
The Constraint Operator of
MedLan: its efficient
implementation and use

Patrizia Asirelli (Contact author)
Istituto di Elaborazione della Informazione - CNR
Via S. Maria, 46, I-56126 Pisa, Italy, tel. +39-50-593477, fax. +39-
50-554342, email: asirelli@iei.pi.cnr.it

Chiara Renso and Franco Turini
Dipartimento di Informatica, Universita di pisa, Corso Italia,
40, I-56125 Pisa, Italy, tel. +39-50-88743, fax. +39-50-887226,
email:turini@di. unipi. it, renso@sias. it

Abstract
A declarative mediator language, based upon operations among logic theo­
ries is introduced. In particular we concentrate on the constraint operator.
The denotational semantics of the language is introduced together with the
definition of a bottom-up efficient implementation. The use of the constraint
operator for security within a mediator architecture for database integration
is suggested and presented by means of a simple example.

Keywords
database integration, federation, mediators, constraints, multilevel security,
internal security

1 INTRODUCTION

The Internet and the World Wide Web capability are showing the need for
organizations to access and integrate different sources of information. Future
applications are likely to be built by putting together systems developed and
managed at different sites. Integration, federation, cooperation etc of infor­
mation sources or software systems, in general, seem to be a must. Security
and privacy are thus becoming more crucial (Jajodia 1996a), (Jajodia 1996b),
both for relational and advanced database systems.

•work partially funded by Progetti Coordinati CNR-Comitato 12 : "KINE-Knowledge In­
tegration Environment" and "Programmazione Logica (Logic Programming)" and EADTN
Project: ERCIM Advanced Database Technology Network, EEC contract n. CHRX-CT94-
0531.

S. Jajodia et al. (eds.), Integrity and Internal Control in Information Systems
© Springer Science+Business Media Dordrecht 1998

42

Given the state of the art, providing for semantic heterogeneity and for
"secure" integration of information sources/databases is crucial for the devel­
opment of future distributed/integrated applications.

Semantic heterogeneity and integration of databases is a hot area of re­
search. Various architectures can be found in the literature, as it is in (Hull
1997), where a mediator (notion due to Wiederhold (Wiederhold 1992)) turns
out to be a very interesting and promising one.

Mediation supports semantic integration of databases providing for read­
only view of information sources that reside on different sites and, in some
cases, update capabilities.

Interesting proposals for mediating database systems can be found in the lit­
erature, both for relational and logic/deductive databases (Papakostantinou,
Garcia-Molina and Ullman 1996, Subrahmanian 1994, Lu et al1995, Aquilino
et al. 1995, Asirelli, Renso and Turini 1996).

With respect to security of systems, many models, policies and enforcing
mechanisms can be found in the literature, as it is summarized in (Bertino,
Samarati and Jajodia 1997) and (Jajodia et al. 1997). Security, within the
framework of deductive databases and their integration has also received great
attention (Bertino, Jajodia and Samarati 1995, Bonatti, Kraus and Subrah­
manian 1995, Candan, Jajodia and Subrahmanian 1996). In relation to a
mediator approach to security we also mention the TIHI project (Wiederhold
et al 1996a, Wiederhold et al 1996b).

In this paper we consider an approach to build a federation of information
sources via mediators. The language we refer to is MedLan (Aquilino et al.
1995, Asirelli, Renso and Turini 1996, Aquilino et al. 1997) that is an extended
logic language for deductive databases where the basic extensions are the
partitioning of the deductive database into a collection of theories, operators
to combine them, and the "in" feature, that is a sort of "message passing"
feature. MedLAn has been given an operational and a denotational semantics.

In this paper we particularly concentrate on the definition of a kind of
seminaive implementation of the MedLan Language, where the most inter­
esting aspect is the constraint (/) operator. This operator allows for different
applications (Renso 1998, Aquilino et al. 1997, Asirelliet al. 1998) that we
have studied and developed. Here we present, as an example of the use of the
constraint operator of MedLan, an approach to database security within a me­
diator architecture for database integration. For the moment we have taken
into consideration a multilevel security model, as the Bell-La Padula model,
where the data and the users are classified into various classes (or levels) and
then the appropriate security policy of the organization is implemented.

The general idea is to use the language MedLan to build a set of logical
theories that constitute a middle layer of an architecture to build an appli­
cation which uses a federation of databases as the source of information. In
other words, MedLan can be used to implement the layer of an application,
in an integrated environment, that stands between the database sources and

43

the final user that will be allowed to see and use only part of the complete
set of information. In this way we are able to address two unusual aspects,
at the same time: the semantic integration between database sources and the
implementation of security policies, where the "constraint" operator plays the
major role.

Section 2 introduces the syntax of the language, an intuitive explanation of
composition operators, and an abstract semantics. In section 3 we discuss an
implementation of MedLan based on an extension of the semi-naive computa­
tion rule for deductive data bases. The complete proof is not included here for
shortage of space, but can be found in (Renso 1998). In section 4, an example
of its application to security is given. Finally, in section ?? we conclude.

2 THE MEDLAN LANGUAGE

We consider a set of meta-level operations for composing definite logic pro­
grams, originally introduced in (Brogi 1993, Brogiet al. 1994, Aquilino et
al. 1995) Union (U), Intersection (n), and Constraint(/).

MedLan is the language of program expressions defined by these operations
as follows:

Pexp ::= Program I Pexp u Pexp I Pexp n Pexp I Pexpf Program

where Program is a named collection of clauses. Each set of clauses (program)
is associated with a unique name by means of a global naming mechanism.

In the sequel we will abuse the notation and use a program identifier to directly
denote the set of clauses associated with it.

More precisely, a program is a finite set of extended definite clauses of the
form

At- B1, .. . ,Bn

where each Bi is either an atomic formula or a meta-level formula of the form
"C in Pexp", where C is an atomic formula and Pexp a program expression.
A goal like "C in Pexp" introduces a form of message passing between object
level program. The idea is that the program containing the goal "C in Pexp",
sends the message C to the "virtual" program denoted by "Pexp". As usual,
logical variables act as input/output channels between programs.

We assume that the language in which programs are written is fixed. Namely,
there is a fixed set of function and predicate symbols that include all function
and predicate symbols used in the programs being considered. Moreover, pro­
gram names and program composition operations are disjoint from all other
constant and function symbols that may occur in programs.

44

Here we give the operators an informal semantics by means of examples. In
section 2.1 we will show the formal (abstract) semantics.

Consider the following programs P and Res_Dept:

P:
can_access_folder(a_inform, X) f- employee(X) in Res_Dept
employee(john) f--

employee(ann) f-

Res_Dept:
employee(mary) f-

The first rule of P states that "a person can access a particular folder a_inform
if he/she works in the research department, Res_Dept"

The query can_access_folder(a_inform, X) in the program P bounds the
variable X to mary since the evaluation of the goal employee(X) is performed
in the program Res_Dept.

Given a program expression E, we show a plain logic program that behaves
as the program expression, i.e. it provides the same answers to the same
queries, whatever is the operational semantics in use. We refer sometimes
to this program as to the virtual program denoted by the expression. Such a
transformational approach, is useful for an intuitive understanding of program
expressions.

Consider the following plain programs:

P:
can_access_folder(a_inform, X) f--

employee(X) in (Res_Dept U Direction_Dept),
has_authorization(X) in Aut_M odule

employee (john) +-
employee(ann) f-

Res_Dept:
employee(mary) f-­

employee(fred) +--

Direction_Dept:
employee(john) f-­

employee(ann) f-

AuLModule:
has_authorization(mary) f-­

has_authorization(john) f-

45

Here, P gives access to folder a_inform to people working either in the
Res_Dept or in the Direction_Dept. That is, "mary", "fred", "john" and "ann".
Because of the further condition that the person must also be authorized, as
specified in the authorization module Aut_Module, the answer to the query
can_access_folder(a_inform, X) in the program P for the variable X will be:
mary and john.

The U operator makes the program denoted by the program expression
Res_Dept U Direction_Dept behaves as a plain program containing the
clauses of Res_Dept and the clauses of Direction_Dept. As the example
shows, union may be used to factor knowledge in different modules.

Intersection allows to combine knowledge by merging clauses with unifiable
heads into clauses having the conjunctions of the bodies of the original clauses
as body. The net effect is that the two plain programs act as sets of constraints
one upon the other.

P:

Consider the following example:

can..access_folder(a_inform, X) +-
employee(X) in (Res_Dept U Direction..Dept),
has ..authorization(X) in (AuLM odule n V alidity..JJ f .Aut)

employee(john) +-
employee(ann) +-

Res_Dept:
employee(mary) +­
employee(fred) +-

Direction_Dept:
employee(john) +­
employee(ann) +-

AuLM odule:
has..authorization(mary) +­
has..authorization(john) +-

Validity..JJf .Aut:
has ..authorization(mary) +­
has..access(john, folder ..13, section..E) +­
has..access(X, Y, Z) +-director ..JJj(Z, X)

Now the answer to the query can_access_folder(a_inform, X) in the pro­
gram P will give for the variable X the binding mary whose authorization is
still "valid".

Notice that Aut..M odule n Validity_of .Aut does not say anything about
has_access, since nothing about has_access is deducible from AuLM odule.

The constraint operator combines the features of union, intersection and a

46

simple form of negation to provide an asymmetric composition between a
program P and a program Q where Q acts as a set of constraints for P as it
is illustrated by the following example. Consider

ConstrainLmodule
has_authorization(X) f- was_authorized..by(Y, X), is..director(Y, Z),

employee(X, Z) in Wrapper _Dept

Wrapper _Dept:
employee(X, res..dept) f- employee(X) in Res_Dept
employee(X, direct..dept) f- employee(X) in Direction..Dept

Validity ..of ..Aut:
has_authorization(mary) t­
has_access(john, folder ..B, section..E) f­
has_access(X, Y, Z) f- director _of(Z, X)

The following plain program behaves as the program expression
ConstrainLmodulefValidity_of .Aut.

has_authorization(X) t- X #mary, was.nuthorized..by(Y, X),
is..director(Y, Z), employee(X, Z) in Wrapper _Dept

has_authorization(mary) f- was_authorized..by(Y, mary), is..director(Y, Z),
employee(mary, Z) in Wrapper _Dept

While the following plain program behaves as the program expression:
V alidity_of .AutjConstrainLmodule.

has _authorization(mary) t- was_authorized..by(Y, mary), is..director(Y, Z),
employee(mary, Z) in Wrapper _Dept

has_access(john, folder ..B, section..E) f-
has.nccess(X, Y, Z) f- director ..of(Z, X)

Notice that the constraint is applied only to mary while the remaining
knowledge in the module is not affected.

2.1 Denotational semantics

Now we give an abstract semantics. In (Renso 1998, Aquilino et al. 1995,
Aquilino et al. 1997) also an operational top-down semantics is given and it
is shown that the two semantics coincide. The semantics is limited to positive
deductive data bases, and it is given in a bottom-up style by extending the
standard immediate consequence operator (T(P)).

47

Recall that, for a definite logic program P, the immediate consequence oper­
ator T(P) is a continuous mapping over Herbrand interpretations defined as
follows (van Emden and Kowalski 1976). For any Herbrand interpretation I:

A E T(P)(I) <==:::> (3B : A +- B E ground(P) 1\ B ~ I)

where B is a (possibly empty) conjunction of atoms and ground(P) denotes
the ground (i.e. fully instantiated) version of program P.

Such an approach is motivated by the observation that the classical least
model semantics is not compositional. That is, it is not possible to obtain the
least model of, say, the union of two programs P and Q by homomorphically
composing the least models of P and Q. In (Brogi 1993) it is shown that
the Tp-based semantics is in fact both compositional and fully-abstract with
respect to the repertoire of composition operations adopted in this paper.

Definition 1 The semantics of progmm expressions is given as follows:

T(EuF) {I) = TE(I) U Tp(I)

T(EnFJ{l} = TE(I) n Tp(l)

T(E/ F){!) = T(E n F){!) U (T(E \ \F)(I)
T(E \\F) (I)= T(E) \{A I A+- G E Ground(Q)(B)}

The immediate consequences of a program expression E constrained by a
program F is a combination of the union and intersection operator and a kind
of complement of a program w.r.t. a program expression. Informally, consider
the case in which E is a plain program constrained by a set of clauses F. The
resulting program is obtained by the union of two parts. One is the intersection
of the two programs, that forces them to agree during the deduction. But
intersection alone is not enough, because some clauses would be missing in
the result. In particular, we miss all the clauses for predicates which are defined
in E and not constrained by F. These predicates are of two kinds: the ones
which do not have a definition in F, and those which have a definition in F
that constrains only a subset of atoms potentially derivable in E.

3 IMPLEMENTATION ISSUES

Here we show how the T(P) semantics for our operators can be turned into an
efficient bottom-up strategy by exploiting the technique of the so-called semi­
naive computation strategy, that allows one to avoid redundant computations
of recursive rules.

The standard implementation of deductive databases is based on the bottom­
up evaluation of logic programming, i.e. on efficient implementations of the

48

computation of the fixpoint of the immediate consequence operator. In this
section we show how the simplest of these efficient implementations, i.e. the
semi-naive computation strategy, can be extended to handle the new features
of MedLan. We consider here only positive programs. Not even the extension
to stratified databases is straightforward, given that, for example, the union of
two stratified databases is not necessarily stratified. The definition of classes of
stratified programs that can be handled by a semi-naive computation strategy
is the subject of our current research.

3.1 The Seminaive Evaluation Technique

The seminaive evaluation technique (Abitebul, Hull and Vianu 1995, Ullman
1988) is a straightforward extension of the immediate consequences opera­
tor (also called naive evaluation), in that it avoids the recomputation of the
same atoms, that might be triggered by recursive definitions, by focusing the
computation only on the new atoms generated in the last step.

We define the seminaive computation as an extension of the standard T(P)
operator. Notice that we refer to the T(P) semantics described in section 2.1
where we do not take into account the in feature. Extending the seminaive
definition to include the message passing mechanism mirrors the approach
presented in (Brogi, Renso and Turini 1997) and is matter of future studies.

The new operator r(P) has two arguments. The first one represents the
current interpretation, the second one, .6., represent the set of facts computed
in the previous step.

Definition 2 Let P be a program, I, .6. interpretations, then r : (28 x 28) -+
(28 x 28) is defined as follows

r(P)(I, .6.) = ({/ U .6.}, {A I3Bl, ... , Bn, A+- B1, ... , Bn E ground(P)
A3i E [1, ... , n] : B; E .6.
A{B1, ... ,Bn} ~ /U.6.}-(JU.6.))

The powers of r are defined as usual

Definition 3 Powers of r

r(P)(0, 0) t 0 = (0, 0)
r(P)(0, 0) t i = r(P)(r(P)(0, 0) t (i- 1))

49

3.2 The Seminaive for Composition Operators

The extension of the T operator for the composition operators is quite intu­
itive. The bottom-up step of the seminaive function applied to P U Q is the
set-theoretic union of the respective arguments, and an analogous definition
works for intersection.

r(P U Q) = r(P)(I, ~) U r(Q)(I, ~)

r(P n Q) = r(P)(I, ~) n r(Q)(I, ~)

where
(A, B) U (A', B') =(AU A', BUB')
(A, B) n (A', B') =(An A', B n B')

In the definition of the constraint operator we will use the Ground predicate
with two arguments: the first one is a given program, and the second is the
Herbrand base with respect to which we instantiate the given program.

r(P/Q)(I, ~) r(P n Q)(I, ~) U r(P \ \Q)(I, ~)

The definition ofT for the constraint operator has the same structure of the
naive definition based on the immediate consequence operator. Since T works
on pairs of interpretations we need to use the operator U, that performs the
union of pairs.

r(P \ \Q)(I, ~) =
(r(P)(I, ~h \{A I A f- B1, ... , Bn E Ground(Q)(B-p),
r(P)(I, ~)2 \{A I A f- B1, ... , Bn E Ground(Q)(B-p)}

The auxiliary definition of r(P \ \Q) is such that, given a pair (I,~), it
computes a new pair, containing atoms that can only be computed by using P.
In (Renso 1998) the correctness of the semi-naive definition has been proved,
as stated by the following theorem.

Theorem 1 The seminaive definition for the composition operators is correct
w. r. t the T(P) semantics of the operators. Let E be a program expression:

(r(E) t w)I = T(E) t w

50

4 AN EXAMPLE FOR INTERNAL SECURITY

The general idea of an architecture of a system for integrating database
sources, according to a given set of security rules, that we have in mind is
depicted in Fig.l.

Level U.

Level TS

Mediators

User identification
Login-password

, -- ,'

Security

Rules

,'Wrappers

/ (oi),~,
\~
' ' - _ - "' Database Sources

Fig.l - A general architecture

The architecture can be considered as consisting of three levels:

• the first level hides those parts of the database source that we do not want
to be visible outside; wrappers are defined for each database and they
export only those parts of the databases that we allow to be visible to
someone; each integrated database is assumed to be provided with secure
transmission system and firewall. We only expect to interface with the
underline database systems,(e.g. it can be any Java interface) that only
provide us with a number of relations that can be queried according to the
internal policies of the integrated database.

• the second security level concerns the mediators layer. Here mediator mod­
ules use data from wrappers to reason on it and to perform semantic inte­
gration; Mediators can use data provided also by other wrappers and medi­
ators. At this level, more policies can be implemented. They can depend on
the application being implemented or it can be stated by agreements with
the particular integrated database. That is, some exception to the internal

51

policy of a database can be allowed from the integrated database as long
as some rule in the integrated environment are satisfied. As an example we
can imagine that some pieces of information are made available to the in­
tegrated environment manager and to the other database managers (in the
integrated environment) but they must be hidden to some external users
etc.

e the third level of security is realized by a user identification system. It could
be a login-password system or some other more sophisticated system, like
a voice recognizer. No particular identification system is assumed in our
models.

Thus our model concentrates on the integration layer to provide for security
of the application and of the integrated systems, i.e. for the "internal" core
of the integrated system.

The general architecture in Fig. 1 could be applied to the following situa­
tion of integrating different databases of employees with permission assigned
for each level, as it is handled by mandatory access control models.

DBl
employee(john,rossi,001,dept1,100)
employee(susan,white,302,dept2,108)

DB2
employee(frank,green,527,70)
employee(mary,brown,670,65)

W..DBl
employee(CodRef,Dept,Salary) +-

employee(FName, LName, CodRef, Dept, Salary) in DB 1

W..DB2
employee(CodRef,nil,Salary)+­

employee(FName, LName, CodRef, Salary) in DB2

Mediator!
employee(User,CodRef,Dept,Salary)+-

user(User), employee(CodRef, Dept, Salary) in(W.DB 1 U W ..DB2)

Mediator2
employee(User,CodRef,Dept,Salary)+­

employee(User,CodRef,Dept,Salary)in(Mediator1/Security~ules)

Security .-Rules
employee(User, CodRef, Dept, Salary) +- has-Perm iss ion(User) in LeveLC

52

LeveLU
has_permission(user1)
has_permission(user2)

LeveLC
has_permission(user3)
has_permission(user4)

LeveLT
has_permission(user5)
has_permission(user6)

LeveLTS
has_permission(user7)
has_permission(user8)

Please note that DBl and DB2 report on a set of employees that are rep­
resented, in the two databases, with a relation that has the same name but
different number of parameters. The information in the two different databases
is merged into the employee relation of the integrated environment by means
of the W _DBl and W _DB2 wrappers, respectively.
Mediator! then defines a new employee relation that includes a user name
(e.g. here it can be the name of the user who queries the integrated system),
and it is defined by the set of employees "deducible" in the union of the two
wrappers.
Mediator2 define the same employee relation given by the same relation in
mediator! "constrained" by the rules in the "Security Rules" module. The
rule in SR serves, in this example, to limitate the access to the information on
the employees of the whole integrated system. In this example only users that
have a LeveLC permission (user3 and user4), have access to this information.

5 CONCLUSIONS

Our research on deductive database systems and, in particular, on the problem
of integrating different databases led us to the design of a language that sup­
ports the notion of mediation via a suite of operators for combining collection
of clauses and the "in" feature.

The most interesting aspect of MedLan operators is the constraint (/) op­
erator that allows for different applications (Asirelliet al. 1998) that we have
studied and developed in the past and that are presently further investigated.

We paid special attention to a formal definition of the semantics of the lan­
guage. The benefits of such an effort are that the operational and denotational
semantics give us the way to implement a top-down and bottom-up evaluation

53

of a query through the mediator which also give Median the capability to deal
with "virtual" and "materialized" view approaches (Hull 1997)

One of the goal of this paper was the presentation of the semi-naive imple­
mentation of the language. This bottom-up implementation technique, that
allows an efficient processing of universal queries, has been extended to queries
involving Median program expressions.

We are currently studying different aspects of MedLan to extend it to cope
with different integration mechanisms, such as cooperation and federation.
Future work will concentrate on experimenting the characteristics of MedLan
in various application domains. We find that the use of the constraint operator
to deal with security issues is at the same time a demanding application field
for MedLan and a promising solution.

In fact, with respect to other approaches we believe that our approach is
novel in many respect. In particular, we believe that one of the interesting
aspects of our approach is the idea of using the notion of "view" for imple­
menting the control of accesses. In this way, instead of checking the user rights
for accessing some information, we give the user its own "allowed" view on
the database, in a very straightforward way.

Future work on the application we have presented will concern the study
of different security models and enforcing policies existing in the literature to
evaluate the feasibility of more complex examples and the effectiveness of our
approach in real systems.

REFERENCES

Abitebul,S. Hull,R. and Vianu, V. (1995) Foundations of Databases, Addison
Wesley.

Aquilino, D. Asirelli, P. Renso, C. and Turini, F. (1995) An Operator for Com­
posing Deductive Databases with Theories of Constraints, in Proc. of
Logic programming and Non-Monotonic Reasoning '95, Lecture Notes
in Computer Science, 928, Springer-Verlag, Berlin.

Aquilino, D. Asirelli, P. Renso, C. and Turini, F. (1997) Applying Restriction
Constraints to Deductive Databases, In Non-determinism in Deductive
Databases, (ed. D. Pedreschi and V.S. Subrahmaniam), Annals of
Mathematics and Artificial Intelligence, 19(1,2), 3-25.

Aquilino, D. Asirelli, P. Formuso, A. Renso, C. and Turini, F. (1996), Using
MedLan to Integrate Geographical Data , accepted for publication on
JLP.

Asirelli, P. and Renso, C. (1997) The Constraint Operator in the
MedLan Language, Compulog Network area Constraint Program­
ming and ERCIM Working Group on Constraints, Joint Work­
shop in conjunction with the CP97 Conference -Linz, Aus­
tria , http:/ /repl.iei.pi.cnr.it/peoplejasirelli/Publications/EWGC-2-
97.html.

54

Asirelli, P. Renso, C. and Turini, F. (1996) Language Extensions for Se­
mantic Integration of Deductive Databases, Proc. of the International
Workshop on Logic In Databases (LID'96), Lecture Notes in Computer
Science, 1154, Springer-Verlag, Berlin.

Bertino, E. Jajodia, S. and Samarati, P. (1995) Database security: Research
and practice, Information Systems, 20 (7), 537-556.

Bonatti, P. A. Kraus, S. and Subrahmanian, V. S. (1995) Foundations of Se­
cure Deductive Databases, IEEE Transaction on Knowledge and Data
Engineering, 7 (3), 406-422.

Brogi, A. Mancarella, P. Pedreschi, D. and Turini, F. (1994) Modular
Logic Programming, ACM Transactions on Programming Languages
and Systems, 16(4),1361-1398.

Brogi, A. (1993) Program Construction in Computational Logic Ph.D. Thesis
at University of Pisa.

Brogi,A. Renso, C. and Turini, F. (1997) Dynamic Composition of Parame­
terized Logic Programs, "Submitted for publication"

Bertino, E. Samarati, P. and Jajodia, S. (1997) An Extended Authorization
Model for Relational Databases, IEEE Transaction on Knowledge and
Data Engineering, 9 (1),85-100.

Candan, K. S. Jajodia, S. and Subrahmanian, V. S. (1996) Secure Mediated
Databases, International Conference on Data Engineering 1996, 28-37.

Jajodia, S. (1996a) Database security and privacy, ACM Computing Surveys,
50th anniversary commemorative issue, 28 (1).

Jajodia, S. (1996b) Managing Security and Privacy of Information, ACM
Computing Surveys , 28 (4es), 129-131.

Jajodia, S. and Samarati, P., Subrahmanian, V.S. and Bertino, E. (1997)
A Unified Framework for Enforcing Multiple Access Control Policies,
ACM SIGMOD.

Hull R. (1997), Managing Semantic Heterogeneity in Databases: A The­
oretical Perspective, Can be found in http:/ fwww-db.research.bell­
labs.comfuser /hullfpods97 -tutorial.html

Lu, J. J. Moerkotte, G. Schue, J. and Subrahmanian, V. S. (1995) Efficient
Maintenance of Materialized Mediated Views, SIGMOD Conference
1995, 340-351.

Papakostantinou, Y., Garcia-Molina, H. and Ullman, J. (1996) MedMaker: A
mediation System Based on Declarative Specifications, International
Conference on Data Engineering.

Renso, C. (1998) Mechanisms for Semantic Integration of Deductive
Databases, Ph.D. Thesis, University of Pisa, May 1998.

Subrahmanian, V. S. (1994) Amalgamating Knowledge Bases, Transaction
On Database System, 19(2), 291-331.

van Emden, M. H. and Kowalski,R. A. (1976) The semantics of predicate logic
as a programming language, Journal of the ACM, 23(4),733-742.

Wiederhold G. (1992), Mediators in the Architecture of Future Information

55
Systems, IEEE Computer, 25, 38-49.

Wiederhold, G., Bilello, M., Sarathy, V. and Qian XiaoLei (1996a) A Security
Mediator for Health Care Information, AM/A, Proc. of the 1996 AM/A
Conf., 120-124.

Wiederhold, G., Bilello, M., Sarathy, V. and Qian XiaoLei (1996b) Protecting
Collaboration, Proc. of the NISSC'96.

Ullman, J. (1988) Principles of Database and Knowledge-Base Systems, Com­
puter Science Press.

6 BIOGRAPHY

Patrizia Asirelli graduated in Computer Science (Laurea in Scienze dell' In­
formazione) in 1975, from the University of Pisa. Since 1978 she is researcher
working for the Italian National Research Council (CNR). She has been re­
search group leader for many years and responsible for many research projects.
She is the Secretary of the Italian Association for Logic Programming (GULP).
Her research interests include logic programming, deductive databases and
software engineering.

Chiara Renso graduated in Computer Science (Laurea in Scienze dell' lnfor­
mazione) in 1992, from the University of Pisa. Got her PhD in Computer Sci­
ence from the University of Pisa in May 1998 with a thesis on "Mechanisms
for Semantic Integration of Deductive Databases" under the supervision of
Prof. Franco Turini.

Franco Turini was born in 1949 in Italy. He graduated in Computer Science
(Laurea in Scienze dell' Informazione) summa cum laude in 1973, from the
University of Pisa. He is currently a full professor in the Department of Com­
puter Science of the University of Pisa. In 78/80 he has been a visiting scien­
tist of the Carnegie-Mellon University (Pittsburgh) and of the IBM Research
Center S.Jose, afterwards. In 92/93 he has been visiting professor at the Uni­
versity of Utah. His research interests include programming languages design,
implementation, and formal semantics especially in the field of functional and
logic programming.

