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Abstract Medial Axis Transform (MAT) is a representation that encodes an object with 
symmetric (medial) axes in the object interior. MAT has been employed in a 
variety of applications such as pattern recognition of digital images, biological 
shape analysis and robotic motion planning. Although numerous algorithms 
have been proposed to determine MAT of polygonal objects, a robust model for 
arbitrarily shaped regions, especially suitable for engineering designs, is still an 
active area of research. In this paper, a 2D approach capable of efficiently 
constructing MAT for arbitrarily shaped 2D regions is proposed. This method 
can be utilized to evaluate 3D objects for a variety of applications though it does 
not produce a 3D MAT. Alternatively, an algorithm for calculating the MAT of 
3D polyhedra is also presented. 

BACKGROUND 

The Medial Axis Transform (MAT) represents a bi-jective mapping of a n­
dimensional object onto a (n-1 )-dimensional object. The MAT labels each point 
on the medial axes with a metric of the dimension of the local region. One can 
reconstruct the n-dimensional object by sweeping a scalable n-dimensional ball 
along the (n-1)-dimensional medial axis with its radius equal to the dimensional 
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metric recorded on the medial axis point. Together with the boundary 
representation, MAT empowers shape manipulation and geometric reasoning. 
The majority of the following discussion is restricted to two and three­
dimensional objects only. 

MAT has been employed in applications such as pattern recognition of digital 
images [1], finite element mesh generation [2,3], analysis of VLSI designs [4], 
path generation for pocket machining [5,6], medial surface extraction for 
engineering analysis [7], shape blending in computer animation [8], design rule 
checking for sheet metal components [9], punch shape recognition [ 1 0], robotic 
motion planning [11], feature recognition [12], biological shape analysis [13] as 
well as manufacturing planning and manufacturability analysis [14]. 

Algorithms to compute the true medial axis transform for a freeform 3D 
object have been studied for many years, yet robustness issues remain. One 
solution proposed in our paper is to evaluate a 3D object in terms of 2D slices. 
It is computationally economic to compute MAT of many sliced 2D regions as 
opposed to that of a full 3D freeform solid. Such a computation is only 
meaningful if the sliced 2D MAT provides adequate information for certain 
shape interrogations. Alternatively, it is proposed to convert a 3D freeform 
object into a tessellated representation and construct the 3D MAT of the 
resulting polyhedra. This method is computationally more expensive in 
comparison to the 2D approach, and for obvious reasons does not capture 
nonlinear features. However, it preserves the essence of the 3D object which 
may be of practical importance in a variety of applications. 

DEFINITION OF MEDIAL AXIS TRANSFORM 

The Medial Axis Transform (MAT) was first proposed by Blum [13] to 
describe shapes for biological problems. He defined the medial axis as loci of 
centers of locally maximal balls inside an object. In two dimensions, it would 
be the loci of centers of locally maximal disks inside the region. A ball or disk 
is locally maximal if there exist no other balls or disks that contain it. The 
points on the medial axis are called medial axis points. These medial axis points 
together with the radii of the associated locally maximal balls define the medial 
axis transform of an object. 

The formal definition of medial axis transform is as follows: 
Let A be a subset of R", x E R" be a point in A. The medial axis transform of 

A, MAT(A), is a subset of R"+1 consisting of the closure of points (x; rx); rx E R 
such that the ball centered at x with radius rx is locally maximal in A. The set of 
xis the medial axis MA(A). 
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In other words, MAT(A) is a set of(x; rx), where x E A and rx E R, such that 
1. (x; rx) E MAT(A) ~ Ball(x; rx) ~A 
2. (Xt ; rxt ); (xz ; rxz) E MAT(A) ~ Ball(xt ; rxt ) ~ BqH(xz; rxz) 

The balls that satisfy the above conditions are called medial axis balls. 

2D-MEDIAL AXIS TRANSFORM: 
Clearance Function Representation 

We introduce a clearance function based on the boundary representation to 
record the medial axis transform and proximity information. This representation 
directly associates boundary points to the corresponding proximity metrics so 
that proximity information is immediately available at any given boundary point. 
In addition, we found that by utilizing such a representation one can: 
1. Improve the performance and simplify the implementation of MAT 

computation, 
2. Reduce the redundancy of defining MAT when a boundary representation is 

also available, and 
3. Provide simplified geometric operations during MAT computation. 

The following paragraphs describe the proposed representation and a method 
to computing clearance functions and MAT. 

Definition: (Clearance Function) 
Let P be the set of boundary points of a connected, compact, and regular 
region A. The clearance function C : P ---R maps a boundary point p E 

P to the distance between p and its projection Mp. Furthermore, since 
the medial axis ball centered at Mp is tangent to 84 at p, 

Mp=p+Cpnp 
, where nP is the unit normal vector at p pointing toward the interior of 
A; CP is the distance of projection. 

The clearance function maps a set of boundary points of A to the radii of the 
associated medial axis balls. Since each medial axis ball must touch two or 
more boundary points, the projection from boundaries of a given compact region 
completely defines the medial axis. Moreover, together with the clearance 
function, the projection defines the medial axis transform. 

Proposition: (Medial Axis Transform and Clearance Function) 
Let C be the clearance function associated with boundary of A. The 
medial axis MA(A) and medial axis transform MAT(A) can be 
formulated as 

MA(A) = {xI x = p + Cp np, Vp E 84} 
MAT(A) = { (x; Cp) I x = p + CP nP, Vp E 84} 
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,where np is the unit normal and Cp is the clearance function value at a 
boundary point p. 

Given the boundary representation of a compact region, the MAT can be 
concisely described by the clearance function associated with boundary points of 
the region. The task of computing MAT of a compact region is equivalent to 
that of computing the clearance function. 

To visualize the relationship between the clearance function and MAT, we 
could plot the clearance functions on the boundary in the (n+ 1)-th dimension for 
an object in R" . Figure 1 shows such a representation in three dimensions for a 
2D object bounded by a smooth curve. The object lies on the x-y plane where 
the z axis denotes the clearance functions. As the z axis "bends" toward the x-y 
plane, the function curve becomes the medial axis. 
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Figure 1: Visualization of the clearance function of an example 2D region. The top figure shows 
the clearance function attached to the boundary of the region; the middle figure shows "bending" 
of the clearance function in progress with the angle; the bottom figure shows that the medial axis 
is the result of projection ofthe clearance function curve. 
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Figure 2 illustrates the concept of clearance functions of a simple 3D object. 
The figure in (b) is the medial surfaces for the object depicted in (a). (c) is the 
boundary representation of (a) developed onto a plane, and (d) is the clearance 
function representation of (a). 

···~ 
, .. ~ 

Figure 2: Clearance functions of a simple box. 

It can be shown [14] that the clearance function for any given connected, 
compact, and regular regions exists, and is unique and continuous. Clearance 
functions can be computed by taking the infimum of all bisecting functions 
between any pair of boundary elements. A naive approach would be to compute 
all possible bisecting functions and find the infimum of these functions. 
However, since clearance functions are continuous, one can first locate an 
infimum point and trace along the infimum values of the bisecting functions to 
construct the clearance function. For objects with holes, one could first compute 
the clearance function of the exterior boundary and incrementally add the 
interior boundary while updating all the previous clearance functions. The 
following figure shows the steps of computing clearance functions for an 
example 20 region with multiple holes. 
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Figure 3: Clearance functions for a smooth region with holes. (a) to (e) are the intermediate 
results of clearance function computation by incrementally inserting an inner loop and updating 
the existing clearance functions. 

MAT of an object is normally represented by its medial axis and the 
associated radius information. However, for some engineering applications the 
detailed geometry of medial axes is not of crucial importance. For example, one 
might be interested in knowing whether two features are too close to allow 
access to a cutting tool, and what portion of the boundary would not be 
machined with a given cutting tool. If one were to use the medial axis 
representation to locate the uncut boundary, one would need to traverse the 
entire medial axes, flag the portion of medial axes whose associated radii are 
less than the cutting tool radius, and then find the boundary elements 
corresponding to these medial axes. It would be convenient to have the 
proximity information directly recorded on the boundary so that one could 
directly retrieve such information by traversing the boundary. 

In our work, the clearance function has been successfully applied to 
manufacturability analysis and automated cutting tool selection. For 
manufacturability analysis of roughing operations on a 30 object, one can slice 
the 30 geometry at the pre-determined cutting depths and generate clearance 
functions corresponding to exterior of the sliced cross sections. The boundary 
with its clearance value smaller than the radius of the rough cutting tool is 
therefore not accessible by the specified tool. By the same token, one can 
evaluate manufacturability for finish cutting operations with flat end mills. For 
ball end mill cutting, one would need to generate clearance functions for the 30 
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model. The clearance function representation allows fast manufacturability 
analysis for cutting operations. 

The following figure shows the model of an injection molding insert. The 
areas which could not be accessed are shown in black (the cutting tool is not 
shown in this figure). 

Figure 4: An injection molding insert and its manufacturability. 

In addition to using clearance functions for manufacturability analysis, one 
can process clearance function for optimal cutting tool selection. Let us 
consider the case of machining time minimization. This could be formulated as 
a function of feed rate, tool path length, number of tool changes, and tooling 
change time. The most difficult part of this function evaluation is tool path 
length. Traditionally, machining time is computed by explicitly generating tool 
path for a given cutting region with a given cutting tool dimension, and then 
calculating the total tool path length. This approach provides more accurate tool 
path estimation, but may be computationally too expensive for iterative 
optimization cycles. 

We developed a strategy of using clearance function to approximate tool path 
length. Given a cutting tool, one can estimate cutting area by taking the integral 
of clearance function within accessible cutting range. Time for machining 
accessible area can be approximated by dividing cutting area by tool radius and 
feed rate. With this approach, the clearance function is only computed once, but 
could be used for function evaluations during optimization iterations. The 
following figure shows a 2D pocket region to be machined with an optimal set 
of three cutters (cutters are not shown in this figure). The darkest region denotes 
the area to be cut by the largest cutter. The region of lighter shading is to be cut 
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by the second largest cutter, and the region of the lightest shading is cut by the 
smallest cutter. 

Figure 5: The results of tool selection for bulk material removal of the sample geometry. 

MAT OF 3D POLYHEDRA 
Influence Zone 

Theoretically, the clearance function can be extended to 30. In this case, 
bisectors become surfaces rather than curves. However, these surface bisectors 
and the medial surface may have algebraic degree greater than two, which 
makes the computation of 30 MAT sensitive to numerical errors. For example, 
as shown in Figure 6, the two bisectors which are supposed to join each other 
may not intersect because of some round-off errors. This tolerance problem 
could impede implementation of tracing algorithms which rely on accurate 
intersection of bisectors. We propose the concept of "influence zone" to 
alleviate inaccuracies of intersection calculations. In the following discussion 
3D objects are represented in their tessellated forms only. 
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Linear 
bisector B, 

Nonlinear (parabola) 
bisector B2 

Figure 6: No intersection point is found between bisector 8 1 and 8 2 if some gap exists. 

The "influence zone" is similar to the "influence region" of (15] and the 
"domain polytope" of [ 16] with respect to classifying the scope of "visibility" of 
boundary elements. The following discussion focuses primarily on how the 
"influence regions" interact with the object rather than how they interact with 
each other. In this paper the "influence zone" is defined as the region bounded 
by a concave boundary element, either a concave vertex or a concave edge, and 
a set of surfaces which are perpendicular to the adjacent boundary elements of 
this concave element. As it will be explained later, the medial surface section 
inside the influence zone is determined by this governing concave boundary 
element and some other boundary elements. As illustrated in Figure 7, the 
influence zone partitions the space in an object into three types of regions: the 
region inside the zone, the region outside the zone, and the region on the zone 
boundary. The region on the zone boundary, that is, the surface bounding the 
influence zone, is referred to as "influence shell". It should be noted the present 
discussion does not distinguish whether each region is an open set or a closed set 
since it does not affect the subsequent analysis. 

~·~·-·-·- · -·-·-·-;r·-·-·-·-·-·-· 

, ~ ·' . I 

.~· 

__ .... _______ _ _ 

-·-· 

Region outside influence zone 

Surface which bounds influence 
7one: Tnt1nence shell 

Region inside influence zone 

Figure 7: Influence zone partitions an object into three regions. 
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Since a boundary element only "influences" the shape of the medial surface 
within its influence region [ 17], any nonlinear medial surface section, if it exists, 
will reside inside an influence zone. This argument can be restated as follows. 

Theorem 1: No nonlinear medial surface section of a polyhedron exists 
outside the influence zones of the object. 

Proof: In a polyhedron, a nonlinear medial surface section will result only if 
the medial surface's governing boundary elements are any of the following 
combinations: vertex-edge, vertex-face, edge-edge (if they are not on the same 
plane) or edge-face. Since all medial surface sections outside the influence 
zones are associated with face-face combination, these sections should be linear 
(planar surfaces in 30). 

The proposed theorem implies that the intersection between a linear bisector 
and a nonlinear bisector which is sensitive to numerical round-off errors can be 
found indirectly by calculating the intersection between the bisectors and the 
influence shell, as shown in Figure 8. It can be seen that the latter intersection 
operation will be more robust because the influence shell is always 
perpendicular to either bisector along the intersection. 
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Figure 8 (a): No intersection point 
if some deviation exists. 

' 
Bisector 

Influence 
..,..._--- shell 

(b): Intersection point exists even with 
deviation. 

In addition, the construction of linear and nonlinear medial surface sections 
can be performed independently. As can be seen in Figure 9, by using the 
influence shell as a "bounding wall", we can first compute the medial surface 
section outside the influence zone, which is done by trimming the outer linear 
bisectors with the "bounding wall". Similarly, we can also trim off the inner 
bisectors and obtain the medial surface section inside the influence zone. By 
patching both sections together the complete medial surface is obtained. 
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Moreover, since a complete medial surface is connected, the inner medial 
surface section can be considered as the bridging entity which fills up the holes 
or gaps on the outer section. Thus for applications which weigh computation 
speed more than the shape precision, some approximated polygonal bridging 
section can be constructed instead of computing the real nonlinear inner section. 

= + 

Figure 9: Linear MAT sections and nonlinear sections can be computed independently. 

This influence zone can also help to reduce the complexity of computing 
MAT of a 3D object. The reason for this will be illustrated later. In short, the 
influence zone may well partition an object into more than two sub-regions. The 
MAT section of each sub-region outside the influence zone can be computed 
independently from the others. This argument is restated as follows: 

Theorem 2: A polyhedron can be decomposed into a set of sub-regions by its 
influence zones. If there exist two sub-regions which are separated completely 
from each other by one influence zone, the medial surface section inside each of 
the two sub-regions can be computed without knowing the other. 

Proof: Assume that a point P1 on medial surface in sub-region SR1 is governed 
by some point P2 on boundary elements in sub-region SR2• If this statement is 
true, there must exist an inscribed sphere whose radius equals I P1P21. However, I 
P1P2I is larger than either I PtCtl or I PtBtl and thus this sphere can not be 
inscribed in the object. Therefore, a point on a medial surface inside SR1 is not 
governed by any point on boundary elements inside SR2• This means the medial 
surface inside SR1 can be computed as long as the boundary elements on the left 
side of P2C1 are known. The boundary elements inside SR2 are not needed for 
this computation. 

' ...... ' 

-----· 
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Figure 10: Left shaded region: sub-region SRI; Right shaded region: sub-region SR2. 
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This theorem suggests that under certain conditions the medial surface of a 
polyhedron can be computed in a localized fashion, which reduces complexity of 
overall computation. 

For example, certain 30 tracing algorithms involve a bottleneck "seam" 
tracing stage [18]. In that stage each "seam" (an edge on medial surfaces) is 
checked against all the boundary elements on the polyhedron. However, if the 
polyhedron can be divided into a set of sub-regions by its influence zones, each 
seam in one sub-region only needs to be checked against the boundary elements 
surrounding it. Thus the global checking is avoided and the computation cost 
can be reduced. It is worth noting that though the effect of the influence zone 
partition here is similar to the "Domain decomposition" concept in 20 domain 
[19] as to divide the object into smaller and more manageable pieces, our focus 
is to provide a simple "pre-processor" to localize the MAT construction 
wherever applicable. This approach can be combined with other algorithms 
such as the tracing scheme mentioned previously. On the other hand, the 
constraint of the influence zone is that it is only applicable to objects with 
concave boundary elements. 

The steps of constructing the medial surface sections by applying the 
influence zone concept are illustrated briefly in the following example. As 
shown in Figure 11, the polyhedron is first divided into three regions: SR1, SR2, 

and the influence zone. · We first compute the medial surface section in SR1 

utilizing the boundary elements inside both SR1 and the influence zone. The 
boundary elements in SR2 are discarded since they are irrelevant. This 
computation is not much different from computing the medial surface of a 
convex polyhedron, which is calculating the bisectors and tracing the infimum 
bisectors along the boundary elements in our approach. However, the bisector 
portion which goes outside the influence zone is trimmed off by the influence 
shell. The medial surface in SR2 can be constructed in a similar fashion. 

r--' .r ·-·-·j ~- .r·-·-· j 
I ' / j I ' / j 
I SR. " i I . X . i 
I In f. '. j I / .. .... ', j 
I Zone ' · I . ·········' · - -- - -- -- _ __ _ ] -..:.. - - - - ...:··- .--1 

Boundary elements 
ofSR 1 and lnf. zone 

Influence sheJI 

---Medial surface in SR 1 

Trimmed off section 

Figure 11: Medial surface in SR 1• SR2. and influence zone can be computed independently. 
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Although the construction of the medial surface inside the influence zone 
seems more complicated because nonlinear medial surface portion may exist, the 
computation involved is still based on calculating and tracing bisectors. 
Similarly, we want to filter out irrelevant boundary elements in advance to 
localize the computation of the medial surface. Fortunately, this filtering can be 
done by discarding the boundary elements which are not confined by the 
governing boundary elements of the previously trimmed medial surface sections. 
As shown in Figure 12, the previously trimmed medial surface sections are MA1 

and MA2• Their governing boundary elements are BF1 on one side and BF2 and 
BF3 on the other side respectively. From Figure 12 we know that the BF1 and C1 

are the confined boundary elements. Thus we compute the bisector with 
boundary element BF1 and C1 and trim the bisector to the medial surface MA3• 

This filtering criterion can be explained as follows. Since the mapping 
between medial surface and boundary elements is unique and continuous [14], 
the boundary elements governing a confined area A on medial surface are also 
confined by the boundary elements whose medial surface confines A. In our 
case, the inside medial surface (that is, medial surface inside the influence zone) 
can be considered as bounded by the trimmed medial surface sections outside, 
thus the boundary elements governing the inside medial surface should be also 
bounded by the boundary elements governing the outside trimmed medial 
surface. In other words, we discard the boundary element portions which have 
been mapped to existing outside medial surface sections when we construct the 
medial surface section inside the influence zone. Figure 13 shows another 
example where the confined boundary elements are BF., BF2, BF3 and C1 • 

..,.. __ ..,. 
Confined area 

Figure 12: BF1 and C1 are found to be governing boundary elements of the medial surface inside 
the influence zone. 
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Figure 13: BF~o BF2, BF3 and C1 are the governing boundary elements of the medial surface inside 
the influence zone. 

As shown in Figure 14, more complicated cases for computing medial surface 
inside influence zones can be found when some influence zones overlap. We 
can still proceed with the tracing scheme and construct the medial surface 
section inside the overlapping region. However, we conjecture that a more 
efficient computation can be achieved by characterizing the interaction among 
these concave boundary elements. Further study is required to understand this 
ISSUe. 

Figure 14: (a) Two influence zones overlap. (b) Four influence zones overlap. 

Software based on the algorithm discussed above is under development and 
an example result is shown in Figure 15. 
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Figure 15: (a) An example polyhedron. (b) The 3D MAT of the polyhedron. 

SUMMARY 

In this paper two approaches are presented to compute 2D and 3D Medial 
Axis Transform. The "clearance function" approach is designed to efficiently 
compute MAT for arbitrarily shaped 2D regions. Though this approach has not 
been developed to determine a 'true' 3D MAT, it has been utilized to evaluate 
3D objects for various applications. Manufacturability analysis and automated 
cutting tool selection are two examples provided in this paper. The "influence 
zone" method is developed to compute the MAT of 3D polyhedra robustly. 
Though in its present form this approach is limited to polyhedra only, yet it 
demonstrates the possibility to compute 3D MAT in a localized fashion. 
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