
COMPONENT TECHNOLOGY FOR
HIGH-PERFORMANCE SCIENTIFIC
SIMULATION SOFTWARE*

Tom Epperly, Scott Kohn, Gary Kumfert
Lawrence Livermore National Laboratory

Livermore, CA, USA

Abstract We are developing scientific software component technology to manage
the complexity of modern, parallel simulation software and increase the
interoperability and re-use of scientific software packages. In this paper,
we describe a language interoperability tool named Babel that enables
the creation and distribution of language-independent software libraries
using interface definition language (IDL) techniques. We have created
a scientific IDL that focuses on the unique interface description needs
of scientific software, such as complex numbers, dense multidimensional
arrays, and parallel distributed objects. Preliminary results indicate
that in addition to language interoperability, this approach provides
useful tools for the design of modern object-oriented scientific software
libraries. We also describe a web-based component repository called
Alexandria that facilitates the distribution, documentation, and re­
use of scientific components and libraries.

Keywords: component technology, language interoperability, software repository,
parallel high-performance scientific software

1. MOTIVATION
Numerical simulations playa vital role as a basic research tool for

understanding fundamental physical processes. As simulations become
increasingly sophisticated and complex, no single person-or even single
institution-can develop scientific software in isolation. Development
teams rarely possess sufficient resources and scientific expertise in all re­
quired domains to successfully create a complex application from scratch.

·Work performed under the auspices of the U.S. Department of Energy by University of
California Lawrence Livermore N ationai Laboratory under Contract W -7 405-Eng-48. Work
funded by LLNL LDRD grant 00-SI-002 and the ACTS program of the DOE Office of Science.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2001
R. F. Boisvert et al. (eds.), �e Architecture of Scienti�c Software

10.1007/978-0-387-35407-1_22

http://dx.doi.org/10.1007/978-0-387-35407-1_22

70 ARCHITECTURE OF SCIENTIFIC SOFTWARE

Instead, physicists, chemists, mathematicians, and computer scientists
concentrate on developing software in their domain of expertise. Com­
putational scientists create simulations by combining these individual
software pieces.

In collaboration with the Common Component Architecture forum [1],
we are developing software component technology for high-performance
parallel scientific computing. The goal of this effort is to improve the
software development processes of scientific codes by using proven tech­
niques and technology from industry. Component technology addresses
technological barriers to software re-use and integration, such as incom­
patibilities in programming languages, interface descriptions, and phys­
ical deployment. By removing such barriers, component approaches will
allow computational scientists to concentrate on building more sophisti­
cated numerical simulations and reduce effort wasted integrating incom­
patible software.

In this paper, we describe our recent work in two areas of component
technology: language interoperability and a component repository. As
part of our language interoperability efforts, we are developing a tool
called Babel to enable the creation and distribution of language inde­
pendent software libraries. To use Babel, library developers describe
their software interfaces in a Scientific Interface Definition Language
(SIDL). Babel uses this SIDL interface description to automatically
generate "glue code" that enables the software library to be called from
any supported language. We have also designed and implemented a
prototype web-based repository called Alexandria to encourage the
distribution and reuse of scientific computing software components and
libraries. Alexandria provides a convenient web-based delivery system
and thus lowers the barrier to adopting component technology.

This paper is organized as follows. Section 2 surveys component tech­
nology approaches for scientific computing and discusses related work.
Section 3 discusses our language interoperability approach, modifications
necessary for the scientific domain, the Babel tool, and experiences us­
ing Babel in a high-performance scientific software library. Section 4
introduces the Alexandria web-based component repository and its
implementation architecture. Finally, Section 5 summarizes the con­
tributions of this work and discusses future research directions for the
scientific component community.

Component Technology for Scientific Software 71

2. SCIENTIFIC COMPONENT
TECHNOLOGY

Component technology [25] is an extension of object-oriented software
technology that focuses on the issues of software interoperability and re­
use. Component technology provides language independence, compiler
independence, and seamless access to distributed object resources. Com­
ponent technology is more than object-oriented approaches, software
modules, scripting [3, 4], or software frameworks [7, 8, 10, 14]; however,
component approaches do make use of these other related technologies.
A software framework may be created within a component architecture
to address a particular application domain. Scripting languages may be
used as an integration language to connect existing software components.

Industry has created component technology to address issues of in­
teroperability due to different programming languages, the complexity
of applications developed using third-party software, and the incremen­
tal evolution of large legacy software. There are three common com­
ponent technology standards in the business community: COM [12],
JavaBeans [24], and CORBA [19]. COM is Microsoft's component stan­
dard that forms the basis for interoperability among all Windows-based
applications. Microsoft recently introduced a new component initiative
called .NET [18] that combines ideas from COM and Java and will likely
be the future of Microsoft technology. Sun Microsystems has developed
JavaBeans and Enterprise JavaBeans [23] based on the Java program­
ming language. CORBA, by the Object Management Group (OMG), is
a cross-platform distributed object specification that supports the inter­
action of complex objects written in different programming languages
distributed across a network of computers.

Component technologies such as CORBA, COM, and JavaBeans have
been very successful in industry; unfortunately, they are designed for the
business environment and do not address many of the issues associated
with large-scale parallel scientific computing. For example, industry ap­
proaches do not address data distribution support for massively parallel
SPMD components.

We believe that a successful component technology for scientific sim­
ulation must address four issues: language interoperability, common
component behavior, physical deployment standards, and support for
distributed parallel communication. The work presented in this paper
addresses only a small part of the overall component technology solution.
Community collaborative work such as that by the Common Component
Architecture (CCA) [1] forum and others is essential. In the following,

72 ARCHITECTURE OF SCIENTIFIC SOFTWARE

we review related component technology work in the scientific commu­
nity.

Both CORBA [19] and COM [12] address language interoperability
through the use of an Interface Definition Language (IDL). An IDL
describes the interface of a software component using a new descrip­
tive language that is independent of any particular programming lan­
guage. We follow a similar approach in our language interoperability
work, which is presented in Section 3. IDL technology has the advan­
tage that, in some sense, all languages are equal, and any language may
call any other language. The primary disadvantage of an IDL approach
is that the developer must write a separate interface description of the
software library and then must follow certain programming conventions
that map the interface description into the programming language. Au­
tomatic wrapping approaches such as SWIG [3] or SILOON [17] support
language interoperability without requiring a separate IDL description
but are typically limited to the case of a scripting language (such as
Python) calling a compiled language (such as C or C++). In contrast,
IDL approaches allow method invocations in both directions.

Beyond language interoperability, component architectures typically
require that all components support some common set of behaviors.
Common behaviors are important for the discovery of component ca­
pabilities (e.g., "What interfaces do you export?") required by GUI
development tools and problem solving environments [6, 13,20]. For ex­
ample, the CCA specification requires that all CCA components support
the notion of a port [1]. Ports describe the interfaces used by and pro­
vided by a component. Our IDL technology plays a role as a mechanism
for describing component port interfaces.

Component problem solving environments (PSEs) may also require
standards for describing the physical deployment of component soft­
ware. For example, CCAT [6] employs an XML [28] component deploy­
ment descriptor that enables the PSE to understand component ports,
port interface types, platform dependencies, and associated component
metadata. One of the goals of the Alexandria component repository
described in Section 4 is to provide a common repository for component
descriptions for use by tools such as aPSE.

Unlike industry approaches, scientific component technology must
support communicating parallel components. In most high-performance
applications, components will communicate within the same memory
address space, although the components themselves may be distributed
across processor memories in a SPMD fashion. Some applications, how­
ever, will span multiple parallel computers. For example, a large simu­
lation running on thousands of processors may be connected to a visu-

Component Technology for Scientific Software 73

alization component running on a small visualization engine with a few
tens of processors. In this case, the component architecture must sup­
port some form of parallel data redistribution. A number of researchers
have addressed this issue for certain limited classes of data types. Both
PAWS [5] and CUMULVS [16] support parallel redistribution of arrays
and other predefined data items such as particles or simple unstructured
meshes. PARDIS [15] and Cobra [22] support distributed sequences and
arrays in CORBA. We and other members of the CCA working group
are researching approaches for extending this work to more general sci­
entific objects, but that work is preliminary and beyond the scope of
this paper.

3. LANGUAGE INTEROPERABILITY
TECHNOLOGY

Computational scientists developing large simulation codes often face
difficulties due to language incompatibilities among various software li­
braries. Scientific software libraries are written in a variety of program­
ming languages, including Fortran, C, C++, or a scripting language such
as Python. Language differences often force software developers to gen­
erate mediating "glue" code by hand. In the worst case, computational
scientists may need to re-write a particular library from scratch or not
use it at all.

We have developed a tool called Babel that addresses language inter­
operability and re-use for high-performance parallel scientific software.
Its purpose is to enable the creation, description, and distribution of
language independent software libraries. In the following sections, we
describe our interoperability approach, the Babel tool architecture, and
an example of using Babel in a parallel linear algebra software library.

3.1. SCIENTIFIC IDL
Babel addresses the language interoperability problem using Interface

Definition Language (IDL) techniques [12, 19]. An IDL describes the
calling interface (but not the implementation) of a particular software
library. IDL tools use this interface description to generate "glue code"
that allows a software library implemented in one supported language to
be called from any other supported language. We have designed a Sci­
entific Interface Definition Language (SID L) that addresses the unique
needs of parallel scientific computing. SIDL supports complex numbers
and dynamic multi-dimensional arrays as well as parallel communication
directives that are required for parallel distributed components. SIDL
also provides other common features that are generally useful for soft-

74 ARCHITECTURE OF SCIENTIFIC SOFTWARE

ware engineering, such as enumerated types, symbol versioning, name
space management, and an object-oriented inheritance model similar to
Java.

As illustrated in Figure 1, SIDL bears a close resemblance to CORBA
and Java. The package keyword introduces a new namespace. A names­
pace may contain a class, interface, enumerated type, or another package.
Classes and interfaces contain methods. The methods in an interface
are abstract; that is, they are not implemented by the interface. As
in CORBA, in, out, and inout modify method arguments and denote
the direction of information transfer. SIDL also supports Javadoc-style
documentation comments, which may be used to automatically generate
browsable documentation (see the Alexandria discussion in Section 4).

The following sections provide additional details concerning some of
the more unique characteristics of the SIDL interface definition language.

3.1.1 Symbol Versioning. In SIDL, every package, enumer­
ated type, class, and interface is assigned a particular version number.
Every SIDL description begins with one or more version statements.
Each version statement contains a package name and an arbitrary ver­
sion string consisting of a sequence of integers separated by periods. All
symbols within a package share its version number. For example, the
version statement on the first line of Figure 1 states that all symbols
defined in the hypre package will be version 1.0 of that symbol. A
version statement is required for every new outermost package defined
in a SIDL description. A version statement may also be used to give
an explicit version number for resolving external symbols referenced in
a SIDL description. If a version is not specified for a particular external
symbol, then the most recent version of that symbol is used.

Symbol versioning is an important consideration for the development
of community-wide standards and specifications. Consider a standards
committee that releases version 1.0 of a particular specification. Com­
ponents will be written to and implement that version of the standard.
When the committee releases version 2.0 of the specification, some com­
ponents will immediately implement the new standard, whereas others
will take longer. Versioning removes ambiguity about which version of
the specification a particular component implements.

3.1.2 Import. Like Java, SIDL supports a type of import
statement. The import statement adds the specified package name to
the symbol resolution path. For example, a SIDL description that refer­
ences symbol Vector in package hypre could either use the fully qualified
name hypre. Vector or begin with" import hypre" and then simply use

Component Technology for Scientific Software 75

version hypre 1.0;

1**
* A SIDL type description for the hypre library.
*1

package hypre {

}

1**
* <code>Vector<lcode> represents a mathematical vector.
*1

interface Vector {
Vector clone 0 ;

}

1**

void scale(in double a);
double dot(in Vector x);
void axpy(in double a, in Vector x);
int getGlobalDimension();
int getLocalDimension() local;

* An <code>Operator<lcode> maps one vector into another vector.
*1

interface Operator {
void apply(in Vector x, out Vector y);

}

1**
* This interface represents the class of linear mappings.
*1

interface LinearOperator extends Operator {
}

1**
* <code>StructVector<lcode> is a vector for structured grids.
*1

class StructVector implements-all Vector {
array<int> getGhostCellWidth();

}

1**
* The structured matrix class implements all operator functions.
*1

class StructMatrix implements-all Operator {
II methods used to build a structured matrix omitted

}

Figure 1 A simplified SIDL interface description for portions of the hypre software
library described in Section 3.3.

76 ARCHITECTURE OF SCIENTIFIC SOFTWARE

the name Vector (assuming, of course, that another Vector did not al­
ready exist in that name scope). External symbol references are resolved
by searching an associated symbol repository, either a file repository or
a web-enabled repository such as Alexandria.

3.1.3 Inheritance Model. The SIDL inheritance model is
similar to that of Java. SIDL supports both interfaces and classes. The
methods in an interface are abstract and thus not implemented by that
interface. The methods in a class may be either abstract or implemented
by that class. SIDL supports multiple inheritance of interfaces but single
implementation inheritance of classes. An interface may extend other
interfaces. A class may implement many interfaces but extend only one
other class. This inheritance model simplifies the Babel implementa­
tion and removes the diamond implementation inheritance ambiguity
associated with C++. Like COM [12], all classes and interfaces implicitly
inherit from a common base interface that provides reference counting
and simple query interface capabilities.

Based on suggestions from our users, we have augmented the Java
inheritance syntax with an implements-all keyword, which declares
that the associated class implements all of the methods in the specified
interface. This keyword is equivalent to using the implements keyword
and repeating the definition of all interface methods in the class body.
The implements-all shorthand is cleaner and more closely reflects the
way many of our users think about designing scientific libraries. They
typically define abstract interfaces that describe the desired functionality
and then combine those interfaces together into classes and components
that implement that functionality.

3.1.4 Arrays. SIDL supports the style of dynamically-sized,
dense, multi-dimensional arrays that are common in scientific applica­
tions. Existing IDLs such as CORBA [19] support only dynamically­
sized, one-dimensional arrays (a CORBA sequence) and statically-sized,
multi-dimensional arrays. Dense arrays consist of one physical segment
of memory that can be accessed efficiently by an optimizing compiler.
Such arrays are common in the scientific community due to its Fortran
heritage and because dense arrays offer better access performance than
"array of array" implementations.

3.1.5 Parallelization Support. We have just begun to de­
velop support for parallel data redistribution in the Babel tools. There­
fore, the following discussion should be considered preliminary, although
it does indicate our basic approach. SIDL currently supports parallel

Component Technology for Scientific Software 77

communication directives that describe method behavior in a parallel
execution environment. For example, the local method modifier in
class Vector of Figure 1 indicates that the getLocalDimension method
is valid only when invoked on an object in the same memory address
space. For this method, the number of local vector elements owned by
a particular processor has no meaning for a Vector object distributed
across a different set of processors.

Unlike PARDIS [15] and Cobra [22], we do not intend to add data
distribution directives to the SIDL language. We do not believe that
static IDL data distribution directives will be sufficient to describe the
dynamic complexity and wide range of parallel objects used in scientific
computing. Instead, we plan to use run-time data descriptions of data
objects. Distributed parallel objects will be required to support one of
a set of data distribution interfaces through which the object describes
its internal data distribution state. The Babel run-time will use that
information to manage data redistribution during method invocations.
We feel this approach is more appropriate for sophisticated data decom­
positions that change during the course of a simulation.

3.2. BABEL TOOL ARCHITECTURE

The Babel tool suite consists of a number of separate pieces: a
SIDL parser, a code generator, a small run-time support library, and
the Alexandria component repository. Currently, Babel supports
Fortran 77, C, and C++; we plan to develop support for Java, Python,
Fortran 90, and MATLAB in the following year.

The Babel parser, which is available either at the command-line or
through the Alexandria web interface, reads SIDL interface specifica­
tions and generates an intermediate XML [28] representation. XML is
a useful intermediate language since it is amenable to manipulation by
tools such as a repository or a problem solving environment. XML in­
terface descriptions are stored either in a local file repository or on the
web using Alexandria. The vision is that a scientist downloading a
particular software library from the Alexandria component repository
will receive not only that library but also the required language bindings
generated automatically by the Babel tools.

The Babel code generator reads SIDL XML descriptions and auto­
matically generates glue code for the specified software library. This glue
code mediates differences among calling languages and supports efficient
inter-language calls within the same memory address space and, eventu­
ally, across memory spaces for distributed objects. The code generators
create four different types of files: stubs, skeletons, Babel internal rep-

78 ARCHITECTURE OF SCIENTIFIC SOFTWARE

resentation, and implementation prototypes. The Babel internal object
representation created by the code generators is similar to that used
by COM [12], CORBA's Portable Object Adaptor [19], and scientific
libraries such as PETSc [2]. The internal object representation is essen­
tially a table of function pointers, one for each method in an object's in­
terface, along with other information such as internal object state data,
parent classes and interfaces, and Babel data structures. Stub and
skeleton code translates between the calling conventions of a particular
language and the internal Babel representation. The code generators
also create implementation files that contain function prototypes to be
filled in by the library developers. To simplify the task of library writ­
ers, we have added automatic Makefile generation as well as a "code
splicing" capability that preserves old edits during the regeneration of
implementation files after modifications to the SIDL source.

3.3. TECHNOLOGY DEMONSTRATION IN
HYPRE

In collaboration with members of the hypre development team, we
have integrated some of the Babel language interoperability technology
into hypre [9]. The hypre library is a suite of parallel scalable linear
solvers and preconditioners implemented in C with MPI. There were
four primary goals of this collaboration. First, the Babel team wished
to demonstrate the technology and get feedback from library develop­
ers. Second, the hypre project needed automatically generated Fortran
bindings that would track changes in the library. Previously, a num­
ber of different Fortran bindings were developed by various users but
fell into obsolescence with new changes to the hypre source. Third, the
hypre team wanted to explore new design options using object-oriented
and component-based software techniques, but the team had no desire
to generate and support the necessary object-oriented infrastructure by
hand. Finally, hypre developers wanted to integrate software developed
by other groups who had written code in C++ and Fortran.

The collaboration began by identifying key parts of hypre and devel­
oping an object-oriented design in SIDL for the primary hypre objects.
For the most part, existing hypre implementations were wrapped using
glue code generated by the Babel tools. In spite of this additional in­
termediate glue code, parallel runs with both Fortran and C drivers
indicate that Babel overheads are too small to measure accurately.

The developers of hypre identified a number of advantages to using
Babel for their scientific software library in addition to the obvious ad­
vantage of language interoperability. Developers found that SIDL was a

Component Technology for Scientific Software 79

convenient specification description language for the design of scientific
libraries because it eliminated unnecessary implementation details and
forced them to focus on the object-oriented design of the library. They
felt that SIDL was relatively easy to master, although some were new
to object-oriented design and object-oriented languages. Furthermore,
hypre developers noticed that they could eliminate redundant code by
taking advantage of polymorphism. For example, the previous hypre
library contained a four different preconditioned conjugate gradient rou­
tines, each written for a particular type of preconditioner data structure.
Through the use of polymorphism enabled by Babel, they were able to
reduce the number of routines to one. Finally, the hypre developers were
able to exploit object-oriented design in C, which has no object-oriented
support, using the automatically generated Babel code.

4. THE ALEXANDRIA REPOSITORY

The Alexandria repository was designed and built to facilitate the
adoption of component technology for high-performance scientific simu­
lation software. Our goal was to provide a network service where com­
ponent developers can publish their software and interface definitions
and where application developers can find and download components
and the associated language bindings. The system was intended to have
a user interface to support human and machine clients.

Alexandria provides a hierarchically organized collection of software
packages uploaded by component developers, a fuzzy search capability,
an interface definition browser, and a web user interface to the Ba­
bel language interoperability tool. For machine clients, Alexandria
provides a repository of XML interface definitions and will hold a repos­
itory of shared libraries which implement particular interfaces to enable
dynamic graphical application builders or other development tools.

We chose to implement a web application (i.e., a web server with
dynamic content managed by a program) to achieve these goals and fea­
tures. A web application can provide a sophisticated and friendly user
interface designed for human clients and a simple, feature-rich interface
for machine clients. By using web technologies, we make the repository's
services available to the largest possible network audience; any contem­
porary web browser can access Alexandria. Machine clients can use
standard network libraries to access the repository. Other network ap­
proaches would require installation of special purpose clients or more
elaborate machine clients thereby decreasing the potential audience for
the service. The HTTP protocol provides all the transaction types nec­
essary for the repository: uploading files and other information from a

80 ARCHITECTURE OF SCIENTIFIC SOFTWARE

Client-side
Babel

Interface tier

J D 1---...-1"---____

B
C

Middle tier

Figure 2 Alexandria architecture

SOL
__

Sal
backend

user interface form and downloading content. The transactional nature
of the web makes the user interface less interactive than a native ap­
plication, but the benefits of the web interface seem to outweigh this
deficiency.

As shown in Figure 2, Alexandria uses a three-tiered architecture:
a web browser based user interface, a web server with Java servlets [11]
and JavaServer Pages [21], and a JDBC [26] connection to an SQL back­
end. The web server delegates HTTP messages for certain URLs to Java
servlets, and the servlet provides the content or an error response. A
servlet is a Java class that implements a standard interface or overrides
methods inherited from a standard base class. The servlet can use all
the features of the Java platform in generating its response. JavaServer
Pages is a convenient, dynamic way to generate a servlet which usu­
ally combines HTML with embedded Java code to provide the dynamic
content.

The Alexandria application consists of five subsystems: an access
control system, an inexact string matching package, a hierarchy man­
agement system, a content package, and an interface to Babel. The
access control system manages user accounts and provides several differ­
ent levels of access to the system: administrator, trusted user, normal
user and world. The inexact string matching package is a Java imple­
mentation of the algorithm from agrep [30].

Component Technology for Scientific Software 81

The hierarchy management system provides cataloging, uploading and
downloading features. Unlike a normal file system, the hierarchy can
hold files with the same name in a common directory as long as they
have different version numbers. The expectation is that over time a
project will issue multiple versions of individual files.

The content scanning package checks material provided by users to
see if it is "safe content." A responsible web server that receives content
from users and then presents that content back to other users must verify
that the user provided material does not contain hostile scripts. Rather
than trying to characterize and detect hostile content, Alexandria tests
user provided content against an XML DTD that contains a safe subset
of XHTML 1.0 [27]. A validating XML parser is used to determine if
user provided content is safe. If the material does not validate, all the
mark-up directives are transformed so they will be interpreted as plain
text rather than as mark-up directives.

The interface to Babel subsystem provides language bindings for a
SIDL file to users. The user's SIDL file is uploaded to the web server,
the web server runs Babel on the file, the results are packaged in a TAR
file, and then the user is given the chance to download the file. This
saves users from having to install Babel and a Java virtual machine on
their local machine.

Alexandria maintains a repository of XML type information. Users
with sufficient access can translate the SIDL file into an equivalent XML
representation and upload the XML representation to the repository.
Once it is in the repository, anyone running Babel can use the XML
information from Alexandria rather than having to explicitly download
all the needed SIDL files. In addition, the web server provides high
quality interface documentation to web browser by applying XSLT [29],
a evolving standard for translating XML into HTML or other markup
languages.

5. CONCLUSIONS
In this paper, we have described two pieces of a component technology

architecture for scientific computing. Babel is a language interoperabil­
ity tool that uses the SIDL interface description language to describe
component interfaces and to generate code that mediates differences
between programming languages. Alexandria is a web-enabled compo­
nent repository that provides a browsable software library, automated
access to SIDL type information, and web access to the Babel code
generators.

82 ARCHITECTURE OF SCIENTIFIC SOFTWARE

Obviously, much work remains in developing production-quality com­
ponent technology for the scientific computing community. Members of
the Common Component Architecture working group have made some
initial progress in this direction and have drafted a proposal that covers
common behavior standards for components [1]. A number of interest­
ing open research questions remain in extending current parallel data
redistribution approaches [5, 15, 16, 22] to arbitrary data components.

Acknowledgments

We would like to thank Andrew Cleary, Jeff Painter, and Cal rubbens for inte­
grating the Babel language interoperability technology into the hypre library and for
their many useful suggestions. We would also like to thank members of the Common

Component Architecture forum for numerous in-depth conversations about compo­
nent technology for scientific computing.

References

[1] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn,
L. Curfman-Mcinnes, S. Parker, and B. Smolinski. Toward
a common component architecture for high performance scien­
tific computing. In Proceedings the Eighth International Sym­
posium on High Performance Distributed Computing, 1999. See
http://z . ea. sandia. gov / rveea-forum.

[2] S. Balay, W. D. Gropp, L. Curfman-McInnes, and B. F. Smith.
Efficient management of parallelism in object oriented numerical
software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen,
editors, Modern Software Tools in Scientific Computing, pages 163-
202. Birkhauser Press, 1997. See http://www .mes .anl.gov/petse.

[3] D. Beazley. SWIG Users Manual. See http://www . swig. org.

[4] D. M. Beazley and P. S. Lomdahl. Building flexible large-scale sci­
entific computing applications with scripting languages. In The 8th
SIAM Conference on Parallel Processing for Scientific Computing,
1997.

[5] P. Beckman, P. Fasel, W. Humphrey, and S. Mniszewski. Efficient
coupling of parallel applications using PAWS. In Proceedings of the
High Performance Distributed Computing Conference, 1998. See
http://www.ael.lanl.gov/paws.

[6] R. Bramley, K. Chiu, C. Diwan, D. Gannon, M. Govindaraju,
N. Mukhi, B. Temko, and M. Yechuri. A component based services
architecture for building distributed applications. In Proceedings

Component Technology for Scientific Software 83

of the High Performance Distributed Computing Conference, 2000.
See http://www . extreme. indiana. edu/ ccat.

[7] D. Brown, W. Henshaw, and D. Quinlan. Overture: An object­
oriented framework for solving partial differential equations on over­
lapping grids. In Proceedings of the First Workshop on Object Ori­
ented Methods for Inter-operable Scientific and Engineering Com­
puting, 1998. See http://www .Hnl. gov /CASC/Overture.

[8] K. G. Budge and J. S. Peery. Experiences developing ALEGRA:
A C++ coupled physics framework. In Proceedings of the First
Workshop on Object Oriented Methods for Inter-operable Scientific
and Engineering Computing, 1998.

[9] E. Chow, A. J. Cleary, and R. D. Falgout. Design of the hypre pre­
conditioner library. In Proceedings of the First Workshop on Ob­
ject Oriented Methods for Inter-operable Scientific and Engineering
Computing, 1998.

[10] J. Cummings, J. Crotinger, S. Haney, W. Humphrey, S. Karmesin,
J. Reynders, S. Smith, and T. Williams. Rapid application develop­
ment and enhanced code interoperability using the POOMA frame­
work. In Proceedings of the First Workshop on Object Oriented
Methods for Inter-operable Scientific and Engineering Computing,
1998. See http://www . acl.lanl.gov/pooma.

[11] J.D. Davidson and D. Coward. Java Servlet Specification, v2.2. See
http://java.sun.com/products/servlet/.

[12] G. Eddon and H. Eddon. Inside Distributed COM. Microsoft Press,
Redmond, WA, 1998.

[13] D. Gannon, R. Bramley, T. Stuckey, J. Villacis, J. Balasubrama­
nian, E. Akman, F. Breg, S. Diwan, and M. Govindaraju. Com­
ponent architectures for distributed scientific problem solving. In
IEEE Computational Science and Engineering, 1998.

[14] R. Hornung and S. Kohn. The use of object-oriented design
patterns in the SAMRAI structured AMR framework. In Pro­
ceedings of the First Workshop on Object Oriented Methods for
Inter-operable Scientific and Engineering Computing, 1998. See
http://www.llnl.gov/CASC/SAMRAI.

[15] K. Keahey and D. Gannon. PARDIS: A parallel approach to
CORBA. In Proceedings of the Sixth IEEE Symposium on High
Performance Distributed Computation, 1997.

[16] J. Kohl and P. Papadopoulos. Efficient and flexible fault tolerance
and migration of scientific simulations using CUMULVS. In Second

84 ARCHITECTURE OF SCIENTIFIC SOFTWARE

SIGMETRICS Symposium on Parallel and Distributed Tools, 1998.
Seehttp://www.epm.ornl.gov/cs/cumulvs.html.

[17] Los Alamos National Laboratory. SIL 0 ON: Scripting Inter-
face Languages for Object- Oriented Numerics. Available at
http://www.acl.lanl.gov/siloon.

[18] Microsoft Corporation. Microsoft .NET Platform. A vailable at
http://www.microsoft.com/net.

[19] Object Management Group. The Common Object Re-
quest Broker: Architecture and Specification. A vailable at
http://www.omg.org/corba.

[20] S. G. Parker, D. M. Beazley, and C. R. Johnson. The SCIRun
Computational Steering Software System. E. Arge, A.M. Bruaset,
and H.P. Langtangen (Eds.), Modern Software Tools in Scientific
Computing, Birkhauser Press, 1997.

[21] E. Pelegd-Llopart and L. Cable. JavaServer Pages Specification:
Version 1.1. See http://java. sun. com/products/jsp/.

[22] T. Priol, C. Rene, and G. Alleon. Programming SCI clusters using
parallel CORBA objects. In SCI-based Cluster Computing. Springer
Verlag, 1999.

[23] Sun Microsystems. Enterprise JavaBeans Server-Side Component
Architecture. See http://java. sun. com/products/ejb.

[24] Sun Microsystems. JavaBeans Component Architecture Documen­
tation. See http://java. sun. com/products/javabeans/docs.

[25] C. Szyperski. Component Software: Beyond Object-Oriented Pro­
gramming. Addison-Wesley, 1998.

[26] S. White and M. Hapner. JDBC 2.1 API. Sun Microsystems, Inc.,
1999. Available at http://java. sun.com/products/jdbc/.

[27] World Wide Web Consortium. The Extensible HypreText Markup
Language. See http://www . w3c .org/TR/xhtml.

[28] World Wide Web Consortium. Extensible Markup Language (XML).
See http://www . w3c .org/XML.

[29] World Wide Web Consortium. XSL Transformations (XSLT) Ver­
sion 1.0,1999. Available at http://www.w3.org/TR/xslt/.

[30] S. Wu and U. Manber. Fast text searching allowing errors. Com­
munications of the ACM, 35(10):83-91, 1992.

Component Technology for Scientific Software 85

DISCUSSION

Speaker: Scott Kohn

Thierry Priol : I do not understand why the data distribution specifi­
cation is not exposed in the IOL associated with a parallel component.
Scott Kohn : One of the goals of our work is to support the redistri­
bution of very complicated scientific data objects, such as unstructured
meshes, hierarchical adaptive mesh refinement structures, various matrix
representations, and so on. We are not planning to build data distribu­
tion specifications into the IOL because, at least at this time, we do
not understand how to represent these diverse data decompositions in a
static IOL description. To our knowledge, the only work in this area has
focused on array structures. Another issue is that the IOL description
is static, whereas data decompositions often change during the course of
a simulation. We plan to concentrate on run-time descriptions of data
objects. For example, a distributed parallel object will be required to
support one of a set of data distribution interfaces through which the ob­
ject describes its data distribution state. We feel this approach is more
appropriate for sophisticated data decompositions that change during
the course of a computation.
Michael Thune : With regard to your conclusion, one could ask: can
we do without component technology? What would be the alternative?
Scott Kohn : I think some form of component technology will be
necessary, whether it is scripting or some other style of integration ap­
proach. I am simply not sure that our particular design choices are the
correct ones. For example, how important is language interoperability?
Is it sufficient to support one scripting language and one compiled lan­
guage? If language interoperability is important, should we use an IOL
approach? Should the IOL express parallelization and redistribution for
complex data objects? I believe that there is still a lot of exploration
and research to be done by this community.
Richard Fateman : Regarding alternatives to component technology:
Monolithic systems such as Lisp machines (built at various times by Xe­
rox, Texas Instruments, Symbolics, and LMI) provided access to all as­
pects of a computing environment: operating system, networking, com­
pilers, memory management, object representation, visualization. There
are major advantages to such an approach as shown by the impressive
productivity of these systems when used by skilled programmers. In­
adequate languages force system builders to deal with inter-language
communication and many associated complexities-typically poorly as
when error indicators are unchecked at interfaces, memory management
is inconsistent, and data must be repeatedly rearranged and reformatted.

86 ARCHITECTURE OF SCIENTIFIC SOFTWARE

Scott Kohn : I agree that choice of language and the programming
environment can significantly impact productivity. I question whether
the scientific software community would adopt a single environment or
a single language. In some sense, limiting ourselves to only one lan­
guage would be a bad choice in that it would limit exploration. We
use many different languages because each language offers different ad­
vantages. Fortran, in spite of all of its limitations, is a very good lan­
guage for array manipulation. C++ offers object-oriented capabilities
at a reasonable cost in terms of performance. Java is a better object­
oriented language, but performance is not as good as C++. Python
provides scripting capabilities. I don't see any single language as an
overall solution. Component technology is a very pragmatic solution to
the integration of diverse languages and environments.
John R. Rice: Suppose everyone agreed to use a single language
forever more. How would this eliminate the need for a component tech­
nology? I think it would still be essential.
Scott Kohn : I agree, although I think the need for component tech­
nology would be diminished. For example, performance considerations
aside, Java and Python are very good programming languages that share
many characteristics of a good component system: physical deployment
and packaging standards, dynamic loading, good support for abstrac­
tion, interface metadata, and common object behaviors. In the scientific
domain, I think components also offer advantages for distributed com­
puting and parallel data communication between components. To be
pragmatic, however, technology is always changing, and the community
would not want to choose a single language forever more. We need an
integration approach such as components that will adapt to the changing
technology landscape.

	COMPO
NENT TECHNOLOGY FOR HIGH-PERFORMANCE SCIENTIFIC SIMULATION SOFTWARE*
	1. MOTIVATION
	2. SCIENTIFIC COMPONENTTECHNOLOGY
	3. LANGUAGE INTEROPERABILITYTECHNOLOGY
	3.1. SCIENTIFIC IDL
	3.2. BABEL TOOL ARCHITECTURE
	3.3. TECHNOLOGY DEMONSTRATION INHYPRE

	4. THE ALEXANDRIA REPOSITORY
	5. CONCLUSIONS
	Acknowledgments
	References
	DISCUSSION

