
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2001
L. M. Camarinha-Matos et al. (eds.), E-Business and Virtual Enterprises

10.1007/978-0-387-35399-9_52

http://dx.doi.org/10.1007/978-0-387-35399-9_52

212 E-Business and Virtual Enterprises

For instance, the server may decide to only accept the goals that it can fulfill
immediately, from the products already on stock. A more eager server may decide to
manufacture the missing products from the existing stocks, rejecting the goal if the
product is not manufacturable on the shopfloor or there are not enough sub-products.
A step further is to also manufacture those missing sub-products, as much as the
stock allows, before the product itself. With each decision the server is able to fulfill
more of its clients' requests but also requires them to wait longer. Instead, we may
decide that the goal includes the deadline -- the maximum time from placing the
order to its fmal delivery. In this case the server rejects the goal if it lacks the
resources to implement it or the implementation exceeds the deadline. In all those
cases, the client always requests a certain production goal and the server responds
with a yes/no answer. Given a positive answer production can start immediately, as
the client has no more decisions to make; communication takes place in two phases.

A different approach is to let the server reply with the maximum time to
complete the goal (it at all). In this case the client has still to decide. Perhaps it has
inquired with two different servers and is going to decide towards the one that can
fulfill the order in the shortest time. However done, the server has still to wait for the
client's fmal decision, if it replied with a positive answer (timing). This decision
may be just a fmal yes/no. On the other, based on the responses received from two
or more servers, the client may not be able to decide in favor of any of them in
particular. Instead, it may decide that the goal be divided between them, to let them
work concurrently on its parts. In that case the positive reply from the client would
carry the quantity the client wants to allocate to the server, typically smaller than the
original quantity. This way we would complete the negotiation in three phases
(client inquires, server responds, client confirms).

One problem with the protocol above is the timing to deliver the reduced goal,
which the client may be unable to calculate based on the original goal and its timing.
One solution is having the server reply with a quantity-to-time function instead of
just time for a given quantity. Another solution is to continue the negotiation: the
server inquires with the new goal (reduced quantity), server responds, client
confrrms etc. This solution is also more appropriate when the server negotiates with
several clients, applying some criteria to accept or reject the goals offered to it.
Normally, it cannot accept all offered goals because of the deadlines and limited
resources. For instance, it may decide to reject the goals with the quantities below a
certain minimum. So we enter the fourth negotiation phase, etc.

Those are some of the design choices one can make to decide on the cooperation
protocol. The paper presents a formal model where such decisions can be captured,
discussed and analyzed. The model is written in a high-level formal specification
language (The RAISE Method Group, 1992). The rest of this paper is as follows.
Section 2 introduces the notation and provides the basic concepts for modeling
production. Section 3 describes, through modeling and discussion, several protocols
for cooperation between the members of a virtual manufacturing organization. Each
protocol is motivated, discussed, and linked with the next, more complex protocol.
Section 4 presents some conclusions.

Protocol-Based Cooperation in a Virtual Organization 213

2. MODELING PRODUCTION

Suppose the abstract type Product represents all kinds of products. Two functions
are defmed on this type: size returns a number which encodes the storage
requirements of a product and bill returns a sub-product relation, all immediate sub­
products with their quantities (to obtain a single item of the product). Both functions
are values of the corresponding functional types, the return type of size is Nat
(natural numbers) and of bill is Product ___!!!___, Nat (maps from Product to Nat).

value type
Product size: Product Nat,

bill: (Product___!!!___, Nat)

We require that size never returns a zero, bill never returns a map with a zero value
and no product is a sub-product of itself (according to bill). The latter involves an
auxiliary function issub to determine if one product is an immediate or non­
immediate sub-product of another. Below, dom applied to a map returns the set of
all its arguments, x is a Cartesian product and Boo/ is the type of Boolean values.

axiom
(V p,q: Product •

size(p) > 0 " -,issub(p,p) "
q e dom bill(p) => bill(p)(q)>O)

value
issub: Product x Product Bool
issub(q,p) = q e dom bill(p) v
(3 r:Product • issub(q,r)" issub(r,p))

We carry out production within a production cell, subject to the constraints on: the
maximum number of products in the warehouse (weighted by their "size"), how
many products are in the warehouse (stocks), which products can be manufactured
from their sub-products and how many items during a shift (shopfloor). Formally,
we defme an abstract type Cell and three corresponding functions on this type:
space, stock and shop, such that the warehouse occupancy is not greater than its
capacity, each manufacturable product is non-atomic and the quantity is at least one.

type
Cell

value
space: Cell Nat,
stock: Cell x Nat,

shop: Cell (Product Nat)

axiom
(V c:Cell•

occupancy(c) ::s; space(c) "
(V p:Product • p e dom shop(c) =>

shop(c)(p)*0 " bill(p)*[])
)

Production changes the stocks within a cell: function store increments the stock of a
product, deliver decrements the stock and manufacture increments the stock of a
product and decrements the stocks for all its sub-products. They have the same type:

value
store, deliver, manufacture: Product x Nat x Cell __:::._.Cell

214 £-Business and Virtual Enterprises

The type Operation includes all operations together with their arguments. Two
functions are defmed on this type: enough determines if a given cell has enough
resources to execute an operation (the corresponding pre-condition holds) and exec
executes the operation on the cell and returns a modified cell.

type
Operation== store(Product, Nat) I

deliver(Product, Nat) I manufacture(Product,Nat)

value
enough: Operation x Cell Bool
enough(op,c) =

if op=deliver(p,n)
then stock(c,p) n else ... end,

exec: Operation x Cell -==-. Cell
exec(op,c) =

if op=store(p,n)
then store(p,n,c) else ... end
pre enough(op,c)

The actual production is carried out by a sequence of such operations. We introduce
the type Process and the functions enough and exec, to check if a cell has enough
resources for a process and to execute a process, respectively. hd returns the first
element of a non-empty list and tl returns the list with the first element removed.

type
• Process = Operation

value
enough: Process x Cell Bool
enough(p,c) = p = < > v

exec: Process x Cell -==-. Cell
exec(p,c) =
ifp= <>then c

enough(hd p,c) 1\ enough(tl p,exec(hd p,c)),

else exec(tl p,exec(hd p,c))
end pre enough(p,c)

A process describes the low-level implementation of a certain production goal.
Suppose the goal describes a product and its quantity (type Goal) which should be
present in the cell after the process fmished its execution (function sat). If the cell
has not enough resources for the process to execute then the result of sat is
underspecified. Function issat decides if a goal is implementable for a cell - there
exists a process which can be executed on the resources present in the cell and
which satisfies the goal. It is a precondition to the function gen, defmed implicitly,
which returns such a process for a given cell and a goal.

type
Goal= Product x Nat

value
sat: Process x Cell x Goal -==-. Bool
sat(p,c,(q,n)) =

stock(exec(p,c),q) n
pre enough(p,c),

issat: Cell x Goal Bool
issat(c,g) =
(3 p:Process • enough(p,c) 1\ sat(p,c,g)),

gen: Cell x Goal -==-. Process
gen(c,g) as p

post enough(p,c) 1\ sat(p,c,g)
pre issat(c,g)

Protocol-Based Cooperation in a Virtual Organization 215

3. PROTOCOLS FOR DISTRIBUTED PRODUCTION

Suppose a distributed production system consists of several cells that carry out their
own production activities but also interact with each other. Interaction occurs by one
cell (a client) requesting another (a server) to implement a certain production goal.
In this section we describe several protocols for communication between clients and
servers, negotiating the implementation of a given production goal. The main
difference is how many phases it takes for the two parties to reach an agreement.
Protocols use a network for communication between the cells.

3.1 Communication Network

Let the type Msg describe all messages that can be communicated between the cells.
A network is a map from cells to sequences of messages (type Net), where a
sequence contains all messages sent to but not yet received by the cell, first-in-first­
out. There are two functions defmed on the network: snd sends a message to a given
cell, provided the cell exists in the network, rev removes the first message for a
given cell, provided the cell exists and its message queue is non-empty.

type
Msg,

Net= Cell Msg •

value
snd: Msg x Cell x Net ----=--. Net
snd(m,c,n) as n' post n'(c) = n(c) 1\ <m> A ...

pre c E dom n,
rev: Cell x Net ----=--. Net
rcv(c,n) as n' post n'(c) = tl n(c) A ...

pre c E dom n A n(c) * < >

The following sections describe how clients and servers communicate via this
network. The protocols involve an increasing number of phases to complete the
negotiation, starting from the simplest one-phase protocol.

3.2 One-Phase Protocol

Suppose the client requests the server to implement a given production goal, by
sending the goal over the network. Then it carries out with its own business without
waiting or expecting any acknowledgment. The server, on the other hand, either
implements the request by constructing and executing the corresponding process
(which satisfies the goal) or decides to reject the request and does nothing.

type
Msg =Goal

value
request: Msg x Cell x Net ----=--. Net
request(m,c,n) = snd(m,c,n)

pre c E dom n,

reply: Cell x Net ----=--. Cell x Net
reply(c,n) =

let g = hd n(c)
in if accept(c,g)

then (exec(gen(c,g),c),rev(c,n))
else (c,rcv(c,n)) end

end pre c E dom n A n(c) * < >

216

Decision about acceptance/rejection
is done by the function accept, given
a goal and a cell. The server may
decide to only accept the request if:
(1) able to fulfill it directly from the
stock or (2) the missing quantity can
be manufactured from the stock or
(3) the product and its sub-products
can be obtained from the stock. The
last is the weakest, we only require
the corresponding process to exist.

E-Business and Virtual Enterprises

value
accept: Cell x Goal Bool
accept(c,(p,n)) =
I. stock(c,p) n
2. p e dom shop(c) 1\

('if q:Product •
q e dom bill(p) ::::>
stock(c,q) bill(p)(q)*(n-stock(c,p))
)

3. issat(c,(p,n))

There is only one communication in the protocol above, from the client to the
server to request implementation of a goal. Afterwards, the client has no idea if the
server decided to accept or reject the request (lacking the resources). To allow
clients to follow-up on unsuccessful requests we introduce a two-phase protocol.

3.3 Two-Phase Protocol

In a two-phase protocol the server sends back a reply to the client, to inform about
the outcome of its request. Consider the simplest kind of reply: accept or reject. We
have to extend the message type with two kinds of messages: req is a request
message, includes the goal and the client's name (to know where to send a reply),
rep is a reply message, includes the decision by the server.

type
Reply=

reject I accept,
Msg==

req(from:Cell, go:Goal) I
rep(Reply)

value
reply: Cell x Net ---=-.. Cell x Net
reply(c,n) =

let g=go(hd n(c)), d=from(hd n(c)), n'=rcv(c,n)
in if accept(c,g)

then (exec(gen(c,g),c),snd(rep(accept),d,n'))
else (c,snd(rep(reject),d,n') end

endprec e domnAn(c):t=<>

The more goals the server is willing to accept the longer it takes to complete them.
The client may wish to take more control over the decision, including in the request
the maximum time to complete the goal, in terms ofthe number of shifts. The server
will only accept the goal if it can construct a process that satisfies this goal and
completes before the deadline. We assume gen returns the fastest process for a given
goal and time calculates the number of shifts for a process to complete.

type
Time=Nat,
Msg==

req(from:Cell, go:Goal, dn: Time) I
rep(Reply)

value
reply: Cell x Net ---=-.. Cell x Net
reply(c,n) = ... m = hd n(c) ...

ifissat(c,go(m)) 1\

time(gen(c,go(m))):5 dn(m)
then ... accept ... else ... reject... end

Protocol-Based Cooperation in a Virtual Organization 217

3.4 Three-Phase Protocol

The two-phase protocol does not allow the client to choose between the servers,
as they all produce a yes/no answer. A different approach is letting a server reply
with the minimum time to get the goal completed, if at all. This allows the client to
choose the server that is able to the goal fastest. Function reply rejects
the goal if not implementable, otherwise accepts the goal with the time-to-complete
of the fastest process generated for the goal. Function confirm takes as an argument
a map from cells to numbers, representing their proposed completion times. It sends
the positive confirmation (cnf(go)) to the server which proposed the minimum time
(min(m)) and the negative confirmation (cnf(forget)) to all other servers (sndall).

type
Reply==

reject I
accept(Time),

Confirm==
forget I go,

Msg==
req(Cell,Goal) I
rep(Reply) I
cnf(Confirm)

value
reply: Cell x Net ---=--. Cell x Net
reply(c,n) = ... g = go(hd n(c)) ...

if issat(c,g) then ... accept(time(gen(c,g))) ...
else ... reject ... end ...

confirm: Cell x Net x Goal x (Cell ---=--.Net
confirm(c,n,g,m) =

n'=snd(cnf(go),min(m),n) ...
sndall(cnf(forget), dom m \ {min(m)},n') ...
pre { c} u dom m dom n 1\ card dom m > 0

It remains possible that the promised completion time of the fastest server is still
behind the client's deadline. In this case the client may decide to let two or more
servers work concurrently on the parts of the goal. For instance, it may choose two
servers sl and s2 with the smallest proposed times and divide the volume of the
original goal (q=ql+q2) proportionally to those times (ql *m(s2)=q2*m(sl)),
according to the function divide. Then it sends the positive confirmations to sl
(go(ql)) and s2 (go(q2)) and negative (forget) to all other servers.

type
Confirm==

forget I go(Nat),
Msg==

req(Cell,Goal) I
rep(Reply) I
cnf(Confirm)

value
confirm: Cell x Net x Goal x (Cell ---=--.Net
confrrm(c,n,(p,q),m) = (sl,s2,ql,q2) = divide(m,q) ...

n'=snd(cnf(go(ql)),sl,n) .. .
n' '=snd(cnf(go(q2)),s2,n') .. .
sndall(cnf(forget), dom m \ {sl,s2},n") ...
pre c u dom m dom n 1\ card dom m > I

This protocol may still be considered unsatisfactory. First, the time-to-completion of
a given production goal in general does not depend on the quantity in a linear way,
therefore dividing the quantities proportionally is not optimal. A solution is for the
server to reply with a quantity-to-time map (instead of time for a given quantity),
then base the client's decision on such functions. Second, the server may not like to
accept the reduced goal. Perhaps it is negotiating with several clients and decides not
to accept the goals below a certain minimum quantity. A solution is to introduce the
fourth negotiation phase, letting the server accept the reduced goal. And so on.

218 E-Business and Virtual Enterprises

4. CONCLUSIONS

The paper is about protocols for cooperation in a virtual manufacturing organization,
how its members negotiate the implementation of a production goal. The goal
describes the type of the product and its volume. The organization is a set of
production cells: clients (they request implementation of a goal), servers (they carry
out the implementation) or both. The cells communicate over a network with
messages that contain: production goals, deadlines, calculated production times,
positive and negative replies and confirmations etc. The exchange of messages
takes places according to a protocol followed by each member. We described how to
model such protocols explicitly, presented a number of possible design decisions
and discussed how such decisions affect the behavior/performance of the whole
organization. The models are described in a formal notation.

The production models in this paper follow (Janowski, Lugo and Zheng, 1999).
From the design point of view, how to build an extended organization, related work
includes (Vemadat, 1996) and (Schonsleben and Buchel,l998). From the operational
point of view, how information technology can be used to support the extended
enterprise, we refer to (Camarinha-Matos and others, 1997). From the practical point
of view, how virtual organizations support and implement supply chains, we point to
(Handfleld and Nichols, 1999). The technical scope of this work is based on the
protocols used for communication in distributed systems (Tannenbaum, 1998) and
their formal models.

We have several plans to continue this work. First, we plan to implement the
protocols described here in a prototype tool, for demonstration and further research.
Second, we plan to carry out analysis of their behavior in a formal rather than
informal way. Third, we intend to design an application-specific language with
formal semantics, where such protocols can be conveniently described, analyzed,
and translated into software. Fourth, we want to integrate the generator program for
distributed production processes (Janowski, 2000) with one or more of the protocols
described here. Finally, we would like to see how the protocols can also support
competition (marketing) between members of a virtual manufacturing organization.

5. REFERENCES

l. Camarinha-Matos LM and Afsarmanesh H. Handbook of Life Cycle Engineering, Virtual
Enterprise: Life Cycle Supporting Tools and Technologies. Chapman and Hall, 1997.

2. Handfield Rand Nichols E. Supply Chain Management. Prentice Hall, 1999.
3. Janowski T. Distributed Production with Specification-Generated Processes. BASYS'2000, Berlin,

Kluwer.
4. Janowski T, Lugo G and Zheng H. Modeling an Extended/Virtual Enterprise by the Composition of

Enterprise Models. Journal oflntelligent and Robotic Systems, 1999, vol. 26, no. 2-3, 303-324.
5. Schonsleben P and Buche! A Organizing the Extended Enterprise. Chapman and Hall, 1998.
6. Tannenbaum A Communication Networks, Prentice Hall, 1998.
7. The RAISE Method Group. The RAISE Specification Language. Prentice Hall, 1992.
8. Vemadat F. Enterprise Modeling and Integration. Chapman and Hall, 1996.

	20 PROTOCOL-BASED COOPERATION IN A VIRTUAL MANUFACTURING ORGANIZATION
	1. INTRODUCTION
	2. MODELING PRODUCTION
	3. PROTOCOLS FOR DISTRIBUTED PRODUCTION
	3.1 Communication Network
	3.2 One-Phase Protocol
	3.3 Two-Phase Protocol
	3.4 Three-Phase Protocol

	4. CONCLUSIONS
	5. REFERENCES

