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Abstract 
Recent statistical work on traffic measurements are showing traditional models 
to be poor descriptors of what really goes on for WAN traffic. Here we discuss 
briefly the shortcoming of those models and illustrate some theoretical features 
of possibly more realistic models. 
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! INTRODUCTION 

Stochastic models of traffic in telecommunications systems are an important 
application of the modem theory of probability and stochastic processes. In 
tum problems coming from telecommunications have been stimulating the de­
velopment of new mathemics at least since the work of Erlang. Queuing theory 
plays a central role, but approximation, limit theorems and most parts of the 
theory of stochastic processes are relevant in modelling and understanding 
traffic phenomema. 

In the following we mention briefly some of the classical teols used in mod­
elling and analysis and point at their shortcomings in describing what goes 
on in systems such as optic networks. 

2 THE CLASSICAL TOOLS 

The three basic ingredients of the conceptual framework are the Poisson pro­
cess, Brownian Motion and the MIMI! queue. Most of our intuition about 
stochatic behaviour is built by looking at this examples. 
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2.1 The Poisson Process 

It is very convenient to think that some system is described by either a renewal 
process or a Markov process. Both the renewal and the Markov property tell 
you that the system will not be remembering for very long what its past states 
were; therefore, to describe its future, you don't need to look too much at its 
past history. 

The Poisson Process is the only process that enjoys both the renewal and 
the Markov property. Here is a few features that make it extremely attactive 
as a paradigm in building models: 

• The interarrival times Ti with exponential distribution 

• Number of arrivals with Poisson distribution 

P(N(t)) = e-)'t 

• The exponential distribution is memoriless 
• For the Poisson Process you can compute almost everything explicitly 
• Most traditional models for sources (e.g. renewal type models) share the 

same qualitative features. 

2.2 The MIM/1 queue 

The MIMI1 queue is built with a couple of Poisson processes. One describes 
customers arriving at a shop and the other the owner of the shop taking care 
of the customers with a 'first come, first served' policy. Almost anything we 
want to know about the MIMI1 queue can be computed explicitly. (see e.g. 
(Cooper 1981)) 

2.3 Brownian Motion 

The ubiquitous nature of Brownian Motion is due to the Central Limit Theo­
rem. In most applications it is fair to say that, when suitably rescaled, every 
process tends to Brownian Motion. You only need some reasonable decay of 
correlations and marginal distributions satisfing very mild conditions. In par­
ticular almost everything we can build by toying with Poisson processes will 
be well approximated by Brownian Motion. A Brownian Motion X t is char­
acterized by the following properties: 



Self-similarity in wide-area network traffic 125 

• X t has stationary indipendent increments 
• X t has gaussian distribution with mean 0 and variance (12t 

• X t has continuos trajectories 

2.4 Classical models 

For several years we have been using a wide variety of stocastic models to 
describe traffic. All of this models share the basic qualitative features of at 
least one of the three basic examples mentioned above. 

We may not be able to compute explicitly as many relevant quantities as 
we can get in our three basic examples, but we know that the qualitative 
behaviour is not radically different and our intuitions works well as a guide 
for getting quantitative estimates of what goes on. 

We will not even try to list these models here, but refer the reader to the 
recent excellent review (Jagerman et al. 1997). 

3 NOVELTIES 

Recent traffic measurement seem to fit poorly with the clasical tools we de­
scribed so far. They display unfamiliar statistical features. Here are the most 
apparent ones: 

• Heavy tailed distributions (with infinite variance) 
• Long Range Dependence 
• Self-similarity 

3.1 Heavy-tailed distributions 

The random variable X is said to have a heavy-tailed distribution F if 

1 - F(x) = P(X > x) "'" x-a L(x) 

where L(x) is slowly varying at infinity. (see (Samorodnitsky et al. 1994)) 
The expectation of a heavy-tailed random variable need not be finite: 

E[XP] < 00 if f3 :::; Q and E[XP] = 00 if f3 > Q. 

A case of special interest is 1 :::; Q < 2, the so called Noah effect (finite mean, 
infinite variance, see (Mandelbrot 1982)). Teletraffic data presents statistical 
evidence of heavy tailed distributions (see (Resnick 1997)). 
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3.2 Long-range dependence 

We say a process X = (Xi, i = 1,2, ... ) is covariance stationary if 
p(i, j) = COV(Xi' X j ) = p(li - jl). 

A stationary process is said to exhibit long-range dependence (long memory, 
Joseph effect, persistence) if its covariance decays slowly 

p(k) '" k2H- 2 k 00 

As a measure of long-range dependence we used the Hurst parameter H, 
with ! H < 1. Processes with long range dependance are notoriously 
hard to analyze, but there are effective techniques available ((Beran 1994), 
(Cox 1984)). 

3.3 Self-similarity 

We say a stationary process X is exactly self-similar (with self-similarity 
parameter H) if for all m = 1,2, ... 

X m 1- H X(m) (in distribution) 

where for k > 0, 

X is asymptotically self-similar (with self-similarity parameter H ) if 

If we are restricting ourselves to a second order description of a process 
(which as you see may well not be sufficient!), we can similarly define ex­
act/asymptotic second-order self-similarity: 

Var(X(m)) = (J2m2H- 2 for all m 1 

Var(X(m)) '" (J2m2H- 2 as m 00 

Self-similar processes exhibit fractal-like behaviour; their graph tends to 
look the same when you look at it from different distances. Therefore they 
capture well the idea that all time scales are relevant in the description of the 
process. The three figures in this tutorial are taken from ((Pagano 1998)) and 
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Figure 1 LAN traffic observed every 0.1 s. Tobs=l s 

show actual measures of LAN traffic on three different time scales. Anything 
which is well described by one of the traditional models should become flatter 
and flatter as you look at it on larger time scales (this is just a consequence 
of the law of large numbers). 

While you can reproduce this data's qualitative and quantitative features 
with a parsimonious self-similar model, traditional models perform badly. You 
need a large number of parameters to fit the data and, as traces get longer, 
you find you need quickly more and more. 

If we assume the process to be self-similar, then it is easy to extrapolate 
(a longer session is not simulated by glueing together shorter sessions) and 
interpolate. 

3.4 Self-similarity in LAN and MAN/WAN traffic 

There is increasing experimental evidence for self-similarity in LAN traffic 
(see figures 1, 2 and 3 , (Leland et al. 1994)) 

We can identify at least two causes for this. A simple fact is that single 
sources exhibit strong LRD. Less immediate, but of great importance is the 
fact that the Noah effect leads to the Joseph effect: the superposition of a 
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Figure 2 LAN traffic observed every 1 s. Tobs=l s 

large number of ON-OFF sources with heavy-tailed ON or OFF periods gives 
rise to Fractional Brownian Motion. (see (Willinger 1995)) 

More appropriate for WAN traffic modelling is Kurtz's theorem: consider 
a Poisson number of source activations with the holding time of each source 
heavy-tailed with infinite variance. Then, the normalized workload converges 
to FBM. As noted by Willinger and other authors one finds statistical evidence 
of heavy tails and self-similarity in single components of the Internet and other 
WANs. 

• File system events are self-similar 
• CPU time of a typical UNIX process is heavy-tailed with infinite variance 
• File sizes on file servers and document sizes on web servers are heavy-tailed 

with infinite variance 
• TCP and HTTP connections sizes/durations are heavy-tailed with infinite 

variance 

It is not still clear what are all the consequences of self-similarity, but we 
can list a few here ((Erramilli et al. 1997)): 

• Queue lenght distribution no longer exponential 
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Figure 3 LAN traffic observed every 10 s. Tobs=10 s 

• Very different (worst) heavy traffic behaviour 
• No significant expected gain from within source multiplexing 
• Potential for multiplexing gains across sources 

4 CONLUSION AND SOME OPEN ISSUES 

These new features cannot be ignored, but they do not mean necessarily bad 
news. Certainly they leave a number of open issues. The main one is of course 
how to exploit self-similarity. On a more particular level there is still a lot of 
work to do on fast generation of fractal traffic for simulation and the analysis 
of networks of queues. Lastly we notice that LRD and the fact that one expects 
no gains from within source multiplexing, mean that we need to rethink the 
structure of tariffs and devise a rational pricing scheme for self-similar or 
bursty traffic (see (Kelly 1997)). 

In conclusion I can say that from the point of view of an applied mathe­
matician these new finds in traffic data open are opening the way for a lot of 
fruitful work in the years to come. 
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