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present the structure of a versatile tool for design space exploration called 
EXPLORA that may be easily incorporated into any level of design abstraction. The 
flexibility results by addressing the following problems and requirements: 

• Formal (functional) quantification of the nature of design space exploration 
processes involving synthesis tasks. 

• Clear separation between 
Problem-specific parameters (e.g., dimension of exploration space, 
metrics, cost function, etc.) 
Independence of synthesis algorithm and implementation language 
Independence of optimization (exploration) algorithm and 
implementation language 
Visualization support 

• Finally, it should be easy to couple such a design space exploration tool to 
existing environments. 

First, we give a characterization of design space exploration processes during 
embedded system synthesis. In Section 3, we present the mathematical background 
to formalize the process of generic design space exploration. In Section 4, the 
structure of EXPLORA is introduced. Finally, in Section 5, we present a typical 
scenario for coupling the well-known Synopsys behavioral compiler, see, e.g.,[3], for 
design space exploration during high-level synthesis as a case study. 

2. Characterization of Design Space Exploration Processes 

2. 1 Structure of design space exploration processes 

Two of the basic requirements of a flexible tool for design space exploration are a) 
the exchangeability of the optimization algorithm that is used for exploration of the 
design space and b) its adaptability to different synthesis tools that may be used to 
compute the quality of points in the design space concerning cost, speed, and other 
metrics. A natural distinction is to split the process of design space exploration into 
three main tasks: The first one contains all synthesis tool specific behavior, the 
second concerns the optimization algorithm for evaluating solutions and selecting 
new design points in the design space with the goal to obtain a high diversity 
(covering) of optimal points. The third module manages the exploration process 
itself using handles to the other modules. 

Since the optimization algorithm needs a cost function which rates a given result 
produced by the synthesis tool, it is useful to split the module with the optimization 
algorithm into a second module for computing the cost function (see Fig. 1). This 
way, the cost function can easily be changed by the user, too, without the need to 
exchange the optimization algorithm. 

Figure 1 shows the structure of a tool for generic design space exploration. The 
exploration manager starts a synthesis tool with certain parameters and obtains the 
synthesis results of this tool. This result is forwarded then to the optimization 
algorithm that is used during the exploration. This algorithm provides the next 
parameter set(s) (new design point(s)) to explore. The optimization module in tum 
uses a cost function which rates a given result. Finally, it is also desirable to have a 
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graphical user interface (GUI) that gathers and visualizes the progress and results 
during the exploration process. 

This section deals with the description of the modules in Fig.1. We will describe 
their behavior using functional abstractions. First, some explanations are in order. 

3. 1 Explanations 

Before describing the behavior of the exploration program modules, it must be 
specified which kind of data is exchanged. Figure 1 shows the three different data 
structures parameters, result and costs. The parameters-object characterizes a 
design point and can be described by a set of parameters needed by the synthesis tool 
to perform a synthesis. r'E}(p[QRJ\-------------: 
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Figure 1: Structure of a program for design space exploration 

A result-object represents that part of the output of a synthesis tool which is 
important to control the exploration flow and which is needed by the user to rate this 
result. Basically, it consists of a set of quantities representing the properties of the 
synthesis tool output. 

Example 3.1 
Consider the abstraction-level of high-level architectural synthesis, for instance, and 
the Synopsys Behavioral Compiler [3]. Among others, this tool has the option 
parameter io_mode with the possible values cycle_fixed, free_float and 
superstate.' It further needs a file with the behavioral description of a certain 
design, e.g., a VHDL or Verilog file. The filename is interpreted as a parameter, too, 
so the 

1 The values of this parameter denote whether I/O-operations of a given design must be scheduled in 
certain fixed cycles, in arbitrary cycles or respecting a certain partial order, respectively. 
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Behavioral Compiler should produce a synthesized data path plus controller when 
invoking it with these two parameters and proper values. In order to evaluate the 
quality of such a synthesized design, the Behavioral Compiler or any synthesis tool 
typically outputs some result and log files, and special postprocessing steps are 
usually needed in order to extract the important quality metrics needed for design 
evaluation such as the area requirement of the synthesized design, its required 
latency, minimum possible clock cycle time, etc. These are typical synthesis results 
needed for rating the quality of a design during design space exploration. Each 
parameter set producing a different design is called a design point. 

The costs-object may often be simply described by a tuple of real numbers 
which must be properly interpreted by the optimization algorithm to rate a certain 
result. With these explanations, the task of each exploration program module can be 
defined using functional abstractions of each module. 

3.2 Tool starter module abstraction 

Each synthesis tool needs some input files to perform a synthesis and produces some 
output files as a result. During the exploration, possibly not the whole input should 
be modified (e.g., the design specification stays the same) and not all parts of the 
output (e.g., command log files) should be taken into consideration. So the task of 
the tool starter in Fig. 1 is to produce the complete input needed by the synthesis tool 
given a parameter set and to extract the desired result quantities from the output 
returned by the synthesis tool after its completion. The tool starter sits on top of the 
corresponding synthesis tool and behaves like an independent tool to its invoker, so 
its behavior can be described by a function as follows: 

Let a certain synthesis tool starter have n parameters p 1 , ... , Pn with the domain lj 

for the parameter pi, i = 1, ... , n . Hence, a design point may also be characterized by 

an n -tuple p without loss of generality. Let the corresponding tool produce m 
result quantities q1 , ... ,qm that may be represented by a tuple ij. Let Q; be the 

domain of the quantity q;,i = 1, ... ,m. If there are no other constraints, then 

P = P1 xP2 x ... xPn is called the design space Q = Q1 xQ2 x ... xQm the result 

space. The behavior of this synthesis tool starter can be described by a function 
synth: P --? Q (1) 

Example 3.2 
Let io_mode and vhdl_file in the previous example be the parameters of the 
Synopsys Behavioral Compiler, the tool starter would expand this parameter set and 
extract proper values for the area and latency time of a synthesized design 
afterwards. Suppose the name of the VHDL file is design.vhdl, the domain of the 

function synth would be P = {design.vhdl }x{cycle_flXed,superstate,free_float} 
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and the range of result values Q = R + x R + . For each valid VHDL file and for 

each value of io_mode the function synth would produce a pair of values for the 
area and the latency time. 

3. 3 Cost function abstraction 

For rating a synthesis result, the optimization algorithm needs a cost function which 

builds a tuple of costs from a tuple of result quantities. Let c 1 , ... , c 1 be l cost 

quantities. Let Ci be the value range of cost parameter ci ,i = 1, ... ,1. The range of 

values of the resulting cost tuple c is C, C = Cl X C2 X ... X C1 • The cost function is 

then cost: Q C 

(2) 

Example 3.3 
Continuing the previous example, one cost function would be the weighted one 

dimensional function (1 = 1, m = 2) 

cost(area(p),latencyCp)) = 0.7 * area(p) + 0.3 * latency(p). 

This way, the cost function would weight the area of a design point p more than its 

latency time and thereby force the exploration in a direction which rather would 
produce smaller than faster designs. 

Example 3.4 
Let us consider, without loss of generality, a multi-objective minimization problem 
with m result parameters for each design point p of dimension n and l objectives. 

Let q = synth(p). Minimize c = cost(q) = (cost(q), ... ,cost(q)) 

(3) 

where are tuples with 

ci =costi(q),i=1, ... ,/. aEQ issaidtodominate bEQ (alsowrittenas a"?-b) 
iff ViE {1, ... , I}: costi (a)$; costi (b) " 

(4) 3}E {1, ... ,l}:cost1(a) < costj(b) 

a covers b (a ?:;,b) iff a>- b or cost( a)= cost(b). All design points PiE P with 

the property that q1 = synth(pi) is not dominated by any other q j = synth(p j), 

p j E P , are called nondominated. Pareto-optimal points are the nondominated 

design points of the entire search space P . 
For design space exploration, a useful cost function is to let cost(x) be equal to 

the number of design points explored so far that dominate x . Hence, after the 
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exploration, all explored points with cost zero are (approximations of) Pareto­
optimal points. 

3.4 Optimization module abstraction 

The task of the optimization module is to produce a set of new parameter sets (design 
points) to explore next given a set of design points and their ratings. 
If a given optimization algorithm needs v different synthesis results to generate w 
new design points, then the behavior of the optimization module could be described 

by a function opt : ( PxC) v Pw 
(5) 

Example 3.5 
Consider an optimization (exploration) algorithm that is population-based, e.g., a 
variant of an Evolutionary Algorithm that simply selects the best result from n given 
result objects using a certain cost function and produces n identical copies of this 
optimal design point as offspring, however, with random variations in its parameters. 
In the next iteration of the exploration, this set of mutated design points would be 
used by the tool starter and produce new synthesis results. This way, the algorithm 

would implement the function opt: (PxC)n Pn with C = cost(synth(P)). 

Example 3.6 
A well-known local search technique for solving hard combinatorial problems is 
simulated annealing [2]. Here, the algorithm decides based on a single result object 
which new design point in the neighborhood will be investigated next: 

opt: (PxC)1 P 1. Hence, the exploration describes simply a path in the design 

space. 

3. 5 Exploration manager 

The exploration manager has just administrative tasks. To perform the exploration 
for a given synthesis tool, the exploration manager has to properly invoke the 
corresponding functions. As exploration is an iterative process, the obvious idea is to 
have a loop somewhere in the manager module that rates previously generated 
results using the cost function (cost) , starts the optimization module with these 

ratings and the corresponding parameter sets (opt), and calls synth for each new 

design point to be explored. Conceptually, this means the successive execution of the 
functions cost, opt and synth in each iteration. Generally, this isnl 

straightforward, since in the case if opt needs v different (cost, parameter) tuples to 

produce w new parameter sets, the function cost must be invoked v times, and 
after that synth must be executed w times. Additionally, the values v and w are 

generally not constant, and the process of the exploration must be take care of that. 
In the following, we describe how this problem is solved in the implementation of 
EXPLORA. 
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4. EXPLORA - a Tool for Versatile Design Space Exploration 

This section deals with the implementation of EXPLORA. The main issues are the 
principal process of exploration and the structure of the exploration manager module. 

4. 1 EXPLORA program structure 

In addition to the previously described exploration manager, EXPLORA consists of 
a GUI (graphical user interface) where the user can visualize the exploration results 
and choose a single implementation for further evaluation and also a JAVA based 
remote method invocation (RMI) interface between the GUI and the exploration 
manager providing the possibility for different users to interact with the exploration 
manager at the same time. That way a single instance of an exploration manager can 
care for the administration of all accessible tool starter instances on a network. This 
central instance is responsible to apportion all incoming exploration tasks to the 
registered tool manager services. 

To be able to execute several instances of a synthesis tool simultaneously on 
different computers of a network in order to speed up the exploration process, there 
is a second RMI interface between the exploration manager and the different tool 
starter instances. Although belonging to the EXPLORA tool suite, the tool manager 
objects are started on the machines providing the tool services needed for 
exploratipn. All tool starter instances are registered at the central exploration 
manager service. 

To provide a way for flexible optimization algorithm adaptation, a language 
interface is introduced as shown in Fig. 1 providing the possibility to implement 
these algorithms in arbitrary programming languages. This way it would, for 
instance, be possible to generate the cost function implementing object in a script 
language like Python which would be reconfigurable on-the-fly by the designer 
without the need of recompiling the EXPLORA tool suite. 

4.2 EXPLORA management process 

The exploration manager is able to serve several GUis simultaneously by using one 
optimization module for each GUI and distributing the generated exploration tasks to 
several tool starters. Task queues are used to be able to serve requests coming from 
different users without resource collisions. The management cycle consists of a 
periodic thread which receives a new parameter set from the set generating 
optimization module if available and adds it to the appropriate task queue. The 
parameter set is forwarded to a tool as soon as the related tool instance is able to 
process a new request. Afterwards, the result is forwarded to the optimization 
module for generation of the next parameter set and at the same time to the GUI to 
be displayed. 

4.3 Graphical User Interface 

One of the main requirements for the exploration program is the ability to visualize 
the exploration results. Therefore, the graphical user interface of EXPLORA shown 
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in Fig. 2 mainly consists of a two dimensional sheet where for each explored point 
p, its result tuple q = synth(p) is displayed. The sheet is auto-scaling depending 

on the explored result values discovered so far. There is an additional text field (left) 
where the parameters of a currently selected result object can be displayed in textual 
form. For result tuples of dimension I 3 , the user must choose 2 out of I 
quantities to be displayed. 

5. Case Study: Design Space Exploration During High-Level 
Synthesis 

Note that the following example of high-level synthesis is just one example where 
the above concepts have been applied successfully in the context of embedded 
system synthesis. Others are hardware/software partitioning (system-level 
exploration) [1] and the automatic exploration of task mappings in the context of 
massively parallel processor arrays. 

5. 1 Problem specification 

The workflow of the exploration process using EXPLORA will be demonstrated by 
the synthesis of a single-chip embedded system design based on behavioral VHDL 
with an FPGA as target architecture. The typical design flow includes three steps: 

1. Specification and implementation of the design in VHDL. 
2. Compilation into a netlist format via an RT-level synthesis tool. 
3. Technology mapping, place and route using another tool provided by the 

FPGA vendor. 
In this case study, the Synopsys Behavioral Compiler is used for compiling the 

VHDL code into a netlist format. The FPGA data stream is created by the Xilinx 
Alliance Tools for a Xilinx 4028EXFPGA as target architecture. 

Both tool suites provide a wide range of possible options strongly influencing the 
design quality. The designer has to decide, e.g., what scheduling strategy the VHDL 
compiler should use for minimum latency with unknown effects on the chip area or 
if the mapping tool should care most for speed, area, or look for a balanced solution. 
Additionally, it must be possible to explore in which way certain design constraints 
like net delay constraints specified in so-called user constraint files influence the 
quality of the results. Supposing that a complete design run from code compilation to 
a downloadable data stream may take some minutes or more, testing all possible 
parameter sets by hand is not feasible. Instead, EXPLORA will be used to explore 
solutions in a stand-alone program run over night using all workstations available to 
it on the net and then let the designer choose the most convenient one afterwards. 

Example 5.1 
As an example, we consider a well-known differential equation benchmark from 
high-level synthesis. The behavioral VHDL specification to solve the differential 
equation y"+3xy'+3y = 0 in the interval [x,a] using step size dx and initial values 

y(O) = y,y'(O) = u using the Euler method is given as follows: 
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ENTITY dgl IS 
PORT(x_in,y_in,u_in,dx_in,a_in: IN REAL; 

activate: IN BIT; y_out: OUT REAL); 
ENDdgl; 
ARCHITECTURE behavioral OF dgl IS BEGIN 

PROCESS (activate) 
VARIABLE x, y, u, dx, a, xl, ul, yl: REAL; 

BEGIN 
x := x_in; y := y_in; u := u_in; dx := dx_in; a := a_in; 
LOOP 

xl := x+dx; 
ul := u - (3 * x * u * dx) - (3 * y * dx); 

yl := y + (u * dx); 

x :=xi; u :=ul; y:= yl; 
EXIT WHEN xl > a; 

END LOOP; 
y_out <= y; 

END PROCESS; 
END behavioral; 
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After functional test of the VHDL specification, EXPLORA can be started. It 
generates a set of design parameters and inserts them into a makefile which provides 
a set of rules for starting the appropriate tools with correct syntax and order of 
execution. Additionally, this makefile generates the constraint files needed by the 
synthesis tools. After a single synthesis run has been completed, the same makefile 
cares for result extraction out of the log files generated during synthesis using 
standard UNIX shell tools and hands these results back to EXPLORA which then 
adapts the parameter set for the next synthesis run if necessary. Multiple synthesis 
processes can be executed in parallel on different machines if available. 

5. 2 Optimization algorithm 

In this case study, the following five parameters of the synthesis process are varied 
during exploration: 

Parameter 
110 mode 
Area opt. 
Cover mode 
Logic opt. effort 
Delay-based 
cleanup passes 

Affected tool 
Synopsys BC 
Synopsys BC 
Xilinx Mapper 
Xilinx Mapper 
Xilinx Placer 

Possible values 
superstate, free_float 
yes,no 
area,speed,balance,none 
normal,high,none 
[0,5] 

Here, a simple greedy algorithm is used to sequentially generate parameter sets 
out of the possible 288 parameter combinations as follows: 

let mincos t := oo 

Generate random initial parameter set p = ( Pt , ... , p n ) 
loop 

let changed := false 
fori= l...n do 
Randomly change parameter P; 
let ij := synth(p) 
if cost( ij) < mincost then 
Keep last parameter set change 
let mincost := cost(ij) 
let changed := true 
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else 
Reject last parameter set change 

end if 
end for 
if changed := false then 

Exit loop 
end if 

end loop 

More sophisticated optnruzation algorithms like simulated annealing or 
evolutionary algorithms can easily be incorporated. 

5.3 Results 

Fig. 2 shows a screen shot of EXPLORA after 16 synthesis runs. The parameters 
important for rating the synthesis results are estimated area consumption (displayed 
on the x axis) and minimum possible FPGA clock period (displayed on the y axis). 
Additionally, the latency of the design could be extracted from the output of the 
scheduler and displayed alternatively together with any other result dimension. 
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Figure 2: Result of the exploration process displayed in EXPLORA 

In Fig. 2, two Pareto-optimal points are shown: 

No. 
1 
2 

Max. FPGA clock fre 
8.88 MHz 
7.83 MHz 

Area units 
581 
576 

The parameter set used to generate solution (1) was P= (superstate, yes, balance, 
high, 2). The remaining 14 results require a larger chip area of 592 units. 6 solutions 
are not visible in the display shown in Fig. 2 because they are covered by other 
solutions having the same result values. 

One synthesis run takes approximately 8 minutes on a Sun UltraSparc 60. So the 
sequential exploration process can be done in about two hours and leads to much 
better results than randomly choosing tool parameters. An exhaustive search of about 
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39 hours may also be feasible. If the optimization algorithm supports parallel 
evaluation of different solutions like, e.g., evolutionary algorithms, the exploration 
process can be accelerated using several workstations. 

6. Conclusions 

We have presented an approach for flexible exploration of design spaces that are 
spanned by parameter ranges of synthesis tools involved during the development of 
embedded systems. Due to space limitations, we were only able to give one example 
of a typical abstraction level, namely high-level architectural synthesis, where the 
concepts of EXPLORA apply. Other levels include the system-level where 
hardware-/software implementation decisions are taken and tasks mapped to either 
hardware of software [1] or the real-time software synthesis level where a set of 
tasks has to be scheduled under real-time constraints. The main strength of our 
approach is the flexibility in exchanging synthesis tool, cost function and 
optimization algorithm at each level. 

In the future, we would like to show that using the presented approach, also 
hierarchical design space exploration becomes possible. For example, a tree of 
differently configured EXPLORA processes may be started at different levels of 
abstraction and synchronized appropriately such that exploration results on lower 
levels of abstraction may be passed to parent processes, e.g., by the introduction of 
appropriate combining cost functions (sum, maximum, etc.). 

References 

[1] T. Blickle, J. Teich, and L. Thiele. System-level synthesis using Evolutionary 
algorithms. J. Design Automation for Embedded Systems, 3(1):23-58, Jan. 1998. 

[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated 
annealing. Science, 220(4598):671-680, 1983 

[3] D. W. Knapp. Digital System Design Using the Synopsys Behavioral Compiler. 
Prentice Hall, Englewood Cliffs, New Jersey, 1996. 

[4] J. Teich, E. Zitzler, and S. S. Bhattacharyya. 3D exploration of software 
schedules for DSP algorithms. In Proc. CODES'99, the 7th Int. Workshop on 
Hardware/Software Co-Design, pages 168-172, Rome, Italy, May 1999. 

[5] E. Zitzler, J. Teich, and S. Bhattacharyya. Evolutionary Algorithms for the 
Synthesis of Embedded Software. J. IEEE Trans. on VLSI Systems, Vol. 8, No.4, 
pp. 452-456, August 2000. 

[6] E. Zitzler, J. Teich, and S. S. Bhattacharyya. Evolutionary Algorithm Based 
Exploration of Software Schedules for Digital Signal Processors. Proc. 
GECC0'99, the Genetic and Evolutionary Computation Conference, Orlando, 
U.S.A., July 1999. 


	EXPLORA- GENERIC DESIGN SPACEEXPLORATION DURING EMBEDDEDSYSTEM SYNTHESIS
	1. Introduction
	2. Characterization of Design Space Exploration Processes
	2. 1 Structure of design space exploration processes

	3. 1 Explanations
	3.2 Tool starter module abstraction
	3. 3 Cost function abstraction
	3.4 Optimization module abstraction
	3. 5 Exploration manager
	4. EXPLORA - a Tool for Versatile Design Space Exploration
	4. 1 EXPLORA program structure
	4.2 EXPLORA management process
	4.3 Graphical User Interface

	5. Case Study: Design Space Exploration During High-LevelSynthesis
	5. 1 Problem specification
	5. 2 Optimization algorithm
	5.3 Results

	6. Conclusions
	References




