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Abstract We are developing scientific software component technology to manage 
the complexity of modern, parallel simulation software and increase the 
interoperability and re-use of scientific software packages. In this paper, 
we describe a language interoperability tool named Babel that enables 
the creation and distribution of language-independent software libraries 
using interface definition language (IDL) techniques. We have created 
a scientific IDL that focuses on the unique interface description needs 
of scientific software, such as complex numbers, dense multidimensional 
arrays, and parallel distributed objects. Preliminary results indicate 
that in addition to language interoperability, this approach provides 
useful tools for the design of modern object-oriented scientific software 
libraries. We also describe a web-based component repository called 
Alexandria that facilitates the distribution, documentation, and re­
use of scientific components and libraries. 
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1. MOTIVATION 
Numerical simulations playa vital role as a basic research tool for 

understanding fundamental physical processes. As simulations become 
increasingly sophisticated and complex, no single person-or even single 
institution-can develop scientific software in isolation. Development 
teams rarely possess sufficient resources and scientific expertise in all re­
quired domains to successfully create a complex application from scratch. 
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Instead, physicists, chemists, mathematicians, and computer scientists 
concentrate on developing software in their domain of expertise. Com­
putational scientists create simulations by combining these individual 
software pieces. 

In collaboration with the Common Component Architecture forum [1], 
we are developing software component technology for high-performance 
parallel scientific computing. The goal of this effort is to improve the 
software development processes of scientific codes by using proven tech­
niques and technology from industry. Component technology addresses 
technological barriers to software re-use and integration, such as incom­
patibilities in programming languages, interface descriptions, and phys­
ical deployment. By removing such barriers, component approaches will 
allow computational scientists to concentrate on building more sophisti­
cated numerical simulations and reduce effort wasted integrating incom­
patible software. 

In this paper, we describe our recent work in two areas of component 
technology: language interoperability and a component repository. As 
part of our language interoperability efforts, we are developing a tool 
called Babel to enable the creation and distribution of language inde­
pendent software libraries. To use Babel, library developers describe 
their software interfaces in a Scientific Interface Definition Language 
(SIDL). Babel uses this SIDL interface description to automatically 
generate "glue code" that enables the software library to be called from 
any supported language. We have also designed and implemented a 
prototype web-based repository called Alexandria to encourage the 
distribution and reuse of scientific computing software components and 
libraries. Alexandria provides a convenient web-based delivery system 
and thus lowers the barrier to adopting component technology. 

This paper is organized as follows. Section 2 surveys component tech­
nology approaches for scientific computing and discusses related work. 
Section 3 discusses our language interoperability approach, modifications 
necessary for the scientific domain, the Babel tool, and experiences us­
ing Babel in a high-performance scientific software library. Section 4 
introduces the Alexandria web-based component repository and its 
implementation architecture. Finally, Section 5 summarizes the con­
tributions of this work and discusses future research directions for the 
scientific component community. 
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2. SCIENTIFIC COMPONENT 
TECHNOLOGY 

Component technology [25] is an extension of object-oriented software 
technology that focuses on the issues of software interoperability and re­
use. Component technology provides language independence, compiler 
independence, and seamless access to distributed object resources. Com­
ponent technology is more than object-oriented approaches, software 
modules, scripting [3, 4], or software frameworks [7, 8, 10, 14]; however, 
component approaches do make use of these other related technologies. 
A software framework may be created within a component architecture 
to address a particular application domain. Scripting languages may be 
used as an integration language to connect existing software components. 

Industry has created component technology to address issues of in­
teroperability due to different programming languages, the complexity 
of applications developed using third-party software, and the incremen­
tal evolution of large legacy software. There are three common com­
ponent technology standards in the business community: COM [12], 
JavaBeans [24], and CORBA [19]. COM is Microsoft's component stan­
dard that forms the basis for interoperability among all Windows-based 
applications. Microsoft recently introduced a new component initiative 
called .NET [18] that combines ideas from COM and Java and will likely 
be the future of Microsoft technology. Sun Microsystems has developed 
JavaBeans and Enterprise JavaBeans [23] based on the Java program­
ming language. CORBA, by the Object Management Group (OMG), is 
a cross-platform distributed object specification that supports the inter­
action of complex objects written in different programming languages 
distributed across a network of computers. 

Component technologies such as CORBA, COM, and JavaBeans have 
been very successful in industry; unfortunately, they are designed for the 
business environment and do not address many of the issues associated 
with large-scale parallel scientific computing. For example, industry ap­
proaches do not address data distribution support for massively parallel 
SPMD components. 

We believe that a successful component technology for scientific sim­
ulation must address four issues: language interoperability, common 
component behavior, physical deployment standards, and support for 
distributed parallel communication. The work presented in this paper 
addresses only a small part of the overall component technology solution. 
Community collaborative work such as that by the Common Component 
Architecture (CCA) [1] forum and others is essential. In the following, 
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we review related component technology work in the scientific commu­
nity. 

Both CORBA [19] and COM [12] address language interoperability 
through the use of an Interface Definition Language (IDL). An IDL 
describes the interface of a software component using a new descrip­
tive language that is independent of any particular programming lan­
guage. We follow a similar approach in our language interoperability 
work, which is presented in Section 3. IDL technology has the advan­
tage that, in some sense, all languages are equal, and any language may 
call any other language. The primary disadvantage of an IDL approach 
is that the developer must write a separate interface description of the 
software library and then must follow certain programming conventions 
that map the interface description into the programming language. Au­
tomatic wrapping approaches such as SWIG [3] or SILOON [17] support 
language interoperability without requiring a separate IDL description 
but are typically limited to the case of a scripting language (such as 
Python) calling a compiled language (such as C or C++). In contrast, 
IDL approaches allow method invocations in both directions. 

Beyond language interoperability, component architectures typically 
require that all components support some common set of behaviors. 
Common behaviors are important for the discovery of component ca­
pabilities (e.g., "What interfaces do you export?") required by GUI 
development tools and problem solving environments [6, 13,20]. For ex­
ample, the CCA specification requires that all CCA components support 
the notion of a port [1]. Ports describe the interfaces used by and pro­
vided by a component. Our IDL technology plays a role as a mechanism 
for describing component port interfaces. 

Component problem solving environments (PSEs) may also require 
standards for describing the physical deployment of component soft­
ware. For example, CCAT [6] employs an XML [28] component deploy­
ment descriptor that enables the PSE to understand component ports, 
port interface types, platform dependencies, and associated component 
metadata. One of the goals of the Alexandria component repository 
described in Section 4 is to provide a common repository for component 
descriptions for use by tools such as aPSE. 

Unlike industry approaches, scientific component technology must 
support communicating parallel components. In most high-performance 
applications, components will communicate within the same memory 
address space, although the components themselves may be distributed 
across processor memories in a SPMD fashion. Some applications, how­
ever, will span multiple parallel computers. For example, a large simu­
lation running on thousands of processors may be connected to a visu-
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alization component running on a small visualization engine with a few 
tens of processors. In this case, the component architecture must sup­
port some form of parallel data redistribution. A number of researchers 
have addressed this issue for certain limited classes of data types. Both 
PAWS [5] and CUMULVS [16] support parallel redistribution of arrays 
and other predefined data items such as particles or simple unstructured 
meshes. PARDIS [15] and Cobra [22] support distributed sequences and 
arrays in CORBA. We and other members of the CCA working group 
are researching approaches for extending this work to more general sci­
entific objects, but that work is preliminary and beyond the scope of 
this paper. 

3. LANGUAGE INTEROPERABILITY 
TECHNOLOGY 

Computational scientists developing large simulation codes often face 
difficulties due to language incompatibilities among various software li­
braries. Scientific software libraries are written in a variety of program­
ming languages, including Fortran, C, C++, or a scripting language such 
as Python. Language differences often force software developers to gen­
erate mediating "glue" code by hand. In the worst case, computational 
scientists may need to re-write a particular library from scratch or not 
use it at all. 

We have developed a tool called Babel that addresses language inter­
operability and re-use for high-performance parallel scientific software. 
Its purpose is to enable the creation, description, and distribution of 
language independent software libraries. In the following sections, we 
describe our interoperability approach, the Babel tool architecture, and 
an example of using Babel in a parallel linear algebra software library. 

3.1. SCIENTIFIC IDL 
Babel addresses the language interoperability problem using Interface 

Definition Language (IDL) techniques [12, 19]. An IDL describes the 
calling interface (but not the implementation) of a particular software 
library. IDL tools use this interface description to generate "glue code" 
that allows a software library implemented in one supported language to 
be called from any other supported language. We have designed a Sci­
entific Interface Definition Language (SID L) that addresses the unique 
needs of parallel scientific computing. SIDL supports complex numbers 
and dynamic multi-dimensional arrays as well as parallel communication 
directives that are required for parallel distributed components. SIDL 
also provides other common features that are generally useful for soft-
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ware engineering, such as enumerated types, symbol versioning, name 
space management, and an object-oriented inheritance model similar to 
Java. 

As illustrated in Figure 1, SIDL bears a close resemblance to CORBA 
and Java. The package keyword introduces a new namespace. A names­
pace may contain a class, interface, enumerated type, or another package. 
Classes and interfaces contain methods. The methods in an interface 
are abstract; that is, they are not implemented by the interface. As 
in CORBA, in, out, and inout modify method arguments and denote 
the direction of information transfer. SIDL also supports Javadoc-style 
documentation comments, which may be used to automatically generate 
browsable documentation (see the Alexandria discussion in Section 4). 

The following sections provide additional details concerning some of 
the more unique characteristics of the SIDL interface definition language. 

3.1.1 Symbol Versioning. In SIDL, every package, enumer­
ated type, class, and interface is assigned a particular version number. 
Every SIDL description begins with one or more version statements. 
Each version statement contains a package name and an arbitrary ver­
sion string consisting of a sequence of integers separated by periods. All 
symbols within a package share its version number. For example, the 
version statement on the first line of Figure 1 states that all symbols 
defined in the hypre package will be version 1.0 of that symbol. A 
version statement is required for every new outermost package defined 
in a SIDL description. A version statement may also be used to give 
an explicit version number for resolving external symbols referenced in 
a SIDL description. If a version is not specified for a particular external 
symbol, then the most recent version of that symbol is used. 

Symbol versioning is an important consideration for the development 
of community-wide standards and specifications. Consider a standards 
committee that releases version 1.0 of a particular specification. Com­
ponents will be written to and implement that version of the standard. 
When the committee releases version 2.0 of the specification, some com­
ponents will immediately implement the new standard, whereas others 
will take longer. Versioning removes ambiguity about which version of 
the specification a particular component implements. 

3.1.2 Import. Like Java, SIDL supports a type of import 
statement. The import statement adds the specified package name to 
the symbol resolution path. For example, a SIDL description that refer­
ences symbol Vector in package hypre could either use the fully qualified 
name hypre. Vector or begin with" import hypre" and then simply use 
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version hypre 1.0; 

1** 
* A SIDL type description for the <em>hypre</em> library. 
*1 

package hypre { 

} 

1** 
* <code>Vector<lcode> represents a mathematical vector. 
*1 

interface Vector { 
Vector clone 0 ; 

} 

1** 

void scale(in double a); 
double dot(in Vector x); 
void axpy(in double a, in Vector x); 
int getGlobalDimension(); 
int getLocalDimension() local; 

* An <code>Operator<lcode> maps one vector into another vector. 
*1 

interface Operator { 
void apply(in Vector x, out Vector y); 

} 

1** 
* This interface represents the class of linear mappings. 
*1 

interface LinearOperator extends Operator { 
} 

1** 
* <code>StructVector<lcode> is a vector for structured grids. 
*1 

class StructVector implements-all Vector { 
array<int> getGhostCellWidth(); 

} 

1** 
* The structured matrix class implements all operator functions. 
*1 

class StructMatrix implements-all Operator { 
II methods used to build a structured matrix omitted 

} 

Figure 1 A simplified SIDL interface description for portions of the hypre software 
library described in Section 3.3. 
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the name Vector (assuming, of course, that another Vector did not al­
ready exist in that name scope). External symbol references are resolved 
by searching an associated symbol repository, either a file repository or 
a web-enabled repository such as Alexandria. 

3.1.3 Inheritance Model. The SIDL inheritance model is 
similar to that of Java. SIDL supports both interfaces and classes. The 
methods in an interface are abstract and thus not implemented by that 
interface. The methods in a class may be either abstract or implemented 
by that class. SIDL supports multiple inheritance of interfaces but single 
implementation inheritance of classes. An interface may extend other 
interfaces. A class may implement many interfaces but extend only one 
other class. This inheritance model simplifies the Babel implementa­
tion and removes the diamond implementation inheritance ambiguity 
associated with C++. Like COM [12], all classes and interfaces implicitly 
inherit from a common base interface that provides reference counting 
and simple query interface capabilities. 

Based on suggestions from our users, we have augmented the Java 
inheritance syntax with an implements-all keyword, which declares 
that the associated class implements all of the methods in the specified 
interface. This keyword is equivalent to using the implements keyword 
and repeating the definition of all interface methods in the class body. 
The implements-all shorthand is cleaner and more closely reflects the 
way many of our users think about designing scientific libraries. They 
typically define abstract interfaces that describe the desired functionality 
and then combine those interfaces together into classes and components 
that implement that functionality. 

3.1.4 Arrays. SIDL supports the style of dynamically-sized, 
dense, multi-dimensional arrays that are common in scientific applica­
tions. Existing IDLs such as CORBA [19] support only dynamically­
sized, one-dimensional arrays (a CORBA sequence) and statically-sized, 
multi-dimensional arrays. Dense arrays consist of one physical segment 
of memory that can be accessed efficiently by an optimizing compiler. 
Such arrays are common in the scientific community due to its Fortran 
heritage and because dense arrays offer better access performance than 
"array of array" implementations. 

3.1.5 Parallelization Support. We have just begun to de­
velop support for parallel data redistribution in the Babel tools. There­
fore, the following discussion should be considered preliminary, although 
it does indicate our basic approach. SIDL currently supports parallel 
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communication directives that describe method behavior in a parallel 
execution environment. For example, the local method modifier in 
class Vector of Figure 1 indicates that the getLocalDimension method 
is valid only when invoked on an object in the same memory address 
space. For this method, the number of local vector elements owned by 
a particular processor has no meaning for a Vector object distributed 
across a different set of processors. 

Unlike PARDIS [15] and Cobra [22], we do not intend to add data 
distribution directives to the SIDL language. We do not believe that 
static IDL data distribution directives will be sufficient to describe the 
dynamic complexity and wide range of parallel objects used in scientific 
computing. Instead, we plan to use run-time data descriptions of data 
objects. Distributed parallel objects will be required to support one of 
a set of data distribution interfaces through which the object describes 
its internal data distribution state. The Babel run-time will use that 
information to manage data redistribution during method invocations. 
We feel this approach is more appropriate for sophisticated data decom­
positions that change during the course of a simulation. 

3.2. BABEL TOOL ARCHITECTURE 

The Babel tool suite consists of a number of separate pieces: a 
SIDL parser, a code generator, a small run-time support library, and 
the Alexandria component repository. Currently, Babel supports 
Fortran 77, C, and C++; we plan to develop support for Java, Python, 
Fortran 90, and MATLAB in the following year. 

The Babel parser, which is available either at the command-line or 
through the Alexandria web interface, reads SIDL interface specifica­
tions and generates an intermediate XML [28] representation. XML is 
a useful intermediate language since it is amenable to manipulation by 
tools such as a repository or a problem solving environment. XML in­
terface descriptions are stored either in a local file repository or on the 
web using Alexandria. The vision is that a scientist downloading a 
particular software library from the Alexandria component repository 
will receive not only that library but also the required language bindings 
generated automatically by the Babel tools. 

The Babel code generator reads SIDL XML descriptions and auto­
matically generates glue code for the specified software library. This glue 
code mediates differences among calling languages and supports efficient 
inter-language calls within the same memory address space and, eventu­
ally, across memory spaces for distributed objects. The code generators 
create four different types of files: stubs, skeletons, Babel internal rep-
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resentation, and implementation prototypes. The Babel internal object 
representation created by the code generators is similar to that used 
by COM [12], CORBA's Portable Object Adaptor [19], and scientific 
libraries such as PETSc [2]. The internal object representation is essen­
tially a table of function pointers, one for each method in an object's in­
terface, along with other information such as internal object state data, 
parent classes and interfaces, and Babel data structures. Stub and 
skeleton code translates between the calling conventions of a particular 
language and the internal Babel representation. The code generators 
also create implementation files that contain function prototypes to be 
filled in by the library developers. To simplify the task of library writ­
ers, we have added automatic Makefile generation as well as a "code 
splicing" capability that preserves old edits during the regeneration of 
implementation files after modifications to the SIDL source. 

3.3. TECHNOLOGY DEMONSTRATION IN 
HYPRE 

In collaboration with members of the hypre development team, we 
have integrated some of the Babel language interoperability technology 
into hypre [9]. The hypre library is a suite of parallel scalable linear 
solvers and preconditioners implemented in C with MPI. There were 
four primary goals of this collaboration. First, the Babel team wished 
to demonstrate the technology and get feedback from library develop­
ers. Second, the hypre project needed automatically generated Fortran 
bindings that would track changes in the library. Previously, a num­
ber of different Fortran bindings were developed by various users but 
fell into obsolescence with new changes to the hypre source. Third, the 
hypre team wanted to explore new design options using object-oriented 
and component-based software techniques, but the team had no desire 
to generate and support the necessary object-oriented infrastructure by 
hand. Finally, hypre developers wanted to integrate software developed 
by other groups who had written code in C++ and Fortran. 

The collaboration began by identifying key parts of hypre and devel­
oping an object-oriented design in SIDL for the primary hypre objects. 
For the most part, existing hypre implementations were wrapped using 
glue code generated by the Babel tools. In spite of this additional in­
termediate glue code, parallel runs with both Fortran and C drivers 
indicate that Babel overheads are too small to measure accurately. 

The developers of hypre identified a number of advantages to using 
Babel for their scientific software library in addition to the obvious ad­
vantage of language interoperability. Developers found that SIDL was a 
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convenient specification description language for the design of scientific 
libraries because it eliminated unnecessary implementation details and 
forced them to focus on the object-oriented design of the library. They 
felt that SIDL was relatively easy to master, although some were new 
to object-oriented design and object-oriented languages. Furthermore, 
hypre developers noticed that they could eliminate redundant code by 
taking advantage of polymorphism. For example, the previous hypre 
library contained a four different preconditioned conjugate gradient rou­
tines, each written for a particular type of preconditioner data structure. 
Through the use of polymorphism enabled by Babel, they were able to 
reduce the number of routines to one. Finally, the hypre developers were 
able to exploit object-oriented design in C, which has no object-oriented 
support, using the automatically generated Babel code. 

4. THE ALEXANDRIA REPOSITORY 

The Alexandria repository was designed and built to facilitate the 
adoption of component technology for high-performance scientific simu­
lation software. Our goal was to provide a network service where com­
ponent developers can publish their software and interface definitions 
and where application developers can find and download components 
and the associated language bindings. The system was intended to have 
a user interface to support human and machine clients. 

Alexandria provides a hierarchically organized collection of software 
packages uploaded by component developers, a fuzzy search capability, 
an interface definition browser, and a web user interface to the Ba­
bel language interoperability tool. For machine clients, Alexandria 
provides a repository of XML interface definitions and will hold a repos­
itory of shared libraries which implement particular interfaces to enable 
dynamic graphical application builders or other development tools. 

We chose to implement a web application (i.e., a web server with 
dynamic content managed by a program) to achieve these goals and fea­
tures. A web application can provide a sophisticated and friendly user 
interface designed for human clients and a simple, feature-rich interface 
for machine clients. By using web technologies, we make the repository's 
services available to the largest possible network audience; any contem­
porary web browser can access Alexandria. Machine clients can use 
standard network libraries to access the repository. Other network ap­
proaches would require installation of special purpose clients or more 
elaborate machine clients thereby decreasing the potential audience for 
the service. The HTTP protocol provides all the transaction types nec­
essary for the repository: uploading files and other information from a 
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user interface form and downloading content. The transactional nature 
of the web makes the user interface less interactive than a native ap­
plication, but the benefits of the web interface seem to outweigh this 
deficiency. 

As shown in Figure 2, Alexandria uses a three-tiered architecture: 
a web browser based user interface, a web server with Java servlets [11] 
and JavaServer Pages [21], and a JDBC [26] connection to an SQL back­
end. The web server delegates HTTP messages for certain URLs to Java 
servlets, and the servlet provides the content or an error response. A 
servlet is a Java class that implements a standard interface or overrides 
methods inherited from a standard base class. The servlet can use all 
the features of the Java platform in generating its response. JavaServer 
Pages is a convenient, dynamic way to generate a servlet which usu­
ally combines HTML with embedded Java code to provide the dynamic 
content. 

The Alexandria application consists of five subsystems: an access 
control system, an inexact string matching package, a hierarchy man­
agement system, a content package, and an interface to Babel. The 
access control system manages user accounts and provides several differ­
ent levels of access to the system: administrator, trusted user, normal 
user and world. The inexact string matching package is a Java imple­
mentation of the algorithm from agrep [30]. 
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The hierarchy management system provides cataloging, uploading and 
downloading features. Unlike a normal file system, the hierarchy can 
hold files with the same name in a common directory as long as they 
have different version numbers. The expectation is that over time a 
project will issue multiple versions of individual files. 

The content scanning package checks material provided by users to 
see if it is "safe content." A responsible web server that receives content 
from users and then presents that content back to other users must verify 
that the user provided material does not contain hostile scripts. Rather 
than trying to characterize and detect hostile content, Alexandria tests 
user provided content against an XML DTD that contains a safe subset 
of XHTML 1.0 [27]. A validating XML parser is used to determine if 
user provided content is safe. If the material does not validate, all the 
mark-up directives are transformed so they will be interpreted as plain 
text rather than as mark-up directives. 

The interface to Babel subsystem provides language bindings for a 
SIDL file to users. The user's SIDL file is uploaded to the web server, 
the web server runs Babel on the file, the results are packaged in a TAR 
file, and then the user is given the chance to download the file. This 
saves users from having to install Babel and a Java virtual machine on 
their local machine. 

Alexandria maintains a repository of XML type information. Users 
with sufficient access can translate the SIDL file into an equivalent XML 
representation and upload the XML representation to the repository. 
Once it is in the repository, anyone running Babel can use the XML 
information from Alexandria rather than having to explicitly download 
all the needed SIDL files. In addition, the web server provides high 
quality interface documentation to web browser by applying XSLT [29], 
a evolving standard for translating XML into HTML or other markup 
languages. 

5. CONCLUSIONS 
In this paper, we have described two pieces of a component technology 

architecture for scientific computing. Babel is a language interoperabil­
ity tool that uses the SIDL interface description language to describe 
component interfaces and to generate code that mediates differences 
between programming languages. Alexandria is a web-enabled compo­
nent repository that provides a browsable software library, automated 
access to SIDL type information, and web access to the Babel code 
generators. 
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Obviously, much work remains in developing production-quality com­
ponent technology for the scientific computing community. Members of 
the Common Component Architecture working group have made some 
initial progress in this direction and have drafted a proposal that covers 
common behavior standards for components [1]. A number of interest­
ing open research questions remain in extending current parallel data 
redistribution approaches [5, 15, 16, 22] to arbitrary data components. 
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DISCUSSION 

Speaker: Scott Kohn 

Thierry Priol : I do not understand why the data distribution specifi­
cation is not exposed in the IOL associated with a parallel component. 
Scott Kohn : One of the goals of our work is to support the redistri­
bution of very complicated scientific data objects, such as unstructured 
meshes, hierarchical adaptive mesh refinement structures, various matrix 
representations, and so on. We are not planning to build data distribu­
tion specifications into the IOL because, at least at this time, we do 
not understand how to represent these diverse data decompositions in a 
static IOL description. To our knowledge, the only work in this area has 
focused on array structures. Another issue is that the IOL description 
is static, whereas data decompositions often change during the course of 
a simulation. We plan to concentrate on run-time descriptions of data 
objects. For example, a distributed parallel object will be required to 
support one of a set of data distribution interfaces through which the ob­
ject describes its data distribution state. We feel this approach is more 
appropriate for sophisticated data decompositions that change during 
the course of a computation. 
Michael Thune : With regard to your conclusion, one could ask: can 
we do without component technology? What would be the alternative? 
Scott Kohn : I think some form of component technology will be 
necessary, whether it is scripting or some other style of integration ap­
proach. I am simply not sure that our particular design choices are the 
correct ones. For example, how important is language interoperability? 
Is it sufficient to support one scripting language and one compiled lan­
guage? If language interoperability is important, should we use an IOL 
approach? Should the IOL express parallelization and redistribution for 
complex data objects? I believe that there is still a lot of exploration 
and research to be done by this community. 
Richard Fateman : Regarding alternatives to component technology: 
Monolithic systems such as Lisp machines (built at various times by Xe­
rox, Texas Instruments, Symbolics, and LMI) provided access to all as­
pects of a computing environment: operating system, networking, com­
pilers, memory management, object representation, visualization. There 
are major advantages to such an approach as shown by the impressive 
productivity of these systems when used by skilled programmers. In­
adequate languages force system builders to deal with inter-language 
communication and many associated complexities-typically poorly as 
when error indicators are unchecked at interfaces, memory management 
is inconsistent, and data must be repeatedly rearranged and reformatted. 
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Scott Kohn : I agree that choice of language and the programming 
environment can significantly impact productivity. I question whether 
the scientific software community would adopt a single environment or 
a single language. In some sense, limiting ourselves to only one lan­
guage would be a bad choice in that it would limit exploration. We 
use many different languages because each language offers different ad­
vantages. Fortran, in spite of all of its limitations, is a very good lan­
guage for array manipulation. C++ offers object-oriented capabilities 
at a reasonable cost in terms of performance. Java is a better object­
oriented language, but performance is not as good as C++. Python 
provides scripting capabilities. I don't see any single language as an 
overall solution. Component technology is a very pragmatic solution to 
the integration of diverse languages and environments. 
John R. Rice: Suppose everyone agreed to use a single language 
forever more. How would this eliminate the need for a component tech­
nology? I think it would still be essential. 
Scott Kohn : I agree, although I think the need for component tech­
nology would be diminished. For example, performance considerations 
aside, Java and Python are very good programming languages that share 
many characteristics of a good component system: physical deployment 
and packaging standards, dynamic loading, good support for abstrac­
tion, interface metadata, and common object behaviors. In the scientific 
domain, I think components also offer advantages for distributed com­
puting and parallel data communication between components. To be 
pragmatic, however, technology is always changing, and the community 
would not want to choose a single language forever more. We need an 
integration approach such as components that will adapt to the changing 
technology landscape. 
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