
SOFTWARE COMPONENTS FOR
APPLICATION DEVELOPMENT

Arnaud Desitter, Antoine Le Hyaric, Geoff Morgan,
Gareth Shaw, Anne Trefethen
The Numerical Algorithms Group, Ltd

Oxford, UK

Abstract In this paper we discuss the needs of the application developer in terms
of the components and tools required within an application development
environment. We use, as examples, three European projects in which
NAG has been a collaborator.

Keywords: Numerics, software libraries, visualisation, application development en­
vironments

1. APPLICATION DEVELOPMENT
REQUIREMENTS

In this paper we present some of the components that are provided by
NAG and an infrastructure that can harness those components to pro­
vide a rich application development environment. Application develop­
ers have a general set of needs which include computational components,
visualisation, access to data storage resources and often the ability to
interact with the simulation or application during the course of a run.
In the following sections we will discuss computational components de­
veloped by NAG and a system to provide integrated visualisation in
an application, together with examples of such application development
building toolkits.

The examples are taken from three European funded projects that
have explored these issues in different application areas.

2. COMPUTATIONAL COMPONENTS
NAG has been involved in high-performance libraries for many years.

Beginning in the early seventies on vectorization of routines and the

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2001
R. F. Boisvert et al. (eds.), �e Architecture of Scienti�c Software

10.1007/978-0-387-35407-1_22

http://dx.doi.org/10.1007/978-0-387-35407-1_22

286 ARCHITECTURE OF SCIENTIFIC SOFTWARE

definition of the BLAS [1], [2] [3], continuing through the eighties and
nineties in projects such as LAPACK [4]and ScaLAPACK [5] and the
development of their own parallel and SMP libraries.

In developing libraries we need to consider always the needs of the ap­
plication developers. These vary according to the computational prob­
lems that they are developing, the software environment in which they
work, and the computing architectures that are available to them. When
NAG first became involved in the development of high-performance nu­
mericallibraries the languages were FORTRAN, the computing archi­
tecture was a mainframe, workstation or for a few lucky individuals,
the Cray Supercomputers. Today, the scene has changed dramatically
and continues to evolve at a rapid rate. In order to provide the kind of
computational support that application developers have come to expect
we need to create plug-and-play libraries that can adapt to the appro­
priate hardware/software environment. This implies algorithms which
can take advantage of the architecture but remain portable, in languages
that can interoperate with a number of possible application languages
and programming paradigms.

Over time NAG has developed many of the components to allow this
flexibility of programming environment. These include libraries in FOR­
TRAN [6],[7]and C [8] together with high-performance libraries for both
shared memory [9] and distributed memory machines [10]. The algo­
rithms included in these libraries cover most areas of numerical analysis
and statistics.

The libraries have become the backbone of many industrial and
research acpplications. They have been developed with traditional
programing styles in mind. In the examples below, however, we show
how these libraries of routines can be thought of as collections of com­
putational components that can be integrated into modern interactive
environments.

2.1. PROVIDING AN INFRASTRUCTURE
So far we have talked only about the computational components pro­

vided by the NAG libraries. It is just as important to be able to harness
these components across distributed resources. In providing application
development environments it is important that not only do they meet
the ease-of-use requirements, the ability to run on distributed platforms,
but also provide visualisation and in some cases the ability to interact
with the application.

Software Components for Application Development 287

NAG develops the IRIS Explorer system [11] which although histor­
ically a data flow visualisation system, more and more is proving in­
valuable as the infrastructure for computational problems. The IRIS
Explorer environment provides the user with a number of attractive
features, including, the ease-of-use visual programming environment -
modules of the application are connected by simple pipes, the capabil­
ity to interact with the application, the module builder which acts as
a gateway to Fortran/C/C++ applications. The latest version of IRIS
Explorer also comes with a built in collaborative environment in which
application developers can cooperate on the same application and of
course two- and three-dimensional visualisation is an integrated part of
the environment. An application built in IRIS Explorer is simply a set of
modules connected - a map (see Figure 1 and 2). An application devel­
oper can easily create applications running on distributed machines by
simply attaching modules that reside on those machines. The framework
is such that the developer can create maps to represent the application
and then define the user interface for that application. The end-user
may see only the application interface which has been defined for their
needs, incorporating output of a variety of forms including graphics and
visualisation and slides or dials to alter parameters during the compu­
tation. They do not need to know anything about the IRIS Explorer
environment and modules in order to run the application.

IRIS Explorer provides two user interface mechanisms: the graphical
user interface (GUI) and a command interface. The command interface
provides a method to run IRIS Explorer using text-based commands.
Commands may be issued directly from the keyboard, or can be supplied
in a script that IRIS Explorer runs, using the IRIS Explorer scripting
language called Skm (pronounced scheme). The scripting language is
useful for three reasons:

• In the case where a standard sequence of operations on a map may
be desired such as in testing, this can be in skm.

• skm can also be useful in the case that a user wants to run an IRIS
Explorer application in batch ..

• IRIS Explorer can be remotely from another system, such as a
personal computer.

There are many advantages to using the IRIS Explorer as an appli­
cation framework. First, the visual programming environment enables
non-programmers to develop their applications in a user-friendly way.
Secondly, the capabilities for defining new interfaces means that specific
applications can be tailored to meet the needs of non-specialist end-users.

288 ARCHITECTURE OF SCIENTIFIC SOFTWARE

Thirdly, powerful visualisation facilities become integrated with the ap­
plication and the user has the ability to interact with the application
during the execution.

U sing IRIS Explorer in this application development mode has much
in common with the more specialised system SciRUN [12] and other
similar problem solving environments such as GasTURBLAB [13]. The
SciRUN environment has many of the same features but is aimed es­
sentially at the large-scale computations and as such as the essential
modules for those problems integrated. In the GasTURBLAB PSE,
IRIS Explorer provides the interface to a complex problem solving envi­
ronment.

IRIS Explorer has provided this type of infrastructure in three
systems developed within European funded projects in which NAG is a
partner. One of the results from the collaboration in these projects is
that the development of IRIS Explorer itself is in pertinent directions
to the application areas and the needs of an application development
environment. In the next sections we will review the issues raised in
each of these projects and the resulting developments.

3. IRIS EXPLORER AS DEVELOPMENT
ENVIRONMENT

On this section we review the three projects and the ways in which
the computational components and IRIS Explorer have been utilised.

3.1. THE STABLE PROJECT
The aim of the STABLE project was to design, build and demonstrate

a modern Statistical Application Building Environment.
The STABLE system was an integration of IRIS Explorer, and an

existing widely used statistical software system, Genstat [14]. Part of
the project was to build and test the system within three different ap­
plication areas. A team worked within each of these application areas
to provide the specifications and build the particular applications from
the prototype system. The three application areas were:

• Design of Experiments and Statistical Process Control for the pro­
cess for the manufacture of aerosol cans.

• Analysis of field experiments for agricultural crops.

• Forecasts of the electricity demand on the Balearic Islands.

Software Components for Application Development 289

The end-user problems are an important aspect of the project as they
will not only inform the design of computational modules, providing
a test bed during the development phase, but will also demonstrate
the effectiveness of the platform in tackling 'real world' problems. The
resulting STABLE environment allows experimentation and prototyping
while at the same time provides a framework for the development of
complex applications.

In the follow sections we will describe the Stable system and the re­
engineering and integration that was required.

The statistical components in STABLE are based mainly on the Gen­
stat statistical system with additional functionality taken from the NAG
libraries. Genstat covers all the standard statistical techniques such as
analysis of variance, regression and generalised linear models, curve fit­
ting, multivariate and cluster analysis, estimation of variance compo­
nents, analysis of unbalanced mixed models, tabulation and time series.
It also offers many advanced techniques, including generalised additive
models and the analysis of repeated measurements.

Genstat is a package created in the 1970s and like many packages of
that era, it was written in FORTRAN with a central pool of data and a
dependence on COMMON for communication of that data.

Genstat is based on command-interpreters that execute commands
issued by the user. Each interpreter is implemented as a hierarchy of
functions that interface with the kernel to obtain or define data. In
order to create STABLE modules from the Genstat algorithms it was
necessary to restructure each interpreter so that the algorithmic code
became a closed system, whose input was a data array, control param­
eters, and workspace, and whose output was another data object. This
implies that the architecture with a central pool of data and COMMON
communications had to be re-engineered so that it operated on passed
arguments rather than using pointers into the main data array. The re­
sults were a set of statistical algorithmic Dynamic Link Libraries (DLL)
which could then be incorporated into the system as modules.

The integration of the two separate elements, Genstat DLLs and IRIS
Explorer, required the definition of a data structure, which provided the
interface to the statistical modules and carried all information required
from the input of information to the graphical or other interpretation of
the data. The data structure, a DataTablet, allowed a flexible infrastruc­
ture and an open system. Once an application developer is familiar with
the DataTablet it is easy to integrate an existing program or routines
into the system. As data is passed through the application all infor­
mation required ensuring the correct action on the data is immediately
available.

290 ARCHITECTURE OF SCIENTIFIC SOFTWARE

Figure 1 A Stable Example

Figure 1 shows a simple STABLE example. The module ReadAscii
inputs data from a file. In this case the user wants to perform a Time
Series analysis of the data using the TSACF module. The module
TypeColumn is used to set the type of data to a univariate time series.
The analysis is performed, the control panel of TSACF allows the users
to vary the number of lags and coefficients to be used, and the results
directed to GraphView. Since GraphView knows from the datatype
that this is Time Series data then it knows the type of visualisations
suitable and provides the figures in the background. The tools to rotate
and zoom in and out of the plot are an integrated part of IRIS Explorer.

3.2. THE DECISION PROJECT
The Decision project was an HPCN-funded project in Integrated Op­

timisation Strategies for Increased Engineering Design Complexity. The
goal of the project was to a tool for decision makers in new product

Software Components for Application Development 291

design optimisation. Just as in the STABLE project, the development
of the Decision platform, DEEP (Decision Explorer Engineering Plat­
form) was driven by industrial applications provided by Nokka Tume a
Finnish manufacturer of forestry machinery, MESSET a Finnish manu­
facturer Electromechanical films, and VTT an independent Finnish re­
search centre. Messet and VTT supplied test problems concerned with
structural design of electromechanical film (EMF) flat loudspeakers and
with their optimal placement in a room. Also within the project was the
development of new optimisation techniques for some of the applications
involved.

There were three major stages in the DECISION project:

1 Specification and design

2 Development of optimizers, including: traditional deterministic al­
gorithms, gradient-based algorithms, non-smooth algorithms, mul­
ticriteria and stochastic algorithms.

3 Development of the optimisation platform within the industrial
problem areas, followed through by the development of commercial
products.

Thanks to the tools within IRIS Explorer which allow the creation of
new data types and modules it is relatively straightforward to make any
of the simulation software into a module of IRIS Explorer and connect
to any of the optimisers within the DEEP framework.

The DEEP platform has at its core one module - the Controller mod­
ule. This acts as a front-end to any of the optimisation algorithms and
is provided for the non-specialist end-user to run a previously defined
optimisation process. The optimisation modules themselves have been
designed such that the more sophisticated user can access them directly,
bypassing the Controller module.

The optimisation algorithms incorporated in the system have a variety
of requirements in terms of input data and consequent results. In order
to create a plug-and-play environment for the optimisers it was necessary
to define a minimum set of inputs and outputs for the IRIS Explorer
module environment. Interface software to meet this specification was
then created for existing optimisers.

There is often a need with optimisation functions for information re­
garding the objective function or constraints to be provided by user­
defined functions. In programming languages such as FORTRAN, C or
C++ such a function may be provided as an input parameter to the
optimisation routine or alternatively the optimisation routine may halt
execution and return to the caller when it requires such information.

292 ARCHITECTURE OF SCIENTIFIC SOFTWARE

EiaIPA
.·!iiiiillaf".......,'
: .. !iiiiiI Nnbin

:·· Eia P8Ncarr
:- IiiI P_. T 01.01

iiiiI SU£md

'·· galOl11..o1
:, !iiiiil l oMdW.>
:-Eiia 001..,.,

i±. Ll M<os

.' L:J p...."m

t=J A."""
LJ S'a.leAHOVA

. '" L:J S, ... AlHo:lUe. I
: -L:J 5'''* 00£ ..

I±-Ll
ff:"L:J S f roIUII;. - -

If L:J S'''*Rt...

Figure 2 A Decision Map

The latter method, usually referred to as reverse communication, pro­
vides more flexibility to the user whilst the former, usually referred to
as call-back, is perhaps more intuitive and efficient. Within the DEEP
platform it was important to retain the efficiencies of the call-back sys­
tem but in order to interface with integration systems, such as IRIS
Explorer, to provide the extra functionality of reverse communication.
Hence a library was created to help programmers write a function in the
call-back model but easily create a reverse-communication interface to
it.

As with any application development environment it was also neces­
sary to ensure the system was able to integrate with other systems or
environments. In particular in this case one of the solvers that was to be
used in an application was written in Matlab. Rather than rewrite the
solver in another programming language, a module, ToMatlab was de­
veloped which would accept any solver written in Matlab as an objective
or constraint function.

Software Components for Application Development 293

W"!6!!+'§,'m'. ,19' xl

e!4u r " [J

; ...
4 I, I .100 I . 100

-,

-0 -r .0

eG4I.cc f\epIn fle
SIlEOSIDNI.£>oIor./DoiaI! '

, "' 1iiI
:
.t:J

*
.:

2

I . '100

0

!.I,d). <;<>v.
Ide

OpiblSflII

,
o I' . 100

-- ' 0

L=

Figure 3 The Control panel and Graphics of the Decision Map

Figure 2 and 3 illustrate a typical map and the user interface to a
particular problem. Once the users chooses the optimiser that should
be used, the map is automatically configured for that choice.

3.3. THE JULIUS PROJECT
The focus of the Julius project [ref] was the creation of an integrated

environment for multidisciplinary engineering simulation, with applica­
tions in the aerospace, automotive and manufacturing sectors. Again
there were industrial partners with large applications and a variety of
algorithmic and other needs. The software pieces involved in the in­
tegrated environment included CAD input and repair, a range of 3D
mesh generation capabilities, facilities for integrating numerical simula­
tion packages, data extraction and visualization, data base integration,
parallel tools and resource scheduling. The simluations and computa­
tions were taking place on a variety of compute platforms from PCs to

294 ARCHITECTURE OF SCIENTIFIC SOFTWARE

high-performance parallel systems. See figure 4 for an illustration of the
Julius framework.

Local maohine

VPB rronlmd (IRI8 E2plorer)

Mem-Com

Pro-p!o ••• si",
WOrl<!tahOll

ORB

Figure 4 The Julius framework

Post-p,occssing
worlulation

Super-compult' front· end
CORBAlHPCNBridge

__ Sol" .. rrOllt· .. d
MPl procossllfoup 0

In Figure 4 the various JULIUS components are wrapped as CORBA
objects. The front-end of any parallel component and the database
(MEM-COM) are also wrapped as CORBA objects. IRIS Explorer runs
on the local machine and provides the visual programming front-end,
maintaining the workflow or the metaprogramming sequence. For each
JULIUS component there is a corresponding IRIS Explorer module on
the local machine. When a module is placed in the map editor its user
function binds to the relevant CORBA object. Data objects may also
be wrapped as CORBA objects and their object references may be com­
municated through the IRIS Explorer input and output ports.

The architecture allows a parallel application to employ MPI exclu­
sively within its computationally intensive code. Its CORBA-wrapped
front end allows it to be integrated with the other JULIUS tools.

Software Components for Application Development 295

The MEM-COM front end is a CORBA object providing methods to
store and retrieve CORBA data objects from within the database. These
methods may be invoked directly by other CORBA-wrapped tools within
the system.

The advantage of this system is that an application developer can
sit at a Linux PC and build and run large-scale applications efficiently
on a mixture of computing resources. The workflow sequences can
be assembled, modified, stored and retrieved using IRIS Explorer
visual programming. Using widgets in the IRIS Explorer modules it is
possible to implement computational steering of each component. At
any stage in the simulation results can be returned to the PC where
the visualisation capabilities of IRIS Explorer come into their own.
The data extraction components can be used to significantly reduce
the amount of data to be passed to the visualization modules, thereby
increasing the efficiency.

4. CONCLUSIONS
IRIS Explorer is proving to be an very effective environment for ap­

plication development. The European projects discussed above have
provided a good deal of feedback from which we have been able to im­
prove IRIS Explorer with application development in mind. It has been
clear from these studies that the visual programming interface and the
ability to design the module interfaces to meet the needs ofthe end-user
are extremely beneficial - raising the level of the usability of the envi­
ronment from a sophisticated programmer to a less programming aware
audience.

Some of the improvements to be made available in future releases
of IRIS Explorer include the ability to create a single module out of a
group of modules - this was very mcuh a rquirement from the Stable
project where the applications developed where highly complex and re­
quired 0(200) modules. This enhancement to the system will improve
the efficiency of the application and also the time to load the map into
memory as the application begins.

The DEEP environment of the DECISION project identified another
area where IRIS Explorer could be improved - in the area of loops in
maps. In the optimization algorithm maps, such as in figure 2, execution
of the loops within the map need to be very efficient. Once this issue had
been identified in the project, this feature in IRIS Explorer was refined,
hence again making a more efficient system for applications with this
requirement.

296 ARCHITECTURE OF SCIENTIFIC SOFTWARE

Both the Stable and Decision projects have led to software compo­
nents that can be commercially exploited but beyond that they have led
to tools and experience that can be applied in building such environ­
ments in a broader context.

Clearly the Julius project was very ambitious, involving the integra­
tion of software components from a wide range of diverse sources. It is
not surprising that the JULIUS consortium found the task of defining
an architecture suitable for the needs of all industrial partners and po­
tential end-users particularly challenging. The result of this was that
prototype versions of the software were significantly delayed. In its role
as exploitation channel for the project NAG found it increasingly diffi­
cult to maintain a viable exploitation plan for the software deliverables,
and eventually chose to withdraw from the project. Despite this we con­
sider the experience gained in integrating IRIS Explorer with CORBA,
and with visualization of very large data-sets, valuable. The project also
showed that the IRIS Explorer visual programming model has much to
offer problem solving environments in this area.

The task of integrating many varied software components while main­
taining efficiency and attempting to satisfy the sometimes diverse re­
quirements of end-users is clearly very challenging. NAG is continuing
developments in this area to consider a broader provision of algorithms
and tools within the IRIS Explorer framework, to provide an integrated,
open environment for a wide range of application areas.

Acknowledgments
The authors would like to thank colleagues at NAG who have supported and

contributed to the work presented in this paper. The Decision project (EP 25058),
Julius project (EP 25050) and the Stable project (EP 22832) were supported by the
European Commission. The authors also acknowledge the contributions made by
other members of the project consortia.

References

[1] C L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic Lin­
ear Algebra Subprograms for FORTRAN usage.ACM Trans. Math.
Software, 5:308-323, 1979.

[2] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson.
An extended set of FORTRAN Basic Linear Algebra Subprograms.
ACM Trans. Math. Software, 14:1-32, 399, 1988.

[3] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set
of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math.
Software, 16:1-28, 1990.

Software Components for Application Development 297

[4] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenny, S Ostrouchov,
and D. Sorenson, Lapack Users' Guide, Release 3.0. SIAM, Philadel­
phia, 1999.

[5] S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I.
Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, D.
Walker, R. Whaley, ScaLAPACK Users' Guide, SIAM, Philadel­
phia, 1997

[6] The NAG Fortran Library Manual, Mark 19, Numerical Algorithms
Group Ltd, Oxford, October 1999

[7] The NAG F90 Library Manual, Release 3, Numerical Algorithms
Group Ltd, Oxford, February 1998

[8] The NAG C Library Manual, Release 5, Numerical Algorithms
Group Ltd, Oxford, December 1998

[9] The SMP Library User Manual, Release 2, Numerical Algorithms
Group Ltd, Oxford, April 2000

[10] The NAG Parallel Library Manual, Release 3, Numerical Algo­
rithms Group Ltd, Oxford, April 2000

[11] IRIS Explorer 4.0 User's Guide, Numerical Algorithms Group Ltd.,
Oxford, 1999

[12] S.G Parker, D. M. Weinstein, and C.R. Johnson, The SCIRun com­
putational steering software system. Modern Software Tools in Sci­
entific Computing, edited by E. Arge, A. M. Bruaset and H. P.
Langtangen. Birkhauser Press, 1997.

[13] S. Fleeter, E. Houstis, J. Rice, C. Zhou, A. Catlin, GasTurbnLab: A
Problem Solving Environment for Simulating Gas Turbines, Proc.
16th IMACS World Congress, Aug 2000, No 104-5.

[14] Payne, R.W., Lane, P.W., Digby, P.G.N., Harding, S.A., Leech,
P.K., Morgan, G.W., Todd, A.D., Thompson. R., Tunnicliffe Wil­
son, G., Welham, S.J. and White, R.P. {1993}. Genstat 5 Release 3
Reference Summary. Oxford: Numerical Algorithms Group.

298 ARCHITECTURE OF SCIENTIFIC SOFTWARE

DISCUSSION

Speaker: Anne Trefethen

Morven Gentleman : For the re-engineering of Genstat to produce
STABLE, how much did you have to rely on prgram understanding tools
and techniques, and how much were you able to exploit understanding
and advice from the current maintenance staff or original developers
(such as John NeIder) from Rothamsted.
Anne Trefethen : The re-engineering work of Genstat was largely com­
pleted by the Genstat developers at Rothamsted who were collaborators
in the STABLE project. Genstat is developed by a team that evolves in
the same way as the program itself. Some of the original developers are
still working on Genstat, while others have handed their responsibilities
on to the next generation. So, for example, when John NeIder retired
in 1985, he passed on the leadership of the Genstat project to Roger
Payne (who worked on the STABLE project). Nevertheless, the current
team try to keep close links with their predecessors. John NeIder, in
fact, remains a very keen Genstat user, has been very interested and
impressed by the new framework that STABLE is providing. [The au­
thors would like to thank Roger Payne for his input to the details of the
answer provided here.]
Richard Fateman : Has Axiom been considered as a software compo­
nent in these or other projects? What's happening with Axiom?
Anne Trefethen : Axiom was not considered in the projects discussed
here but has been involved in other such projects. In particular Ax­
iom was part of the FRISCO project (Framework for Integrated Sym­
bolic/Numeric Computation) a project funded by the European Com­
mission under the Esprit Reactive LTR Scheme (project No. 21.024).
NAG is in the process of creating what will be the final release of the
Axiom product which will be released with support for a limited period.
Morven Gentleman: You said that the basic module in the software
architecture that IRIS Explorer can express is single input/single out­
put. In the standard studies of software architecture such as Garlan and
Shaw, this architectural style is very limited unless what is passed in
the dataflow is complete databases, in which case the dataflow becomes
meaningless. Have you found this to be a problem?
Anne Trefethen : In my presentation I mispoke about the single in­
put/single output. Although there appears to be a single pipe of in­
formation entering a module, that pipe may represent several inputs or
outputs. In the Stable project, however, we did find the need to create a
new datatype for the system to provide sufficient information about the
statistical nature of the inputs and outputs. In a way this formed the

Software Components for Application Development 299

interface "glue" between the IRIS Explorer system and the underlying
Genstat algorithms.
Robert van de Geijn : The use of a graphical programming language
creates the opportunity to arrange icons to make the "picture" (that one
would use to explain an algoritm) become the implementation. Here I
refer to more than going back to flow-charts.
Anne Trefethen : I agree this opportunity is a strength of a visual
programming language, particularly within an educational context. Our
collaborators within the STABLE project also found the two dimensional
representation of their algorithm, as opposed to a one dimensional piece
of code, allowed new insights into their application/algorithm.

	SOFTWA
RE COMPONENTS FOR APPLICATION DEVELOPMENT
	1. APPLICATION DEVELOPMENTREQUIREMENTS
	2. COMPUTATIONAL COMPONENTS
	2.1. PROVIDING AN INFRASTRUCTURE

	3. IRIS EXPLORER AS DEVELOPMENTENVIRONMENT
	3.1. THE STABLE PROJECT
	3.2. THE DECISION PROJECT
	3.3. THE JULIUS PROJECT

	4. CONCLUSIONS
	Acknowledgments
	References
	DISCUSSION

