
SECURE AND ANONYMOUS MULTICAST
FRAMEWORK

Nathalie Weiler, Bernhard Plattner
Computer Engineering and Networks Laboratory (TIK),
Swiss Federal Institute of Technology ETH ZUrich. Switzerland
{weiler, plattner}@tik.ee.ethz.ch

Abstract
The rapid increase in Internet users triggered a number of new Internet services

and applications such as online shopping, video conferencing, Internet games or
distance education. A larger part of those ones requires multicast support for
efficient data distribution. A number of secure group communication protocols
have been published recently, but the preservation of privacy of the single group
member is still an unsolved problem. This paper presents a novel approach to
secure and anonymous group communication. First, we propose a solution for
anonymity in a local environment based on state-of-the art approaches such as
pseudonym servers and anonymizers combined with encryption techniques on
different protocol levels in order to guarantee an anonymous way of communica­
tion between end-users. Then, we introduce the secure and anonymous multicast
(SAM) framework and we show how it can be used as a configurable, scalable
architecture in combination with local anonymity.

Keywords: Scalable end-to-end anonymous communication, composable privacy, anony­
mous multicast.

1. INTRODUCTION
The fast growing proportion of the population using the Internet as a means

of information exchange comes along with an increase of the opportunities to
violate each person's privacy by gathering this information. Typically, cryp­
tographic techniques are used to hide the content of messages by means of
encrypting this data. However, thereby the identities of the message's sender
and recipient(s) are not concealed. Anonymous bidding schemes in the Internet,
e.g., could be implemented more conveniently if the identities of the bidders
were hidden. Such schemes could be used in the auction of UMTS (Universal
Mobile Telecommunications System) licenses currently taking place in several

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2001
R. Steinmetz et al. (eds.), Communications and Multimedia Security Issues of the New Century

10.1007/978-0-387-35413-2_36

http://dx.doi.org/10.1007/978-0-387-35413-2_36

40

European countries or in any other kind of distributed bidding scheme. Insider
information gathering could be prevented, too: If the executives directors of
two financial institutions had concealed their identities in thee-mails sent back
and forth between them, a system administrator's attention would never have
been attracted by this increased amount and the news about an upcoming fusion
would never have spread.

The realization that a solution is needed for providing privacy and anonymity
in the Internet is neither new [Cha81, Pfi90] nor unexplored (see Section 2).
However, the anonymity aspect has seldom been regarded in the context of
group communication. The emergence of group applications such as distance
education or video conferencing requires for privacy enhancing measure in
the MBone - the multicast capable overlay network of the Internet. Levine
and Shields [LSOO] presented a first approach to achieve receiver anonymity by
sending IP packets to a multicast group and thereby preventing disclosure of the
recipient. Our approach takes one step beyond this approach. The contribution
of this paper are two-folded: First, we present an approach to remain anonymous
in a local environment. Then, we extend this approach to a protocol for secure
and anonymous multicast communication (SAM), i.e. a group communication
protocol that allows authorized users to communicate with other group members
without being identifiable by outsiders and/or insiders.

The outline of this paper is as follows: In Section 2, we start by giving an
overview over previous approaches used in unicast scenarios. Then, our design
and implementation of a secure anonymous local infrastructure are detailed in
Section 3. Section 4 introduces our novel approach to secure and anonymous
multicast communication. Finally, we conclude with a short assessment and an
outlook of further work in Section 5.

2. RELATED WORK

We first introduce the idea of Chaumian Mixes which is the basis for many
approaches. Then, we produce an overview of the techniques used for e-mail
anonymity. We continue with anonymity for the Web and the few network
related anonymity usages. A detailed analysis of the presented related work
can be found in [WPOO].

Chaumian Mixes
Chaum's work is the first one to address the problem of hiding the commu­

nication pattern in the network itself. According to [Cha81], a sender packs his
message M, figuratively spoken, in n envelopes - each one addressed to one
of n chosen mixes so that each mix only knows the next hop information.

The purpose of the mixes- placed as intermediate nodes between sender and
receiver nodes - is to complicate traffic analysis. However, the price to pay is

41

not negligible: (a) Each packet's transmission time is significantly increased
by the delay introduced by the mixes 1. (b) Each mix must be able to perform
asymmetric de- and encryption. The encryption used must be probabilistic to
prevent the observing adverse from the following traffic analysis attack: He
takes the outgoing messages and re-encrypts them with the public key of the
mix. By comparing the results to the encrypted input messages, he can trace
the traffic. As a prophylactic measure, each ciphertext is longer by at least
the amount of random bits used than the input message. Since several mixes
should be used, the ratio of information and junk bits increases. Nonetheless, the
mixes are the basis for many anonymizing e-mail systems: anon. penet. fi,
cypherpunk remailers, mixmasters, etc.

Mail based Approaches
Mail based approaches are generally classified into three different types:

(1) A Type 0 remailer, the simplest system, strips off headers and forwards
the remaining message. Examples are anon.penet .fi (Not operational
anymore) or wvw .mailanon. com.

(2) The class of the Type 1 remailers encompasses all remailers that use any
variant of layered encryption such as cypherpunk systems.

(3) Mixmasters or Type 2 remailers are more resistant against spamming and
traffic analysis attacks.

Web based Approaches
Since the WWW is probably the most frequently used application on the

Internet, the demand for anonymous Web browsing is increasing:
vww. anonymizer. com [Ano]- a service of Anonymizer, Inc. -provides

the same service as a type 0 remailer for HTTP traffic. Functionally, the
Anonymizer is a web proxy that removes all personal and identifying infor­
mation from the HTTP request and then forwards it to the destination web
servers. The replys are relayed in a similar manner.

The Lucent Personal Web Assistant [GGK+99] offers a pseudonym ser­
vice, i.e. a pair of anonymized usemame-password, for each requested web
server. The idea behind is to prevent several web sites form coordinating their
log based informations (IP address, e.g.) about a certain user.

A crowd [RR98] is a group of users who collectively perform HTTP requests
in order to enable each member to browse the WWW anonymously. From the
perspective of the Web server, each member of the crowd is equally likely to
have issued the request. Anonymous web traffic performs a secret random walk
through the network. Therefore, each member of the crowd runs a jondo that

1 Each mix must wait until the amount of message is sufficiently large enough to mix.

42

forwards both other crowds member's and the own user's requests. These secret
paths are set up in an initial step. After this step, each member uses exactly one
same secret path for all subsequent traffic originating at his place. As jondos
cannot tell if the request has been issued by its own user or forwarded by another
jon do, users remain anonymous .. The advantages of a system like crowds are
that (a) it requires only little low cost- symmetric- encryption and decryption.
(b) it can handle network failures efficiently as every jondo can determine the
endpoint of the request and reroute the traffic if necessary2 • (c) the membership
in the crowds group is dynamic. The major disadvantage of crowds is its vul­
nerability to combined timing and collusion attacks: HTTP requests frequently
tend to appear in bursts, i.e. the initial request triggers several more requests for
additional HTTP objects. An insider, incorporating a crowds member, know­
ing the other member's processing speeds can reveal the true path position of
the original request from analysis of the intervals and delays between requests.
Furthermore, crowds does not protect from forwarding tracker attacks.

The previous approaches are concerned with the browsing aspect of the
WWW. TAZ Servers and the Rewebber Network [GW98] cope with the
publishing aspect of the WWW. In some cases, anonymous publishing on the
WWW is desired3• Technically, the Rewebber network consists of a cascade
of type 1 remailers for HTTP traffic.

JANUS [DR99] has some similarities with the above mentioned rewebber
network: Both use layered encryption in a cascade of untrusted HTTP proxies
to achieve server anonymity. The main difference is that JANUS parses the
HTML documents retrieved and carefully replaces any embedded URLs that
might reveal the anonymous original publisher.

Network based Approaches

There exist very few approaches coping with anonymity in Internet connec­
tions in general. Most approaches are concerned about a certain application,
typically e-mail or WWW.

The Onion routing network [RSG98] consists of a number of routers that use
forwarding through a cascade of untrusted third parties. The routers maintain
a set of encrypted TCP connections to each others. Figure 1 illustrates how the
client Andrea contacts the anonymous network through the application proxy
of the onion router No. 2. Andrea's onion proxy prepares the onion - i.e. a
layered forwarding address structure containing for each one of the used onion
routers the next hop information and key seed material (for the generation of
the symmetric keys that will be employed by the onion router during the actual

2This is the reason why crowds provides only sender anonymity and cannot be extended to receiver anonymity
without a severe loss of attractiveness.
3Consider for example the potential of such a system for conferences requiring anonymous submissions.

43

No.3

Onion Routers

Figure 1 Operation of an Onion Router Network.

routing of the data)- and sends it to the application proxy. The prepared onion
defines the path, marked with black through the onion routers.

Besides being transmitted in uniformly sized blocks, the data is mixed, i.e.
collected and reordered randomly. However, the experimental prototype shows
unfortunate correlations between several data sources. So, despite of mixing,
the chances of a successful traffic analysis attack are still considerable. A replay
attack can be tackled with nonces in a successful manner. A flooding attack is
the promising approach in case of long lasting connections.

PipeNet [Dai] uses a similar approach to Onion Routing. Additionally to the
already introduced features of Onion Routing, the PipeNet switches are more
resistant against insider attacks.

The Freedom Network [GS99] is an anonymizing overlay network running
on IP. Its similarities to Onion Routing and PipeNet are strong. However,
the Freedom Network suffers from a far worse design flaw: Active attackers
incorporating two Anonymous Internet Proxies (AlP) can trace everyone who
uses them as first and last AlP.

3. SNAP- SECURE NONLOCAL ANONYMIZING
PROTOCOL

The main motivation for our new approach was the lack in the literature of a
simple protocol allowing for anonymous end-to-end communication. Almost
all approaches require significant changes in the infrastructure while still being
vulnerable to simple traffic analysis attacks. So, we required from our system

44

that it (a) is simple to use, (b) does not require an expensive infrastructure,
(c) supplies a solution for the needs of an average user, and (d) provides, if
desired by the user, local anonymity.

We believe that the ensuring of privacy in the local network is one of the most
desired features of users. No employee wants system administrators sniffing
through e-mails. He simply wants to send and receive e-mail or browse Web
pages without anybody in his local environment notifying whom he commu­
nicates what with. Similar reasoning holds for the home user with regard to
his service providers. On the other hand, our approach should not prohibit the
usage of any kind of personalized services.

Design of SNAP

SNAP User

User Administration

SNAP-Server

SNAP
General Purpose

Store-and·Forward
Server

Figure 2 Components in the SNAP Architecture.

Remote Server

The major players in SNAP (Secure Nonlocal Anonymizing Protocol) are
depicted in Figure 2:
(1) The SNAP HTTP(S) proxy is a store-and-forward HTTP to HTTPS proxy.
(2) The SNAP SMTP server is a secure remailer handling incoming and out-

going mail traffic.

45

(3) The SNAP general purpose store-and-forward server is responsible for
all remaining services in the Internet.

(4) The Persona generator provides a kind of pseudonyms to the other server
components.

(5) The User administration handles the profiles of the SNAP users.

t

-authenticated authenticated

Figure 3 Handling of a new request by the SNAP HTIP(S) Proxy.

SNAP HTTP(S) Proxy. SNAP requires that every communication using HTTP
between user and itself is encrypted. Therefore, the Web browser must request
the desired page via HTTPS (using SSL 4) from SNAP. Upon this request, the
latter opens an HTTP5 connection to the target server if the user has already
logged in into the system. Otherwise, the user must authenticate himself to
SNAP and after successful authentication, the proxy requests the objects. The
SNAP HTTP(S) proxy requests the web object in its name. Then it replaces all
links in this object with equivalent links redirected through SNAP. Finally, this
changed object is sent to the web browser of the user. No additional require-

4SSL: Secure Socket Layer.
5 HTIPS is used if supported by the target web server.

46

ments are needed either at the user side or at the WWW servers side since any
modem browser is equipped with SSL.

As shown in Figure 3, the SNAP HTTP(S) proxy asks the user administration
component for the login information of the user. If this information is success­
fully retrieved from the SNAP database maintained by the user administration
and the persona generator, it is filled in if the GET or POST form contains a
substitution order for a pseudonym. In the case that this information does not
exist, it is the user's first visit to this hostname and therefore, there exists no
pseudonym in the record database. The user administration calls the persona
generator for a new pseudonym record consisting of an usemame, a password
and an e-mail alias. The new e-mail alias is simultaneously generated on the
SNAP SMTP server.

Now the desired object is downloaded from the target web server. The
substituted GET or POST parameters are forwarded with the request. The
header of the object indicates the type of the object: whether it is a binary file,
the object is forwarded through HTTPS to the user's browser. If it as a HTML
document, some changes need to be made. Basicly, the Response Parser must
filter the javascript , resolve the document base, expand links and rewrite the
forms. Then the altered HTML document is transmitted to the browser at the
user's side using HTTPS.

SNAP SMTP Server. The SNAP SMTP Server is a secure remailer handling
incoming and outgoing e-mail. Figure 4 shows the sequence of activities that
the SNAP SMTP Server must perform.
(1) The local SNAP POP Server accepts an E-Mail either for or from a SNAP

user.
(2) This E-Mail is picked up by the newly created instance of the dispatcher.
(3) The dispatcher's first task is to store the e-mail and all its attachment in a

temporary storage.
(4) Depending on the direction of the e-mail, the dispatcher has to start either

(a) the encryption engine (in case of an outgoing e-mail that is requested to
be encrypted) or (b) the decryption engine (in case of an incoming e-mail
that is encrypted.).

(5) After successful completion encryption or decryption, the parser processes
the message.

(a) In case of an incoming e-mail, the remailer information is introduced
in the mail header (The sender is set to the remailer's address) and
delivered to the addressee.

(b) In case of an outgoing e-mail, the parser extracts the remailing infor­
mation supplied by the sender from the body of the e-mail. The mail
header is substituted with this information. The resulting e-mail is
sent and any temporary files are cleaned up.

47

;:---<-·
,_.,,.....,...,;=::;:::;::::;;YM-y

..

Figure 4 Flow Chart of the Remailing process.

Note that plaintext e-mail is possible. In this case, the encryption/decryption
step is skipped as depicted in Figure 4. In this case, the sender or receiver
of the e-mail remains no longer locally anonymous, i.e. any observer in the
local environment can read the message's body. Furthermore, other weaker
encryption mechanisms than Pretty-Good-Privacy [CDFf98] may be integrated
into the SNAP SMTP Server if public key encryption proves to be a bottleneck
of a specific server.

SNAP General Purpose Store-and-Forward Server. The first two com­
ponents of SNAP are concerned about the web and mail traffic. This set is
completed with a third component targeted at the remaining traffic. The rea­
sons for separating SMTP and HTTP streams from data of other protocols is
two-folded: (1) Secured methods for both e-mail and web objects transmis­
sion, e.g. PGP, S/MIME [Ram99], SSL [DA99] exist and are typically already
integrated or easy to link to current mail- and webservers. So, SNAP may
profit form this work already done for providing anonymous SMTP and HTTP

48

services. (2) Both SMTP and HTTP traffic range under the top five TCP ap­
plication [MkcOO]. So, separate handling of those TCP connections disburdens
the general purpose SNAP server.

The SNAP general purpose store-and-forward server uses a similar approach
than the other two components already introduced: (1) IPSEC [KA98] is the
security mechanism used in the Internet Protocol. We use this quasi built-in
mechanism to transmit confidential information to the SNAP server. (2) The
addressing information of the target server is hidden in the payload by encrypt­
ing this payload by means of IPSEC. At the client side, the client application
must be aware of the anonymous connection, because it must use a modified
connection manager. The latter one is responsible for putting the target server
addressing information in the payload of the packet and addressing the result
to the SNAP server.

Persona Generator. The persona generator is responsible for building pseudo­
nyms. It uses a randomizer for providing ten to twenty character long pseudo­
nyms. Duplicates are rejected. The randomizer used is a variant of the Auto­
mated Password Generator [AGP].

User Administration. A single working unit of SNAP can only be used by
registered users6• At registration time the user must chose a loginname and a
password, and reveal one personal e-mail address. Optionally, he may deposit
his PGP public key in order to have it integrated in the SNAP PGP public keyring
and signed with the corresponding private key of SNAP. This information is
written on a secure disk. Before each session, a user must authenticate himself.

4. SECURE ANONYMOUS MULTICAST
COMMUNICATION

A typical group in a multicast scenario consists of several participants Pi
which can be classified into two categories according to their role in the data
distribution process: senders and receivers. Each participant may play both
roles - e.g. in a distributed game, each player is fed some information by the
game server and the other players, but he also provides his moves to the group.

Our novel approach to anonymous multicasting introduces a new participant
in the multicast group: the secure and anonymous multicast (SAM) server.
Figure 5 depicts an example of two SAM servers A and B joining the multicast
group M consisting of the participants P1, P2, Ps and P7. Through the mem­
bership of the SAM server A, Pa, P4 and Ps participate anonymously in the
group. Similarly P8 and P9 join the group M together with the SAM server B.

6This design decision was motivated by the wish to reduce additional spam e-mail to a minimum.

49

All multicast traffic divulged in the group M is transmitted in a secure way by
the SAM servers to their respective anonymous subscribers.

Figure 5 Illustration of the SAM Approach.

The SAM servers joining on behalf of the users who wish to remain unknown
to both the group and any outsiders are treated as normal members of the group
and play their expected role in the chosen group key management technique.
However, the true members, i.e. the anonymized group members receive the
secure group communication through the SAM server . Therefore, we use the
SNAP architecture described in Section 3. Thereby, we inherit the user admin­
istration and persona generator service on one hand and, most importantly, the
users are protected from any malicious observer in their local environment due
to the encrypted transmission between SAM server and user.

The SAM server, until now referred to as one server per local environment,
may consist of a network of SAM servers for scalability reasons such reducing
the trust required. For further details of the SAM approach, the interested reader
is refered to [WPOO].

5. CONCLUSIONS
In summary, SNAP is a simple anonymizing protocol that prevents observers

in the local environment of the user from learning any information about the

50

traffic transmitted between SAM server and user7 • We refer to this property
as local anonymity. The main building blocks assuring this local anonymity
are simple and inexpensive to use as shown in Section 3 for anonymization of
unicast traffic.

We extended the SNAP infrastructure to a multicast environment. The result­
ing SAM framework provides an environment for anonymous group communi­
cation build on top of state-of-the-art technology. The exact composition of the
framework is configurable by the application, e.g. the application decides on
the access mechanisms or if encryption algorithms are mandatory. The usage
of network of SAM servers for scalability reasons reduces the trust required in
each of the individual servers.

Further research on this topic will encompass the analysis of the behavior
of different applications in the SAM framework with respect to selected au­
thentication methods and group management techniques and the quantitative
evaluation of the implementation concerning performance and usability.

Acknowledgments
The authors would like to thank Andri Kramer who implemented parts of the first SNAP

prototype. Part of this work was funded by the Swiss National Science Foundation (SPP-ICS).

References

[AGP]

[Ano]

[CDFT98]

[Cha81]

[DA99]

[Dai]

[DR99]

Automated Password Generator (AGP). http://wwv.itl.nist.gov/
fipspubs/fip181.htm.

Anonymizer. The Anonymizer. http: //wvw. anonymizer. com.

J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. OpenPGP message format.
Internet RFC 2440, November 1998.

David L. Chaum. Untraceable electronic mail, return adresses, and digital
pseudonyms. Communications of the ACM, 24(2), February 1981.

T. Dierks and C. Allen. The TLS Protocol - Version 1.0. RFC 2246, January
1999.

Wei Dai. Pipenet 1.1. http: //wwv. eskimo. comrweidai/pipenet. txt.

Thomas Demuth and Andreas Rieke. Securing the Anonymity of Content
Providers in the World Wide Web. In Proceedings of SPI£'99, volume 3657,
pages 494-502, San Jose, CA, USA, January 1999.

Eran Gabber, Phillip B. Gibbons, David M. Kristol, Yossi Matias, and Alain
Mayer. On secure and pseudonymous client-relationships with multiple servers.
ACM Transactions on Information and System Security (TISSEC), November
1999.

7This property holds as long as the private information used in the decryption process (e.g. the private key
and the pass phrase of the user if PGP is used) is not accessible by the observer.

[GS99]

[GW98]

[KA98]

[LSOO]

[MkcOO]

[Pfi90]

[Ram99]

[RR98]

[RSG98]

[WPOO]

51

Ian Goldberg and Adam Shostack. Freedom Network 1.0 Architecture and
Protocols. White Paper, http: //vww. freedom. net/info/freedompapers/
index.html, November 1999.

Ian Goldberg and David Wagner. TAZ Servers and the Rewebber Network:
Enabling Anonymous Publishing on the World Wide Web. First Monday, 3(4),
April1998.

S. Kent and R. Atkinson. Security architecture for the Internet Protocol. RFC
2401, November 1998.

Brian Neil Levine and Clay Shields. A Protocol for Anonymous Communica­
tion over the Internet. In Proceedings of ACM Conference on Computer and
Communication Security CCS'OO, 2000.

Sean McCreary and kc claffy. Trends in Wide Area IP Traffic Patterns: A View
fromAmesintemetExchange.http://www.caida.org/outreach/papers/
AIX0005/, September 2000.

Andreas Pfitzmann. Dienstintegrierende Kommunikationsnetze mit teil­
nehmeraberprUjbarem Datenschutz. PhD thesis, Universitlit Karlsruhe, Deutsch­
land, Informatik-Fachberichte 234, Springer Verlag, 1990.

B. Ramsdell. S/MIME Version 3 message specification. RFC 2633, June 1999.

Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions.
ACM Transactions on Information and System Security, 1(1), November 1998.

Michael G. Reed, Paul F. Syverson, and David M. Goldschlag. Anonymous
connections and onion routing. Journal on Selected Areas in Communications,
16(4), May 1998.

Nathalie Weiler and Bernhard Plattner. Secure anonymous protocols for local and
multicast environments. Technical Report 73, TIK, ETH ZUrich, Switzerland,
October 2000.

	SECURE AND ANONYMOUS MULTICAST FRAMEWORK
	1. INTRODUCTION
	2. RELATED WORK
	3. SNAP- SECURE NONLOCAL ANONYMIZINGPROTOCOL
	4. SECURE ANONYMOUS MULTICASTCOMMUNICATION
	5. CONCLUSIONS
	Acknowledgments
	References

