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Abstract Constrained fitting is the process of approximating segmented point sets 
simultaneously by multiple surfaces while certain geometric constraints, 
such as tangency, perpendicularity, parallelism, concentricity are satis­
fied. This technique is particularly important in the context of reverse 
engineering, where geometrically and topologically consistent, near to 
perfect CAD models must be created. In this paper various represen­
tational and numerical problems are discussed in order to make con­
strained fitting computationally efficient even for !arge, multiple point 
clouds. Special emphasis is taken to resolve contradicting constraints. 
Simple examples of handling smooth profile curves and tangentially con­
nected face sets are also presented. 
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Introduction 

Reverse engineering is the process of converting 3D, multiple view 
measured data into an evaluated boundary representation model [9]. 
There are many publications concerning the reconstruction of geometri­
cally demanding free-form objects [4], but in this paper we concentrate 
on topologically complex solid models bounded by simple analytic sur­
faces, such as planes, cylinders, cones, spheres, tori and small blending 
surfaces [5]. While in many graphical and computer vision applications 
approximate models are sufficient, our main interest is to create such 
boundary representation models, which can directly be used in com­
mercial CAD/CAM systems through standard data exchange interfaces, 
such as IGES or STEP. In this way, the benefits of using the exist-
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ing CAD/CAM technology can be directly applied for the reconstructed 
objects as well, including (re)design, analysis, simulation and NC man­
ufacture. 

The reverse engineering procedure can be decomposed into several 
phases, including data acquisition (typically by laser scanners), merging 
multiple point clouds, triangulating and decimating data sets, segment­
ing a point cloud, fitting surfaces for individual regions, building B-rep 
models and reconstructing blends. As it has been analysed in [1], an 
ideal reconstructed model must satisfy several requirements in order to 
be usable in an engineering environment. The bounding surfaces must be 
accurate, their surface type and the related parameters must be reliably 
estimated. Complex linear extrusion surfaces and surfaces of revolu­
tion must be recognised, and represented as special, smoothly connected 
surface elements. 

For B-rep model building smooth edges must be explicitly detected 
and reconstructed, otherwise not only imperfect models are generated, 
but the reconstruction process may crash at the intersection of nearly 
tangential surfaces. In various cases, such as vertices with more than 
three valencies, special topological constraints need to be satisfied. Dif­
ficulties emerge partly due to noise, which is always present in the mea­
sured data, partly because the estimation of the various geometric enti­
ties, which also carry certain errors. The final model must be consistent 
from both topological and geometric points of view; this is why a higher 
level intelligence is necessary to incorporate certain 'likely' constraints 
into the reconstructed model. A final group of requirements concerns 
various -local or global- engineering constraints [3, 6], such as enforc­
ing parallelism, perpendicularity, tangency, concentricity, or symmetry 
amongst various geometric entities. 

In this paper the concept of constrained fitting is introduced, which 
is a technique to overcome the above mentioned difficulties. While there 
is a vast literature on constraints in solid modeling and on individual 
surface fitting, there is only one project known to the authors, where 
these two areas have been coupled for reverse engineering applications­
see [10]. The novel method presented here is computationally efficient 
and capable of resolving conflicts between constraints according to a 
given priority. Computational considerations of applying so-called auxil­
iary elements, and speeding up the computation by separating the terms 
holding the point data and the surface parameters are also discussed. Fi­
nally, several application examples are given, such as, the reconstruction 
of smooth, constrained profile curves, the decomposition of smooth, mul­
tiple surface regions and enforcing various types of general constraints. 
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1. Mathematics of constrained fitting 
Given a set S of curves and surfaces, and for each s E Sa point set Ps 

to be approximated. Each entity is characterised by a hypothetical curve 
or surface type and unknown parameters a8 , which are concatenated in a 
vector a. There is a given set of constraints in the form of q(a) = 0 what 
we want to satisfy. The constraints are specified by the user or derived 
by the reverse engineering system itself. Our goal is to approximate 
simultaneously several surface elements while the constraints are also 
satisfied. 

The problem can be stated as minimising a function g : Rn --1- R on 
the zero set of another function c: Rn --1- Rm (the concatenation of ci's). 
In our case g is formulated as 

g(a) = 'L:>l!s L J(p, a8 ) 2 , 

sES pEPs 

where O:s E R is a weighting term and f(p, a5 ) approximates the distance 
of point p from surface s. 

The unconstrained minimisation by Newton-Raphson iteration would 
go by picking a starting point, and computing a step from the second 
order Taylor-approximation at the current point. Since g is a sum of 
squares, this approximation is positive semi-definite. The usual method 
for marching on a given surface is stepping on the tangent plane and 
projecting the result to the surface. Projection to the implicit surface 
c-1(0) can be solved again by Newton-Raphson iteration using the first 
order Taylor-approximation of c at the current point. To avoid double 
iteration, these methods are combined in our constrained minimisation 
scheme (as described in details in [2]). In each iteration step of the 
minimisation just the first step of the projection iteration is made; an 
approximation of the tangent plane is computed, and the minimisation 
step is performed on it. Computing the tangent plane approximation 
is done sequentially, by traversing all constraints. In this phase it is 
recognised whether a constraint follows from the previous ones or con­
tradicts them. In these cases the constraint is ignored: in the former 
case nothing needs to be done, in the latter case nothing can be done. 

At the end of the iteration the result is on the constraint surface, and 
the gradient of g is orthogonal to it. Initial values for the iteration are 
generally obtained from independent unconstrained fits. 

1.1. Object representation 
Regular surfaces are represented in implicit form: {p E R3 : f (p, as) = 

0}. as contains a well-defined set of variables, which uniquely define the 
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surface, such as dimensions, positions, radii, angles, etc. Such a de­
scription can be used for minimising L.pEP J(p, as)2 • In order to get a 
meaningful result, such descriptions are requested, which well approx­
imate the Euclidean distance d{p, as)· A useful notion is the faithful 
approximation of the Euclidean distance [7]: f approximates d faith­
fully iff for any fixed parameter vector as they are equal up to order one 
on the surface described by f. 

During the minimisation of L.pEP f (p, as) 2 the set of points P is fixed 
and as is modified in each iteration step. To make the iteration eflicient, 
f is searched in a special form. When the sum of squares is computed, 
P should not be 'traversed' in each iteration step, but some quantities 
(depending on P) should be computed in advance in a preprocessing 
phase, thus the sum can be calculated in constant time. This is possible if 
f is given in the form JI(p)T h(as) (hand hare vector valued functions 
of the same dimension); in this case 

L J(p, as) 2 L h(as)T fi(p)fi{p)T h(as) 
pEP pEP 

= h(as)T (L fi{p)fi(p)T) h(as) = h(asf Ah(as)· 
pEP 

For a Newton-Raphson iteration, the first two derivatives off must 
be computed. If f is in this form, then 

L J'(p, as) = 
pEP 

L f"(p, as) = 2 + h(as)AJ"(as)). 
pEP 

These formulae may still be difficult to compute, so a form where h is as 
simple as possible is requested. A simple solution is to use another de­
scription vector = h(as)· In that case and the derivative 
formulae become really simple: 

pEP 

2Aa' s 

L f"(p, = 2A. 
pEP 

Note that the above transformations must be performed with care: if 
the dimension of is much greater than that of a8 , then the size of the 
system grows, which of course makes computation slower; moreover, it 
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may be difficult to compute the new constraints which must have been 
introduced. 

Later, simple examples will be given to show how efficient represen­
tations can be created. 

1.2. Auxiliary objects 
Certain constraints can be described just in a very roundabout way, 

but can be naturally decomposed into simpler constraints by introducing 
an auxiliary object: this is an artificial object not present in the original 
problem formulation, and it does not need to approximate data points. 
For example, the constraint 'two cylinders, a cone and a torus go through 
a common point' may be needed. It can be circumvented by introducing 
a point object and four simple constraints that each surface goes through 
that point. Coplanarity of some points can be described by introducing 
an auxiliary plane and prescribing the points to lie on it. The main 
difficulty with auxiliary objects is that as they do not fit onto data 
points they cannot be initialised by unconstrained fitting. 

1.3. Simple objects and constraints 

Lack of space prevents us to present all2D and 3D object descriptions 
and the related constraint definitions (see [2]). Nevertheless, it was felt 
important to provide simple examples to show how efficient and faithful 
representations can be formulated. For simplicity's sake, here only 2D 
lines and circles are described, however, similar formulations can be 
found after some algebra for the 3D surface elements as well. 

The Euclidean distance for lines can be given in an efficient form: if 
the unit normal is denoted by n and the signed distance from the origin 
by o, the signed Euclidean distance of a point p is (pI n) + o, which is 
in the desired form, choosing fi (p) = (px, Py, 1) and f2 ( a8 ) = ( nx, ny, o). 
The normalisation condition n2 = 1 completes the description. 

The Euclidean distance for circles (spheres) cannot be written in an 
efficient form, but a faithful approximation given in (8] can be: 

(p- o)2 - r2 (p- o)2 - r2 IP - ol - r = -'-------'--
lp-ol+r 2r 

p2 (p I o) o2 - r2 
= ----+---

2r r 2r 
we obtain the desired form by choosing 

(p2 ,px,Py, 1), 
1 2 2 

= ( _ _Ox _ Oy o - r ) 

2r' r' r' 2r · 
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This is still a bit complicated because of the divisions, however, by 
introducing a new description vector we can get rid of them. = 
h(a8 ) = J.L). Now = so computing L: f and its 
derivatives is as simple as for a plane. Because the dimension of is 
greater by one than that of a8 , a further constraint is needed, which can 
be derived from the formulae in f2(a8 ): 

o'2 - = 1. 

This description has the advantage that straight lines are just special 
(and not singular) cases of circles: instead of r being oo, = 0. In that 
case o' is the normal of the line, J.L is 8, and the normalisation condition 
is the same as that for lines. From that description the radius and the 
centre can be computed easily: r = o = -o' These formulas 
are repeatedly used for setting up the constraint equations. For example, 
the constraint that a line crosses the centre of a circle is 

(o I n) + 8 = ( I n) + 8 = 0 

(o' In)- 0. 

As mentioned before, there are many more object types and con­
straints in 3D, these are considerably more complex than the planar 
entities. The complexity is increased by the fact that cones and tori 
cannot be represented in a form which is efficient and faithful. In [2] 
we gave both a faithful representation and an efficient representation for 
these types. 

2. Examples 
In this section a few examples are presented to illustrate the impor­

tance of constrained fitting in the course of reverse engineering CAD 
models. 

2.1. Contradictory constraints 
This example shows the usage of auxiliary objects and demonstrates 

how the final solution depends on the order (priority) of the constraints 
when they contradict each other. 

The example consists of a square and three circles in its interior. The 
constraints are the following: 

• the circles have equal radii 

• the centres of the circles are collinear, and their line is aligned 
horizontal 
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Figure 1. Initial state 

• the centres subdivide the width of the square at equal distances of 
30 units 

• the length of the edge of the square is 100 units 

To describe the collinearity of the centres, an auxiliary line object is 
introduced, and all centres are constrained to lie on it. The initial state 
does not depend on the constraints, so it is the same for all possible 
sequences of the constraints; as it can be seen in figure 1. 

If the constraints are given in the sequence above, the last constraint 
will not be satisfied and the length will be 120 units, as shown in figure 2. 
If the 'centre spacing is 30 units' constraint is given last and ignored, 
then the result is figure 3. If the 'line of centres is aligned' constraint is 
given last, the result is shown in figure 4. If the 'centres are collinear' 
constraint is given last , the result is figure 5. 

In practical reverse engineering the number of constraints may be 
much higher than those of the degrees of freedom, so the well assigned 
priorities are particularly important to get the right results. 
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Figure 4. line of centres not aligned Figure 5. centres not collinear 

2.2. Profile fitting 

A very important subproblem in reverse engineering is the reconstruc­
tion of linear extrusions and surfaces of revolution. Both involve fitting 
a profile curve made up of smooth straight line - circular arc sequence 
to approximate a noisy and 'thick' planar point set. Thickness origi­
nates not only from the noise, but also from the inaccurate estimation 
of the best translational direction or the best rotational axis. Assume 
the point set is segmented; then circles and straight lines are fitted to 
the individual segments while adjacent elements are constrained to be 
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Figure 6. 
object 

Rotational 
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Figure 7. Profile of smoothly connected arcs 

tangential. We have found that the use of special auxiliary elements is 
useful for profile fitting as well. We can stabilise the system by forcing 
each shared meeting point to approximate some data points where the 
join is expected. 

A simple object is presented in figure 6. After determining the best 
rotational axes, the smooth profile from the bottom of the object has 
been reconstructed, see figure 7. The thick point set and the full circles 
are also shown. 

2.3. 3D examples 

Figure 8. Decimated point set Figure 9. Composite smooth region 

Finally, two simple 3D test objects have been selected. The first one 
shows a single view data set, a decimated triangular mesh is given in 
figure 8. As can be seen, the side is an extruded, composite face set, the 
separating edges are smooth, these were computed based on the profile 
of extrusion. The other edges are sharp, and these were determined 
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using surface-surface intersections, see figure 9. This object is a good 
illustration to show that incomplete models can also be reconstructed in 
a reasonably robust manner. 

In many engineering objects, there are smooth, composite regions, 
where the boundaries of the primitive surfaces cannot be found directly 
by locating the abrupt changes of the estimated normal vectors - see 
also [1]. In such situations again the constrained fitting technique can 
provide an adequate solution. 

The next example is a subset of a larger object. A decimated mesh can 
be seen in figure 10: there are seven regions which must join smoothly; 
three planes, three cylinders and a torus. In addition to the above 
'face' objects further auxiliary objects need to be used, such as planes 
of the inner edges, or point-with-directions for ensuring the tangential 
connection at the innner vertices, or a line to ensure the coaxiality of 
two cylinders and the torus. Note, that in order to get a topologically 
consistent B-rep model, we must assure that the two inner vertices with 
valency four will represent a single 3D point. This fact must also be 
incorporated into the related constraint system together with various 
constraints including orthogonality and parallelism of planes, parallelism 
or orthogonality between planes and cylinder/torus axes, equality of 
radii, and so on. The final result is shown in figure 11. 

Figure 10. Decimated point set Figure 11 . Composite smooth region 

Conclusion 
After describing a new numerical method to fit surfaces simultane­

ously to multiple point regions, the significance of this technique in re­
verse engineering was demonstrated. As it was shown, constrained fit­
ting is necessary to obtain accurate and consistent CAD models, which 
can later be used in real engineering. Moreover, constrained fitting is 
necessary for model building: without constraints it would be hardly 
possible to locate smooth edges and determine coincident geometric en-
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tities. The importance of handling contradicting constraints has also 
been pointed out. Finally, constraints are to be used for 'beautifying' 
reconstructed models. For example, when 'almost' perpendicular faces 
or 'almost' coaxial cylinders have been detected, these must be set ac­
curately once the user approves to do so. To recognise and enforce a 
complex set of constraints in a consistent way is a difficult problem and 
will be subject of further research. 

Acknowledgments 

Many thanks are due to Geza Kos (CARl, Budapest) and Ralph Mar­
tin (Cardiff University) for inspiring discussions on various problems of 
constrained fitting. 

Pal Benko is working with the Geometric Modelling Laboratory of CARl, Budapest 
since 1995. He has just written his PhD thesis supervised by Tamas Varady on 
reconstructing conventional engineering objects. 

Tamas Varady is the head of GML since 1991. He received a DSc degree with 
his thesis 'Vertex blending surfaces in computer aided geometric design' in 1998. In 
1990, he was the cofounder of CADMUS Consulting and Development, of which he 
is president. 

References 
(1) P. Benko, R. R. Martin, T. Varady: 'Algorithms for Reverse Engineering Bound­

ary Representation Models', Computer Aided Design, accepted 

(2) P. Benko, L. Andor, G. K6s, R. R. Martin and T. Varady: 'Constrained fitting 
in reverse engineering', Computer Aided Geometric Design, accepted 

(3) B. Briiderlin, D. Roller, Eds.: Geometric constraint solving and applications, 
Springer, 1998. 

(4) J. Hoschek, W. Dankwort, Eds.: Reverse Engineering, B. G. Teubner, Stuttgart, 
1996 

(5) C. M. Hoffmann: Geometric & Solid Modelling: an Introduction, Morgan Kauf­
mann publishers, inc., San Mateo, 1989 

(6) C. M. Hoffmann, R. Joan-Arinyo: 'Symbolic constraints in constructive geometry', 
Journal of Symbolic Computation, Vol 23, 1997, pp. 287-300 

(7) A. D. Marshall, G. Lukacs, R. R. Martin: 'Robust Segmentation of Primitives 
from Range Data in the Presence of Geometric Degeneracy', IEEE PAMI Vol 23, 
No 3, 2001, pp. 304-314 

(8) V. Pratt, 'Direct least-squares fitting of algebraic surfaces', Computer Graphics 
(SIGGRAPH 87), Vol 21, No 4, 1987, pp. 145-152 

(9) T. Varady, R. R. Martin, J. Cox: 'Reverse Engineering of Geometric Models­
An Introduction'; Computer Aided Design, Vol 29, No 4, 1997, pp. 255-268 

(10) N. Werghi, R. B. Fisher, C. Robertson and A. Ashbrook, 'Object reconstruction 
by incorporating geometric constraints in reverse engineering', Computer Aided 
Design, Vol 31, 1999, pp. 363-399 


	CONSTRAINED FITTINGA KEY ISSUE INREVERSE ENGINEERING CONVENTIONAL PARTS
	Introduction
	1. Mathematics of constrained fitting
	1.1. Object representation
	1.2. Auxiliary objects
	1.3. Simple objects and constraints
	2. Examples
	2.1. Contradictory constraints
	2.2. Profile fitting
	2.3. 3D examples
	Conclusion
	Acknowledgments
	References




