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Abstract 
A declarative mediator language, based upon operations among logic theo­
ries is introduced. In particular we concentrate on the constraint operator. 
The denotational semantics of the language is introduced together with the 
definition of a bottom-up efficient implementation. The use of the constraint 
operator for security within a mediator architecture for database integration 
is suggested and presented by means of a simple example. 
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1 INTRODUCTION 

The Internet and the World Wide Web capability are showing the need for 
organizations to access and integrate different sources of information. Future 
applications are likely to be built by putting together systems developed and 
managed at different sites. Integration, federation, cooperation etc of infor­
mation sources or software systems, in general, seem to be a must. Security 
and privacy are thus becoming more crucial (Jajodia 1996a), (Jajodia 1996b), 
both for relational and advanced database systems. 
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Given the state of the art, providing for semantic heterogeneity and for 
"secure" integration of information sources/databases is crucial for the devel­
opment of future distributed/integrated applications. 

Semantic heterogeneity and integration of databases is a hot area of re­
search. Various architectures can be found in the literature, as it is in (Hull 
1997), where a mediator (notion due to Wiederhold (Wiederhold 1992)) turns 
out to be a very interesting and promising one. 

Mediation supports semantic integration of databases providing for read­
only view of information sources that reside on different sites and, in some 
cases, update capabilities. 

Interesting proposals for mediating database systems can be found in the lit­
erature, both for relational and logic/deductive databases (Papakostantinou, 
Garcia-Molina and Ullman 1996, Subrahmanian 1994, Lu et al1995, Aquilino 
et al. 1995, Asirelli, Renso and Turini 1996). 

With respect to security of systems, many models, policies and enforcing 
mechanisms can be found in the literature, as it is summarized in (Bertino, 
Samarati and Jajodia 1997) and (Jajodia et al. 1997). Security, within the 
framework of deductive databases and their integration has also received great 
attention (Bertino, Jajodia and Samarati 1995, Bonatti, Kraus and Subrah­
manian 1995, Candan, Jajodia and Subrahmanian 1996). In relation to a 
mediator approach to security we also mention the TIHI project (Wiederhold 
et al 1996a, Wiederhold et al 1996b). 

In this paper we consider an approach to build a federation of information 
sources via mediators. The language we refer to is MedLan (Aquilino et al. 
1995, Asirelli, Renso and Turini 1996, Aquilino et al. 1997) that is an extended 
logic language for deductive databases where the basic extensions are the 
partitioning of the deductive database into a collection of theories, operators 
to combine them, and the "in" feature, that is a sort of "message passing" 
feature. MedLAn has been given an operational and a denotational semantics. 

In this paper we particularly concentrate on the definition of a kind of 
seminaive implementation of the MedLan Language, where the most inter­
esting aspect is the constraint (/) operator. This operator allows for different 
applications (Renso 1998, Aquilino et al. 1997, Asirelliet al. 1998) that we 
have studied and developed. Here we present, as an example of the use of the 
constraint operator of MedLan, an approach to database security within a me­
diator architecture for database integration. For the moment we have taken 
into consideration a multilevel security model, as the Bell-La Padula model, 
where the data and the users are classified into various classes (or levels) and 
then the appropriate security policy of the organization is implemented. 

The general idea is to use the language MedLan to build a set of logical 
theories that constitute a middle layer of an architecture to build an appli­
cation which uses a federation of databases as the source of information. In 
other words, MedLan can be used to implement the layer of an application, 
in an integrated environment, that stands between the database sources and 
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the final user that will be allowed to see and use only part of the complete 
set of information. In this way we are able to address two unusual aspects, 
at the same time: the semantic integration between database sources and the 
implementation of security policies, where the "constraint" operator plays the 
major role. 

Section 2 introduces the syntax of the language, an intuitive explanation of 
composition operators, and an abstract semantics. In section 3 we discuss an 
implementation of MedLan based on an extension of the semi-naive computa­
tion rule for deductive data bases. The complete proof is not included here for 
shortage of space, but can be found in (Renso 1998). In section 4, an example 
of its application to security is given. Finally, in section ?? we conclude. 

2 THE MEDLAN LANGUAGE 

We consider a set of meta-level operations for composing definite logic pro­
grams, originally introduced in (Brogi 1993, Brogiet al. 1994, Aquilino et 
al. 1995) Union (U), Intersection (n), and Constraint(/). 

MedLan is the language of program expressions defined by these operations 
as follows: 

Pexp ::= Program I Pexp u Pexp I Pexp n Pexp I Pexpf Program 

where Program is a named collection of clauses. Each set of clauses (program) 
is associated with a unique name by means of a global naming mechanism. 

In the sequel we will abuse the notation and use a program identifier to directly 
denote the set of clauses associated with it. 

More precisely, a program is a finite set of extended definite clauses of the 
form 

At- B1, .. . ,Bn 

where each Bi is either an atomic formula or a meta-level formula of the form 
"C in Pexp", where C is an atomic formula and Pexp a program expression. 
A goal like "C in Pexp" introduces a form of message passing between object 
level program. The idea is that the program containing the goal "C in Pexp", 
sends the message C to the "virtual" program denoted by "Pexp". As usual, 
logical variables act as input/output channels between programs. 

We assume that the language in which programs are written is fixed. Namely, 
there is a fixed set of function and predicate symbols that include all function 
and predicate symbols used in the programs being considered. Moreover, pro­
gram names and program composition operations are disjoint from all other 
constant and function symbols that may occur in programs. 
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Here we give the operators an informal semantics by means of examples. In 
section 2.1 we will show the formal (abstract) semantics. 

Consider the following programs P and Res_Dept: 

P: 
can_access_folder(a_inform, X) f- employee(X) in Res_Dept 
employee(john) f--

employee(ann) f-

Res_Dept: 
employee(mary) f-

The first rule of P states that "a person can access a particular folder a_inform 
if he/she works in the research department, Res_Dept" 

The query can_access_folder(a_inform, X) in the program P bounds the 
variable X to mary since the evaluation of the goal employee(X) is performed 
in the program Res_Dept. 

Given a program expression E, we show a plain logic program that behaves 
as the program expression, i.e. it provides the same answers to the same 
queries, whatever is the operational semantics in use. We refer sometimes 
to this program as to the virtual program denoted by the expression. Such a 
transformational approach, is useful for an intuitive understanding of program 
expressions. 

Consider the following plain programs: 

P: 
can_access_folder(a_inform, X) f--

employee(X) in (Res_Dept U Direction_Dept), 
has_authorization(X) in Aut_M odule 

employee (john) +-
employee( ann) f-

Res_Dept: 
employee(mary) f-­

employee(fred) +--

Direction_Dept: 
employee(john) f-­

employee(ann) f-

AuLModule: 
has_authorization( mary) f-­

has_authorization(john) f-
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Here, P gives access to folder a_inform to people working either in the 
Res_Dept or in the Direction_Dept. That is, "mary", "fred", "john" and "ann". 
Because of the further condition that the person must also be authorized, as 
specified in the authorization module Aut_Module, the answer to the query 
can_access_folder(a_inform, X) in the program P for the variable X will be: 
mary and john. 

The U operator makes the program denoted by the program expression 
Res_Dept U Direction_Dept behaves as a plain program containing the 
clauses of Res_Dept and the clauses of Direction_Dept. As the example 
shows, union may be used to factor knowledge in different modules. 

Intersection allows to combine knowledge by merging clauses with unifiable 
heads into clauses having the conjunctions of the bodies of the original clauses 
as body. The net effect is that the two plain programs act as sets of constraints 
one upon the other. 

P: 

Consider the following example: 

can..access_folder(a_inform, X) +-
employee( X) in (Res_Dept U Direction..Dept), 
has ..authorization( X) in (AuLM odule n V alidity..JJ f .Aut) 

employee(john) +-
employee(ann) +-

Res_Dept: 
employee(mary) +­
employee(fred) +-

Direction_Dept: 
employee(john) +­
employee(ann) +-

AuLM odule: 
has..authorization( mary) +­
has..authorization(john) +-

Validity..JJf .Aut: 
has ..authorization( mary) +­
has..access(john, folder ..13, section..E) +­
has..access(X, Y, Z) +-director ..JJj(Z, X) 

Now the answer to the query can_access_folder(a_inform, X) in the pro­
gram P will give for the variable X the binding mary whose authorization is 
still "valid". 

Notice that Aut..M odule n Validity_of .Aut does not say anything about 
has_access, since nothing about has_access is deducible from AuLM odule. 

The constraint operator combines the features of union, intersection and a 
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simple form of negation to provide an asymmetric composition between a 
program P and a program Q where Q acts as a set of constraints for P as it 
is illustrated by the following example. Consider 

ConstrainLmodule 
has_authorization(X) f- was_authorized..by(Y, X), is..director(Y, Z), 

employee(X, Z) in Wrapper _Dept 

Wrapper _Dept: 
employee( X, res..dept) f- employee( X) in Res_Dept 
employee( X, direct..dept) f- employee( X) in Direction..Dept 

Validity ..of ..Aut: 
has_authorization( mary) t­
has_access(john, folder ..B, section..E) f­
has_access(X, Y, Z) f- director _of(Z, X) 

The following plain program behaves as the program expression 
ConstrainLmodulefValidity_of .Aut. 

has_authorization(X) t- X #mary, was.nuthorized..by(Y, X), 
is..director(Y, Z), employee(X, Z) in Wrapper _Dept 

has_authorization(mary) f- was_authorized..by(Y, mary), is..director(Y, Z), 
employee( mary, Z) in Wrapper _Dept 

While the following plain program behaves as the program expression: 
V alidity_of .AutjConstrainLmodule. 

has _authorization( mary) t- was_authorized..by(Y, mary), is..director(Y, Z), 
employee( mary, Z) in Wrapper _Dept 

has_access(john, folder ..B, section..E) f-
has.nccess(X, Y, Z) f- director ..of(Z, X) 

Notice that the constraint is applied only to mary while the remaining 
knowledge in the module is not affected. 

2.1 Denotational semantics 

Now we give an abstract semantics. In (Renso 1998, Aquilino et al. 1995, 
Aquilino et al. 1997) also an operational top-down semantics is given and it 
is shown that the two semantics coincide. The semantics is limited to positive 
deductive data bases, and it is given in a bottom-up style by extending the 
standard immediate consequence operator (T( P)). 
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Recall that, for a definite logic program P, the immediate consequence oper­
ator T(P) is a continuous mapping over Herbrand interpretations defined as 
follows (van Emden and Kowalski 1976). For any Herbrand interpretation I: 

A E T(P)(I) <==:::> (3B : A +- B E ground(P) 1\ B ~ I) 

where B is a (possibly empty) conjunction of atoms and ground(P) denotes 
the ground (i.e. fully instantiated) version of program P. 

Such an approach is motivated by the observation that the classical least 
model semantics is not compositional. That is, it is not possible to obtain the 
least model of, say, the union of two programs P and Q by homomorphically 
composing the least models of P and Q. In (Brogi 1993) it is shown that 
the Tp-based semantics is in fact both compositional and fully-abstract with 
respect to the repertoire of composition operations adopted in this paper. 

Definition 1 The semantics of progmm expressions is given as follows: 

T(EuF) {I) = TE(I) U Tp(I) 

T(EnFJ{l} = TE(I) n Tp(l) 

T(E/ F){!) = T(E n F){!) U (T(E \ \F)(I) 
T(E \\F) (I)= T(E) \{A I A+- G E Ground(Q)(B)} 

The immediate consequences of a program expression E constrained by a 
program F is a combination of the union and intersection operator and a kind 
of complement of a program w.r.t. a program expression. Informally, consider 
the case in which E is a plain program constrained by a set of clauses F. The 
resulting program is obtained by the union of two parts. One is the intersection 
of the two programs, that forces them to agree during the deduction. But 
intersection alone is not enough, because some clauses would be missing in 
the result. In particular, we miss all the clauses for predicates which are defined 
in E and not constrained by F. These predicates are of two kinds: the ones 
which do not have a definition in F, and those which have a definition in F 
that constrains only a subset of atoms potentially derivable in E. 

3 IMPLEMENTATION ISSUES 

Here we show how the T(P) semantics for our operators can be turned into an 
efficient bottom-up strategy by exploiting the technique of the so-called semi­
naive computation strategy, that allows one to avoid redundant computations 
of recursive rules. 

The standard implementation of deductive databases is based on the bottom­
up evaluation of logic programming, i.e. on efficient implementations of the 
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computation of the fixpoint of the immediate consequence operator. In this 
section we show how the simplest of these efficient implementations, i.e. the 
semi-naive computation strategy, can be extended to handle the new features 
of MedLan. We consider here only positive programs. Not even the extension 
to stratified databases is straightforward, given that, for example, the union of 
two stratified databases is not necessarily stratified. The definition of classes of 
stratified programs that can be handled by a semi-naive computation strategy 
is the subject of our current research. 

3.1 The Seminaive Evaluation Technique 

The seminaive evaluation technique (Abitebul, Hull and Vianu 1995, Ullman 
1988) is a straightforward extension of the immediate consequences opera­
tor (also called naive evaluation), in that it avoids the recomputation of the 
same atoms, that might be triggered by recursive definitions, by focusing the 
computation only on the new atoms generated in the last step. 

We define the seminaive computation as an extension of the standard T(P) 
operator. Notice that we refer to the T(P) semantics described in section 2.1 
where we do not take into account the in feature. Extending the seminaive 
definition to include the message passing mechanism mirrors the approach 
presented in (Brogi, Renso and Turini 1997) and is matter of future studies. 

The new operator r(P) has two arguments. The first one represents the 
current interpretation, the second one, .6., represent the set of facts computed 
in the previous step. 

Definition 2 Let P be a program, I, .6. interpretations, then r : (28 x 28 ) -+ 
(28 x 28 ) is defined as follows 

r(P)(I, .6.) = ({/ U .6.}, {A I3Bl, ... , Bn, A+- B1, ... , Bn E ground(P) 
A3i E [1, ... , n] : B; E .6. 
A{B1, ... ,Bn} ~ /U.6.}-(JU.6.)) 

The powers of r are defined as usual 

Definition 3 Powers of r 

r(P)(0, 0) t 0 = (0, 0) 
r(P)(0, 0) t i = r(P)(r(P)(0, 0) t (i- 1)) 
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3.2 The Seminaive for Composition Operators 

The extension of the T operator for the composition operators is quite intu­
itive. The bottom-up step of the seminaive function applied to P U Q is the 
set-theoretic union of the respective arguments, and an analogous definition 
works for intersection. 

r(P U Q) = r(P)(I, ~) U r(Q)(I, ~) 

r(P n Q) = r(P)(I, ~) n r(Q)(I, ~) 

where 
(A, B) U (A', B') =(AU A', BUB') 
(A, B) n (A', B') =(An A', B n B') 

In the definition of the constraint operator we will use the Ground predicate 
with two arguments: the first one is a given program, and the second is the 
Herbrand base with respect to which we instantiate the given program. 

r(P/Q)(I, ~) r(P n Q)(I, ~) U r(P \ \Q)(I, ~) 

The definition ofT for the constraint operator has the same structure of the 
naive definition based on the immediate consequence operator. Since T works 
on pairs of interpretations we need to use the operator U, that performs the 
union of pairs. 

r(P \ \Q)(I, ~) = 
(r(P)(I, ~h \{A I A f- B1, ... , Bn E Ground(Q)(B-p), 
r(P)(I, ~)2 \{A I A f- B1, ... , Bn E Ground(Q)(B-p)} 

The auxiliary definition of r(P \ \Q) is such that, given a pair (I,~), it 
computes a new pair, containing atoms that can only be computed by using P. 
In (Renso 1998) the correctness of the semi-naive definition has been proved, 
as stated by the following theorem. 

Theorem 1 The seminaive definition for the composition operators is correct 
w. r. t the T(P) semantics of the operators. Let E be a program expression: 

(r(E) t w)I = T(E) t w 
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4 AN EXAMPLE FOR INTERNAL SECURITY 

The general idea of an architecture of a system for integrating database 
sources, according to a given set of security rules, that we have in mind is 
depicted in Fig.l. 

Level U. 

Level TS 

Mediators 

User identification 
Login-password 

, -- ,' 

Security 

Rules 

,'Wrappers 

/ (oi),~, 
\~ 
' ' - _ - "' Database Sources 

Fig.l - A general architecture 

The architecture can be considered as consisting of three levels: 

• the first level hides those parts of the database source that we do not want 
to be visible outside; wrappers are defined for each database and they 
export only those parts of the databases that we allow to be visible to 
someone; each integrated database is assumed to be provided with secure 
transmission system and firewall. We only expect to interface with the 
underline database systems,(e.g. it can be any Java interface) that only 
provide us with a number of relations that can be queried according to the 
internal policies of the integrated database. 

• the second security level concerns the mediators layer. Here mediator mod­
ules use data from wrappers to reason on it and to perform semantic inte­
gration; Mediators can use data provided also by other wrappers and medi­
ators. At this level, more policies can be implemented. They can depend on 
the application being implemented or it can be stated by agreements with 
the particular integrated database. That is, some exception to the internal 
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policy of a database can be allowed from the integrated database as long 
as some rule in the integrated environment are satisfied. As an example we 
can imagine that some pieces of information are made available to the in­
tegrated environment manager and to the other database managers (in the 
integrated environment) but they must be hidden to some external users 
etc. 

e the third level of security is realized by a user identification system. It could 
be a login-password system or some other more sophisticated system, like 
a voice recognizer. No particular identification system is assumed in our 
models. 

Thus our model concentrates on the integration layer to provide for security 
of the application and of the integrated systems, i.e. for the "internal" core 
of the integrated system. 

The general architecture in Fig. 1 could be applied to the following situa­
tion of integrating different databases of employees with permission assigned 
for each level, as it is handled by mandatory access control models. 

DBl 
employee(john,rossi,001,dept1,100) 
employee(susan,white,302,dept2,108) 

DB2 
employee(frank,green,527,70) 
employee(mary,brown,670,65) 

W..DBl 
employee(CodRef,Dept,Salary) +-

employee(FName, LName, CodRef, Dept, Salary) in DB 1 

W..DB2 
employee(CodRef,nil,Salary)+­

employee(FName, LName, CodRef, Salary) in DB2 

Mediator! 
employee(User,CodRef,Dept,Salary)+-

user(User), employee( CodRef, Dept, Salary) in(W.DB 1 U W ..DB2) 

Mediator2 
employee(User,CodRef,Dept,Salary)+­

employee(User,CodRef,Dept,Salary)in(Mediator1/Security~ules) 

Security .-Rules 
employee(User, CodRef, Dept, Salary) +- has-Perm iss ion(User) in LeveLC 
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LeveLU 
has_permission(user1) 
has_permission(user2) 

LeveLC 
has_permission(user3) 
has_permission(user4) 

LeveLT 
has_permission(user5) 
has_permission(user6) 

LeveLTS 
has_permission(user7) 
has_permission(user8) 

Please note that DBl and DB2 report on a set of employees that are rep­
resented, in the two databases, with a relation that has the same name but 
different number of parameters. The information in the two different databases 
is merged into the employee relation of the integrated environment by means 
of the W _DBl and W _DB2 wrappers, respectively. 
Mediator! then defines a new employee relation that includes a user name 
(e.g. here it can be the name of the user who queries the integrated system), 
and it is defined by the set of employees "deducible" in the union of the two 
wrappers. 
Mediator2 define the same employee relation given by the same relation in 
mediator! "constrained" by the rules in the "Security Rules" module. The 
rule in SR serves, in this example, to limitate the access to the information on 
the employees of the whole integrated system. In this example only users that 
have a LeveLC permission (user3 and user4), have access to this information. 

5 CONCLUSIONS 

Our research on deductive database systems and, in particular, on the problem 
of integrating different databases led us to the design of a language that sup­
ports the notion of mediation via a suite of operators for combining collection 
of clauses and the "in" feature. 

The most interesting aspect of MedLan operators is the constraint (/) op­
erator that allows for different applications (Asirelliet al. 1998) that we have 
studied and developed in the past and that are presently further investigated. 

We paid special attention to a formal definition of the semantics of the lan­
guage. The benefits of such an effort are that the operational and denotational 
semantics give us the way to implement a top-down and bottom-up evaluation 
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of a query through the mediator which also give Median the capability to deal 
with "virtual" and "materialized" view approaches (Hull 1997) 

One of the goal of this paper was the presentation of the semi-naive imple­
mentation of the language. This bottom-up implementation technique, that 
allows an efficient processing of universal queries, has been extended to queries 
involving Median program expressions. 

We are currently studying different aspects of MedLan to extend it to cope 
with different integration mechanisms, such as cooperation and federation. 
Future work will concentrate on experimenting the characteristics of MedLan 
in various application domains. We find that the use of the constraint operator 
to deal with security issues is at the same time a demanding application field 
for MedLan and a promising solution. 

In fact, with respect to other approaches we believe that our approach is 
novel in many respect. In particular, we believe that one of the interesting 
aspects of our approach is the idea of using the notion of "view" for imple­
menting the control of accesses. In this way, instead of checking the user rights 
for accessing some information, we give the user its own "allowed" view on 
the database, in a very straightforward way. 

Future work on the application we have presented will concern the study 
of different security models and enforcing policies existing in the literature to 
evaluate the feasibility of more complex examples and the effectiveness of our 
approach in real systems. 
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