
Agent Design for LCC Information Gathering

T. 1. Zhang
Computer Systems Engineering, Royal Melbourne Institute of Technology, Australia
Em: t.zhang@rmit.edu.au

H. C. Jiang
Object-Oriented PTY. LTD., Australia
Em: harveyj@oopl.com.au

E. A. Kendall
The School of Network Computing, Monash University, Australia
Em: kendall@infotech.monash.edu.au

Keywords Multi-agent system, Information gathering, Life cycle costing (LCC)

Abstract To respond to the challenge of global economic competition, manufacturers are
searching for ways to bring high-quality products, system, and structures into
being in response to established needs. Simultaneously, as cost is a key factor
among many physical and social factors to determine the success of a product,
they attempt to reduce costs during every phase of the product's life cycle. The
major obstacle for LCC models is data gathering from a highly distributed
heterogeneous environment with a huge number of information sources. This
paper presents a system analysis approach to design agents for information
gathering for CAS A model that is one of popular LCC models.

1 INTRODUCTION

Cost is a key factor to determining the success of a product [10]. The
life cycle costs of the product can be the total costs at phases of research and
development (R&D), production and construction, and operation and support
(O&S) [3]. To respond to the challenge of global competition, manufacturers
need to reduce costs during every phase of a product's life cycle [18].

However, there are obstacles to use LCC models [2]. One major barrier
is data gathering from a highly distributed heterogeneous environment with a
huge number of information sources in an organization. When data-

J. P. T. Mo et al. (eds.), Global Engineering, Manufacturing and Enterprise Networks
© Springer Science+Business Media New York 2001

processing systems are distributed in various formats, manufacturers have to
search them separately and manually integrate information from flat files,
relational databases, and remote supplier parts catalogs. CASA model is a
typical example [19]. Due to the explosion in the amount of information, it
is more useful for collectors to understand customer needs, develop a
product to meet these needs, and bring that product to market quickly and at
fair value [11]. In recent years, a new wave of changes to the business
environment has emerged [13]. The exponential growth of the Internet
throughout the last decade has led manufacturing companies to move into a
globalized business environment. They can interact with business partners
and customers around the world over the Internet. As information from the
Internet is diverse, this barrier becomes outstanding.

To overcome this barrier, agent technology is more advanced to deal
with information gathering [17, 21]. That is because an agent is able to carry
out activities in a flexible and intelligent manner that is responsive to
changes in the environment without requiring constant human guidance or
intervention [4]. In this paper, we present a system analysis approach for an
agent-based system. We then introduce a layered conceptual model for
information gathering based on the architecture of InfoSleuth [20].

2 A SYSTEM ANALYSIS APPROACH

Object-oriented (00) methodology with use cases has been widely used
in software development and use case analysis has proved to be useful and
successful for requirement specification of 00 systems. But as agent
technology is getting more popular today, we need an agent-oriented
methodology for multi-agent system development. However, as an agent is
autonomous, social, reactive and proactive [22], we can not directly apply
the 00 methodology to agent-oriented software engineering. Current
research in role models shows promising results for agent analysis and
design [16]. We have combined these two methodologies to specify and
develop an agent-based information gathering system for product life cycle
cost estimation.

Figure 1 depicts the process of building models for specifying agents. In
this figure, each activity represented by a solid box uses several different
models, transforming and refining them from activity to activity. The box is
given an ICOM (Input, control, output and mechanism) representation
adopted from the functional model of IDEF [5,6]. Note that IDEF is a
standard modelling tool widely used in manufacturing industry. The thick
lines with arrows to connect activities represent interaction collaboration
between these two activities.

314

All activities as shown in Figure 1 can be classified into two categories:
agent-oriented analysis (bounded by a dashed polygon) and 00 analysis
including activities (not bounded by the dashed polygon). 00 analysis
consists of four activities: "Identify Actors", "Identify Use Cases", "Identify
Objects" and "Determine Business Objects". These four activities use the
traditional methods developed by Jacobson et al [12] .

Object
Specification

,
RRC Cards I

i Role Composition I
L...-__ -' 1 ... __ _-._ _ _ _ _ _ ,

Figure 1 Agent-oriented analysis process

The identified use cases are also fed to the activity "Identify Goals and
Goal Cases" in agent-oriented analysis processes. A goal is an objective or a
desired state that can be achieved or ascertained by an agent. We use
G = {g j liE N, g j = goal} to define a set of goals. A goal case is a goal-

based use case and it belongs to a set of goal cases defined by
U = {u; liE N ,u; = goal case}. A goal case is a collection of scenarios about

the agent's interaction with a system. An agent can start a goal case when
the corresponding goal is triggered. We use the existing method [15] to
identify goals, goal cases and present them in the hierarchical diagram.

Role models that commonly occur can then be documented as role
patterns [14] . One important method is to use role responsibility and
collaboration (RRC) cards as shown in Table 1 to specify responsibilities
and collaborations of agents, especially in the early phase of agent-oriented
software development.

Table 1 Template for a RRC card
Role type Collaborator

Names of Roles List all responsibilities List all collaborators

As a result, all the roles represented by R can be defined as R = 2 s x 2e

where S={si1ieN,si=responsibility}, 2s is a power set of S,

315

C = {C i lie N,c i = collaborator} and 2c is a power set of C.

Furthermore, responsibilities can be refined as S = G'xV' by assigning all
potential goals (G') and goal cases (V') for a system.

A conceptual model is used to organize a system in a structure with the
functionality to be best supported. We can apply role patterns to this model
for identifying composite roles that is a classification of roles for the system.
This classification can be instanced in an application. Details of the activity
for our application is given in §3. To identify roles from use cases that are
the output of the activity "Identify Use Case", the activity "Identify Roles"
follows such steps [16]:
• Instance composite roles if they are available;
• Examine role patterns from the existing role patterns. The determined

role patterns can specify types of interaction and collaboration of the
role with other roles.

• If there are no relevant patterns, partition goals to form roles.
• Determine all roles for the identified interactions and collaborations.

Mter identifying goals and constructing goal case models, the activity of
"Assign Responsibilities to Roles" starts at the bottom of the hierarchy goal
diagram, of which the goals are very detailed and would not have any sub
goal. This activity determines goal cases that each role can achieve and
assigns them as responsibilities of that role.

Once responsibilities are assigned to roles in a multi-agent system
analysis, we can partition either identified roles (R) or identified goals (G)

and goal cases (V) for agent design. Based on G and V , we can partition
B = 2{GxU) X 2c for designing a multi-agent system represented by

U Bp = B. To partition R, we can design another multi-agent system that
p

is expressed by UAa=R=2s x2c =2{G'xU')x2c . Note that ~ is a
a

partition in R and stands for an agent. This role partition implies that agent
design is to compose elements (roles) that belong to R into different
categories (agents) which are subsets of 2{GxU) x2c . We call this partition
procedure as role model composition that is the integration of the relevant
role models in an application [1]. The role composition is more than just the
sum of the constituent patterns. It captures the synergy arising from the
different roles an agent plays in the overall composition structure .. : R::::> B

:. UAa ::::> UBp. Therefore, role composition method for agents is better
a p

and more systematic than directly combination of goals, goal cases and

316

collaborators that are identified from use cases. To assign and compose
roles to agents, we have to have the view of the whole agent organization.
• Design agent in appropriated size i.e. to assign appropriated number of

roles to each agent.
• Compose the roles for the agents with differentiation emphasizing the

specialization that is goal oriented. Split an agent if it has too many
responsibilities for the different sub-goals . Merge agents if they got
similar responsibilities.

• Compose the roles to agents with good quality of collaboration, for
which some aspects are essential such as cohesion, lower coupling, and
minimum need for communication.

3. LA YE RED CONCEPTUAL MODEL

We develop a conceptual model to organize our system in a structure
with the functionality to be best supported. The Layered Architecture
pattern [7] has been widely accepted as a standard in network design and
software engineering. Here, for our conceptual model, the information­
gathering domain is classified into different layers as shown in Figure 2.

:I> I n terrace 0
c

" ;;. B roker ~

c .. C " Se rvice ..
n ...
• Orga n izatio n a l
~

'it 1f
,:. u

lorg.ni,otional DB J l D'I.rtI.~
Figure 2. Conceptual model of information gathering system

The ontology layer collectively maintains a knowledge base of the
different terminology and concepts that are employed over the whole
organization. This layer thus describes language that would be used for
specifying and translating requests for information. The authentication layer
performs the task of checking and validating users. The interface layer is
used to predict the user' s intentions and to request services provided by the
remaining modules. This layer acts on behalf of users to relay specifications
and obtain results. The broker layer predicts or models the intentions of the
overall organization and then provides services to users via the interface
layer. The service layer is used to provide services, which differs from the
organizational layer that controls resources. The service layer represents and
provides the high level services that can be formed by encoding expertise

317

and by utilizing the organizational layer. The organizational layer can be
used to manage the organizational resources. Its main task is to gather data
from the various sources.

We have identified composite roles by using role patterns such as
Observer, Broker, Master/Slave, Manager, Bodyguard, and Adapter to this
model [24]. These composite roles that can instanced in our application are
tabulated in Table 2.

Table 2. Summa:l, o[the rolesfgr the laJ!.ered model

COffiJ.!osite Roles Role TIJ.!es DescriJ.!tions
Interface Role • Observer (Observer) • Observe user request

• Client-proxy (Broker) • Request to provide services.

• Client (Bodyguard) • Obtain result

• Client and target (AdaEter)
Broker Role • Broker (Broker) • Match user's request to

• Client (Bodyguard) service and send the request to

• Subject (Bodyguard) service provider

• Client and Target (AdaEter) • ReEI~ result
Service Role • Master (Master/Slave) • Accept the request

• Server-proxy (Broker) • Provide service

• Client and Subject • Distribute work if need
(Bodyguard) • Get final result Send result

• Client and Target {AdaEter)
Organizational • Manager (Manager) • Manage information
Role • Slave (Master/Slave) resources

• Client and Subject • Query information
(Bodyguard) • Reply result

• Client and Target (AdaEter~
Authentication • Bodyguard (Bodyguard) • Verify and validate user
Role • Client and Target {AdaEter~ • Send out Eermission
Ontology Role • Adapter (Adapter) • Get help request

• Client (Bodyguard) • Find alternatives

• Target (Bodyguard) • Translate Terms

4 AGENT DESIGN

Our application can be mode led by the simplified use case:
(1) The user observes a request about operating and maintaining a product

and then waiting for results.
(2) When receiving a request, the maintainer sends requests to a planner for

a maintenance plan and to a cost estimator for operating and maintaining
(O&S) cost.

318

(3) The planner distributes work to a relevant information keeper who
manages the database for product breakdown structures and
requirements.

(4) The cost estimator distributes work to information keepers who manage
data for labor, equipment, and material and then calculates the O&S
cost. If a material is not available, the estimator distributes work to the
purchaser who manages to get it from suppliers.
This use case model describes the system requirement briefly and

simply. By using information in Table 2 and interrogating this user case, we
have identified roles as shown in Column 2 of Table 3 that are instances of
composite roles. By applying rules demonstrated in §2, we partition these
instances into different categories separated by dashed lines in Table 3.
These categories shown in Column 3 of Table 3 are agents that play the roles
that have been instanced.

Table 3 Agent identification
Composite Roles Instanced Roles Potential agents used
Interface Role User/Customer User agent
Broker Role Maintainer Maintenance agent
Service Role --=E::-:st::,:im:,:;a::,;.to.:.,:r'--________ --=E::-:st::,:im:,:;a::,:t:..:io..::n..,::a:...ge:;,,:n:,:.t ____ _

Planner Planner agent
Organizational Role Projects Infokeeper, Project manger agent

Labors and Equipment Infokeepers Resource agent
Materials and Supplier Infokeepers Inventory agent
Support & Management Infokeeper Support agent
Miscellaneous Infokeeper

Authentication Role Security Security guard agent
Ontology Role Term and Location Helper Information agent

All the agents in our research are implemented by using Jack Intelligent
Agents [8, 9]. The organizational databases are accessed using Java
Database Connectivity JDBC [23].

5 CONCLUSION AND FUTURE WORK

This paper has proposed a system analysis approach, which provides
systematic processes for agent-oriented software development. By applying
this approach, we have designed agents used to gathering information for
O&S cost by using CAS A model. The further research is to develop such a
system for the costs of other phases of a product life cycle.

319

6 ACKNOWLEDGEMENTS

This research is supported by Cooperative Research Centre for
Advanced Composite Structures Ltd. (CRC-ACS).

7 REFERENCES

[1] Andersen, E. (1997). Conceptual Modelling of Objects: A Role Modelling Approach,
PhD Thesis, University of Oslo

[2] Benson, S. (1998). Life Cycle Costs and Dic Pump, preprint,
http://www.discflo.com/lccart. html

[3] Blanchard, B.S., Fabrycky WJ. (1990). System Engineering and Analysis, Prentice-Hall,
Inc., New Jersey, USA.

[4] Bradshaw, J M. (1997). Software Agents, Menlo Park, Calif.: AAAIffhe MIT Press.
[5] Bravoco, RR., Yadav, S.B. (1985) Requirements Definition Architecture -An Overview,

Computers in Industry, 6, 237-251.
[6] Bravoco, RR, Yadav, S.B. (1985). A Methodology to Model the Functional Structure of

an Organisation, Computers in Industry, 6, 345-361.
[7] Buschmann, F., Meunier, R, Rohnert, H., Sommerlad, P., and Stal, M. (1996) Pattern­

Oriented Software Architecture: A System of Patterns, Wiley, USA.
[8] Busetta, P., Ronnquist, R, Hodgson, A., and Lucas, A. (1999). JACK Intelligent Agents­

Components for Intelligent Agents in Java, Agent Link News 2, January.
[9] Cross, M., Ronnquist, R (1999). A Java Agent Environment for Simulation and

Modelling, SimTech 99, Melbourne, Australia.
[10] Fabrycky, W.J., Blanchard, B.S. (1991). Life-Cycle Cost and Economic Analysis,

Prentice-Hall, Inc. New Jersey, USA.
[11] Hennecke, F. (1999). Life Cycle Costs of pumps in chemical industry, Chemical

Engineering and Processing, 38, 511-516
[12] Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, J. (1992). Object-Oriented

Software Engineering - A Use Case Driven Approach, Addison-Wesley.
[13] Jiang, H. c., Mo, J. (1999). Internet Based Design System for Global CE, Proc. of the 2nd

International Conference on Managing Enterprises, Newcastle, Australia, 150-156.
[14] Kendall, E. A. (1998). Agent Roles and Role Models: New Abstractions for Multiagent

System Analysis and Design, International Workshop on Intelligent Agents in
Information and Process Management, Germany, September.

[15] Kendall, E. A., Palanivelan, U., Kalikivayi, S. (1998). Capturing and Structuring Goals:
Analysis Patterns, European Pattern Languages of Programming, Germany, July.

[16] Kendall, E. A. (1999). Role Modelling for Agent System Analysis, Design, and
Implementation, First International Symposium on Agent Systems and Applications
(ASA '99), Third International Symposium on Mobile Agents (MA '99), Palm Springs, Oct.

[17] Knoblock, C. A., Ambite, J. L. (1997). Agents for Information Gathering, Software
Agents, Edited by Jeffrey M. Bradshaw, AAAI Press{fhe MIT Press, 347-373.

[18] Li, Y., Huang, B., Wu, C. (1999). Virtual Enterprise Information System, Proceedings of
the r Asia-Pacific Conference on Intelligent Agent Technology, 493-497.

[19] Manary, J. M. (1996). DSMC's CAS A model Still Going Strong, Article in PM: Jan.­
Feb.

320

[20] Nodine, M., Perry, B., Unruh, A. (1998). Experience with the InfoSleuth Agent
Architecture, Proc. of AAAI-98 Workshop on Software Tools for Developing Agents.

[21] Sycara, K., Zeng, D. (1996). Multi-Agent Integration of Information Gathering and
Decision Support, ECAl96: 12" European Conference on AI, Edited by W. Wahlster.

[22] Wooldridge, M., Jennings, N. R. (1995). Intelligent agents: theory and practice, The
Knowledge Engineering Review, 10(2), 115-152.

[23] Zhang, T., Kendall, E. A. (1999). Agent-based Information Gathering System for Lee,
Proc. of the r' Asia-Pacific Conference on IAT (Intelligent Agent Technology), 483-487.

[24] Zhang, T., Kendall, E.A. (2000). System Analysis of Agent-Based Lee Information
Gathering, Proceedings of the r' Pacific Rim International Workshop on Intelligent
Information Agents (PRllA), Melbourne, September.

321

