class library.

- Familiarity: It is similar enough to C and C++ that experienced
programmers can get going quickly.

- Simpler than C & C++: Because it has no pointers, no preprocessor and
automatic garbage collection

- Portability: Code is compiled to bytecodes, which are interpreted by the
JAVA virtual machine.

- Robustness: Exception handling built-in, strong type checking (i.e. all
variables must be given explicit type), local variables must be initialised.

- Threading: Lightweight processes, called threads, can easily be spun off
to perform multi-processing.

- Dynamic Binding: Even if libraries are recompiled, there is no need to
recompile the code that calls classes in those libraries since binding, i.e.

Communicating to a Device using MMS/CORBA 461

the linking of variables and methods to where they are located, is done at
runtime.

- Platform Independence: The JAVA Virtual Machine is available in many
types of computers and OS's. The Code that can be exchanged without
requiring rewrites and recompilation would save time and effort.

- Security: No memory pointers exist. Programs run inside the virtual
machine sandbox. The code is checked for pathologies by the bytecode
verifier, the class loader and the security manager.

In order to communicate with the real device the javax.comm library has
been used. The prototype can be run in any computer and operating system
where the Java interpreter can be run. The VMD used is a CORBA object
developed in [2] that attends to MMS requirements with extensions for the
robot.

CORBA has been used as the communication architecture and the ORB
chosen is JA V AIDL because previous work had been done with it.

A client with the basic functionality has also been implemented. It allows
the operator to load and run programs over the robot, show variable values,
etc.

6. CONCLUSION

In this work, the VMD for the RX-90 robot over CORBA and a basic
client that allows access to the MMS services have been implemented. With
these components, a set of functions can be carried out over the robot, as
load and run programs in a remote way, create, read and write variables, and
soon.

Reusability and modularity are features achieved in this development. It
allows having a base to implement new clients using inheritance. On the
other hand, using CORBA, as the communication platform to accomplish the
interaction between clients and servers, facilitates the creation of control
distributed systems.

7. ACKNOWLEDGEMENT

This work is supported in part buy the CICYT under grant num. TAP-98-
0541

462 T.Ariza, F.J. Fernandez and F.R.Rubio

8. REFERENCES

[I] Adept Technology, Inc, "V+ Language Reference Guide", Part Number 00961-00IOO,Rev.
B. Version Il.3T. July I996.

[2] T. Ariza, F.R. Rubio, "Communicating MMS Events in a Distributed Manufacturing
System using CORBA", Preprints DCCS'98,I998.

[3] T. Ariza, F.R. Rubio, "MMS-Manager: Device Management in Heterogeneous
Environment Based on CORBA", Preprints Controlo'98,1998.

[4] Carvalho, A.S. and M.J. De Sousa. "Development of an ORB for Distributed
Manufacturing Applications", WFCS '97 Workshop (I997).

[5] CCE-CNMA, ESPRIT Consortium. "MMS: A Communication Language for
Manufacturing", Springer, I995.

[6] ISO/IEC 9506-l. "Industrial Automation Systems- Manufacturing Message
Specification", Part I: Sevice Definition. International Standars Organization, 1990.

[7] ISO/IEC 9506-2. "Industrial Automation Systems- Manufacturing Message
Specification", Part 2: Protocol Specification. International Standards Organization, I993.

[8] ISO/IEC 9506-3. "Industrial Automation Systems- Manufacturing Message
Specification", Part 3: Companion Standard for Robotics. International Standards
Organization, I993.

[9] P. Newmann, F. Iwanitz. "Integration of Fieldbus Systems into Distributed Object­
Oriented Systems", WFCS'97 Workshop (I997).

[I 0] Object Management Group. "CORBA: Common Object Request Broker Architecture
and Specification", Published by the Object Management Group (OMG), Framingham,
MA. 1995.

[II] Object Management Group. "CORBA services: Common Object Services Specification",
Published by the Object Management Group (OMG), Framingham, MA. 1995.

[I2] R. Orfali, D. Harkey, J. Edwards. "The Essential Distributed Objects. Survival Guide",
Wiley, 1996.

[13] Pimentel, Juan R. "Communication Networks for Manufacturing". Prentice Hall, 1990.

	Communicating to a Manufacturing Deviceusing MMS/CORBA
	1. INTRODUCTION
	2. BACKGROUNDS
	2.1 MMS
	2.2 CORBA
	3. AIM OF THE WORK
	4. SYSTEM DESCRIPTION
	5. IMPLEMENTATION
	6. CONCLUSION
	7. ACKNOWLEDGEMENT
	8. REFERENCES

