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Abstract 
Active database rules have been identified as a useful technology for integrity 
constraint maintenance in centralized database systems. Maintaining con­
straints in a distributed environment such as that of a multidatabase system 
provides an even more challenging task for active rule technology. This pa­
per presents the notion of distributed active rules for constraint processing in 
a distributed environment, together with an architecture for the use of such 
rules. The specification of distributed active rules is based on the statement of 
constraints that exist between heterogeneous database sources. The condition 
of a distributed rule must provide for an efficient means to check both local 
and remote constraint conditions. We present the structure of distributed ac­
tive rules and provide an execution semantics for such rules. We also describe 
an architecture for communication between local and global rule processors. 
Finally, we discuss future research issues associated with the analysis of dis­
tributed constraints and the generation of distributed active rules. 
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1 INTRODUCTION 

An important challenge in modern information systems is the integration of 
heterogeneous and autonomous data systems. The integration of such compo­
nents is commonly known as a multidatabase system (Elmargamid et al. 1990). 
As part of that challenge, a significant problem to be addressed is consistency 
maintenance among distributed database components. In centralized and dis­
tributed systems, integrity constraints are often implemented directly in the 
application code. As a result, errors and omissions in the checking and main-
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tenance of constraints can easily be introduced. Furthermore, if guaranteeing 
database consistency in a single database is a difficult problem, data commu­
nication issues, heterogeneity and autonomy make constraint maintenance in 
a multidatabase environment an even more complex task. 

Decoupling applications from consistency maintenance is referred to as 
knowledge independence in {Baralis et al. 1994). To support knowledge in­
dependence, active database technology (Widom et al. 1996) can be used 
together with a constraint specification language to provide automated re­
sponses to constraint violating operations. Active database technology has 
primarily been investigated in the context of centralized systems, making use 
of Event-Condition-Action rules to provide reactive behavior. For example, 
when an event occurs that may potentially violate a constraint, a condition 
is evaluated to test for constraint satisfaction. If the constraint is violated, an 
action is triggered to repair the constraint violation. 

This paper presents the concept of distributed active rules for constraint 
maintenance in a multidatabase environment, together with an architecture 
for the execution of such rules. The specification of distributed active rules 
is based on the statement of constraints that exist between heterogeneous 
database sources, where constraints can either be private global constraints 
or public global constraints. In the case of private global constraints, a lo­
cal database expresses a constraint that must be maintained locally based 
on conditions that exist in remote databases. Public global constraints are 
constraints that. must be maintained globally through cooperation among all 
databases involved in the constraint. Constraints in this environment are ex­
pressed using the Multidatabase Constraint Specification Language (MCSL), 
(Gomez et al. 1997), which is based on the ODMG 2.0 standard {Cattel1994) 
for the expression of constraint query conditions. 

Distributed active rules are developed based on the statement of MCSL 
constraints. The specification of distributed active rules must be concerned 
with checking both local and remote conditions for the purpose of detecting 
constraint violations. Furthermore, distributed rules stored at a local site can 
be triggered by events that. occur at remote sites. In this paper, we describe 
the structure of distributed rules and the manner in which rule conditions are 
organized into local and remote conditions. We also describe the architecture 
of the environment, including rule processing components that must exist at 
each local database and the global rule processing components that must be 
constructed to support distributed execution of remote rule conditions. 

The contribution of the work presented in this paper lies in the extensions 
that we have defined for transforming event-condition-action rules into rules 
that function over distributed data. The use of distributed active rules sup­
ports the definition of non-trivial constraints between heterogeneous database 
sources and provides a viable mechanism for communication between databases 
in the checking and maintenance of such constraints. Through the use of such 
rules, active database technology can therefore be extended into distributed 
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domains, where the databases involved in the multidatabase environment are 
autonomous and otherwise passive database systems. 

The remainder of this paper is organized as follows. Related work on con­
straint specification languages and constraint maintenance in distributed en­
vironments is first presented in Section 2. In Section 3, we describe the mul­
tidatabase environment and the type of constraints supported. Section 4 de­
scribes the distributed active rule language. Rule execution semantics and the 
architecture of the distributed active multidatabase system are presented in 
Section 5. The paper concludes in Section 6 with future research directions. 

2 RELATED WORK 

Research on the use of active databases for constraint maintenance has re­
ceived substantial attention in recent years (Widom et al. 1996). Most of this 
work has primarily been investigated in the context of centralized systems 
and does not consider rules and constraints in distributed or heterogeneous 
database systems. In this section, we address research related to integrity 
constraints and distributed active databases. 

Constraint management in distributed environments initially focused only 
on tightly coupled systems (Simon et al. 1986). Later, new approaches were 
proposed for loosely coupled environments in which distributed transactions 
are not available. One approach to constraint maintenance in a multidatabase 
is based on the concept of data dependencies. A Data Dependency Descriptor 
model which includes consistency predicates and restoration procedures is 
proposed in (Rusinkiewicz et al. 1991). Another approach described in (Ceri 
et al. 1993) uses active rules and persistent queues to maintain the consistency 
of existence and value dependencies between relational databases. 

Protocols are used in (Grefen 1994) for integrity constraint checking in fed­
erated databases. The basic protocol detects an update, raises an alarm when 
a violation is detected, and notifies the Constraint Manager. Protocols vary in 
terms of requirements of the underlying systems, level of asynchronous com­
munication, flexibility and execution cost. Not all the protocols proposed are 
accurate, meaning that they can produce 'false alarms' (notification when a 
violation did not occur). Repairing actions in this approach are not addressed. 

(Chawathe et al. 1996) suggest a formal approach for constraint manage­
ment in loosely coupled distributed databases where locking and transaction 
primitives may not be available. Weaker notions of constraint maintenance 
are formalized and an event-based formal framework is introduced. 

The constraint approach in (Grufman et al. 1997) describes the integration 
of a functional database and an active object system to enforce integrity across 
a multidatabase. The systems are integrated using a tightly-coupled approach 
where the global schema is maintained by the functional database. Constraints 
are limited to universally quantified variables over a simple conjunction of 
predicates. 
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Optimization techniques for distributed constraint checking to avoid remote 
database access have also been investigated. In (Barbara et al. 1992), the 
Demarcation protocol is used to maintain simple arithmetic constraints. The 
work in (Gupta 1993) suggests a method to generate local tests to test global 
integrity constraints. 

Issues related to the use of active rules in a distributed environment have 
only recently been investigated. Rule decomposition, rule distribution, and 
correct evaluation of distributed rules in a distributed active database are 
analyzed in (Hsu et al. 1992). This research is performed in the context of 
relational databases where relations are partitioned horizontally and/or verti­
cally and segments are distributed among sites. Rule queries are decomposed 
using algebraic manipulations based on principles of query optimization. Con­
dition evaluation can be done in a distributed fashion, but rule processing in 
general is still centralized. 

In (Ceri et al. 1992), a locking scheme and a rule-task executor that allow 
rules to reference data at multiple sites is described. To coordinate sites and 
support rule priorities, additional locking and communication protocols are 
proposed. One limitation of the approach is that tables cannot be replicated 
or fragmented across sites. 

In (Pissinou et al. 1996), a reactive multidatabase architecture that permits 
the explicit specification, recognition and resolution of temporal changes to 
support interoperability of objects over time is proposed. Our architecture 
differs from (Pissinou et al. 1996) in that rule events, conditions and actions 
are decoupled and can be executed at different sites. 

The difference between our work and the research presented above is that 
we address remote rule condition testing and remote action execution within 
an object-oriented approach to the expression of constraints and rules. Active 
Rules are structured to use optimization techniques that minimize commu­
nication with remote sites. Furthermore, we focus on non-trivial inter-object 
constraints that involve components stored in different databases. 

3 THE MULTIDATABASE ENVIRONMENT 

This section presents the general framework of the multidatabase environment 
that we are assuming for this research. Section 3.1 describes the architecture 
of the environment together with an Airline application that will be used as a 
running example in the rest of the paper. Section 3.2 then describes the types 
of constraints that are maintained through the use of distributed active rules. 

3.1 The Multidatabase environment 

We are assuming a loosely-coupled, federated database system in which there 
is no global schema. Each database in the federation may have a different 
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data model and different database capabilities. It is the responsibility of the 
multidatabase administrator to resolve any differences between database com­
ponents. Although each database component is autonomous, some of the 
databases may require access to data from remote components of the fed­
eration to enforce application rules. 

Figure 1 Multidatabase Architecture 

To integrate information from different databases, each database provides 
an object-oriented sub-schema based on the ODMG model (Cattel1994). Each 
database in the multidatabase environment can access information from the 
sub-schemas provided by other databases in the federation. To access data 
in a remote database, a local database will import an ODMG definition of 
the schema provided by the remote database. The imported schema, on the 
other hand is viewed as the export schema of the remote database. Also, a 
single database can export different sub-schemas to different databases. For 
example, Figure 1 illustrates a multidatabase composed of four databases. 
Database A exports sub-schema Al to remote database B and sub-schema A2 
to remote databases C and D. Database A also imports sub-schemas Cl from 
database C and D 1 from database D. Not all databases need to export data. 
Sometimes a database only needs access to remote data such as in the case of 
database B. 

To support our discussion of distributed constraints and rules, we introduce 
a small airline example. Assume that AirFun, LittleAir, and ControlAir are 
three independent enterprises that maintain their own database applications. 
These three companies need to coordinate and share information. ControlAir 
is a regulation agency that maintains global information about crew members, 
cities and airlines. ControlAir also maintains statistics about accidents, the 
flight history of pilots and other information that may be used for any air­
line. Air Fun is an airline that provides passenger transportation and cargo 
services. This airline keeps information about flights, planes, and packages 
shipped. LittleAir is a small airline that only offers passenger transportation. 
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LittleAir does not have crew staff and has to contract the services of Air­
Fun airline. The database of LittleAir only keeps information about flights. 
Flights from AirFun or LittleAir can be assigned to any crew member who is 
registered by the regulation agency. 

r------- AirFun -------, 
Plane 

Figure 2 Exported schemas for Airline Example 

The export. schemas of AirFun, LittleAir and ControlAir are shown in Fig­
ure 2. In the graphical notation, each abstract object is represented inside a 
box. The upper part contains the name of the object, the middle part con­
tains all simple properties, and the lower part contains all derived attributes 
and methods. Relationships are represented by labeled arrows between the 
abstract objects. Single-arrows and double-arrows represent single-valued and 
multi-valued properties, respectively. Bold unlabeled arrows represent ISA re­
lationships. 

3.2 Multidatabase Constraints 

In the multidatabase environment introduced in the previous section, indi­
vidual databases collaborate in the exchange of information. External control 
from other databases, however, is limited. In this environment, we identify 
two different forms of distributed constraints: Private Global constraints and 
Public Global constraints. 
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Private Global Constraints (PvGC's) define dependencies between data 
that is stored in more than one database. PvGC's are considered private be­
cause the remote database is not aware of the constraint. The remote database 
allows limited access to some of its information through an export schema. To 
define a PvGC's, it is possible to use any component of the internal database 
schema of the local database as well as any component of the remote schemas 
that are being imported to the local database. Since remote databases are 
not aware of the constraint, the local database cannot generate actions that 
may alter the remote databases when a PvGC violation is detected. However, 
the local database can be informed when a change in the remote database 
has occurred. The local database can then take some local action to fix the 
violation. Consider the following example of a PvGC: 

Pilots in LittleAir can only fly on the planes for which they successfully 
completed the required training by ControlAir. 

If a license to fly plane 'B777' is revoked for a pilot in the ControlAir database, 
a notification is generated to remote database LittleAir. If the constraint is 
violated, LittleAir does not have the authorization to abort the transaction 
in ControlAir. It can, however, generate a local action to eliminate the pilot 
from all the flights that have plane 'B777' assigned. 

Public Global Constraints (PbGC's) are constraints that are associated 
with entities in more than one database. All participant databases in the 
federation agree with the definition of this kind of constraint. The specifica­
tion of PbGC's is done in the context of the exported schemas. The internal 
schemas of each database are not available for the federation. Each of the 
individual databases involved in the specific constraint collaborates during 
the constraint maintenance process. In the local database in which the event 
is triggered, if the global constraint is violated a local action is executed to 
restore the violation. An example of a public global constraint is: 

For safety reasons imposed by the regulation agency, pilots and flight at­
tendants cannot fly more than 8 hours in the same day. 

Private and Public global constraints are expressed in a high level declar­
ative language called the Multidatabase Constraint Specification Language 
(MCSL). MCSL provides a syntax based on ODMG OQL that allows easier 
expression of complex constraints between databases. Consider the constraint 
example illustrated in Figure 3. This safety constraint imposed by the regu­
lation agency indicates that crew members cannot fly more than 8 hours in 
the same day . 

The For All section supports the declaration of object variables used in the 
expression of the constraint, indicating that the condition to be expressed as 
part of the constraint must be true for all Crew members Ci and all flights 
fi assigned to the crew. The scope of variables in the for all section can be 
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PbG CONSTRAINT AirFun_valid..fl.ighLhours 
For All: 

c in AirFun::Crew, fin c.ftights_assigned 
Define: 

AirFun..hours := c.ftight..hours(f.date), 
LittleAir_hours :=element SELECT c2.ftight_hours(f.date) 

FROM Crew c2 
WHERE c.ssn= c2.ssn 
USING LittleAir 

Condition: 
sum(AirFun..hours, LittleAir_hours) <= 8 

end 

Figure 3 Safety constraint example 

any object defined in the import or local schema. The notation Airfun::Crew 
denotes that Crew is a class in the AirFun database. 

The Define section allows the declaration of variables that represent values 
that result from the evaluation of local or remote queries. Such variables can 
be used in the specification of the constraint Condition. In the above example, 
Air Fun..hours is the number of hours that Ci has in the local database on the 
date of flight k Similarly, LittleAir _hours is the number of hours that Ci has 
in the remote database on the same date. The condition expresses that the 
sum of the hours should not exceed the value of 8. 

To enforce MCSL constraints, we use distributed active rules. The follow­
ing sections describe how distributed rules are used to check and maintain 
constraints. 

4 DISTRIBUTED ACTIVE RULE DEFINITION 

Given the basic assumptions about the multidatabase system and the con­
straint language, this section presents the details of the distributed active 
rule language. Section 4.1 describes the basic structure and general seman­
tics of distributed rules. The use of distributed active rules is illustrated with 
examples in Section 4.2. 

4.1 Rule structure 

Existing rule languages are defined in the context of centralized database 
systems. An important aspect to consider in a distributed environment is the 
identification of the local and the remote components needed to evaluate the 
rule in an efficient manner. For example, in some cases it may be possible 
to validate global constraints by checking local data only (Gupta 1993). In 
other cases, it may be required to examine data at remote sites. Under some 
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circumstances, both local and remote conditions must be examined. Given 
these considerations, the basic structure of a distributed active rule is shown 
in Figure 4. 

Rule < rulename> 
Event: E1 or Ez or ... or En 
[Condition: 

[exists {Oi in <class_variable> I <class_variable>.<attribute>} where] 
<locaLcondition_name>(pl, ... ,pn)=true OR 
( < locaLcondition_name> (p1, ... , Pn )=unknown AND 
<remote_condition_name>(pl, ... ,pn)=true) 

Action: <action-list> 
Priority: 

[before <rule-list> 1 
[after <rule-list> 1 

End _Rule 

Figure 4 Structure of the distributed active rule 

In the event specification, each Ei has the form before I after <event­
name>. The before and after options are used to indicate when the condition 
and action of the rule are executed with respect to the event. Specifically, 
the before directive indicates that the rule condition and action are evaluated 
before the execution of the event. Similarly, the after directive indicates that 
the condition and action are evaluated after the execution of the event. A 
rule can be triggered by events that occur at local or remote sites. Events at 
remote sites, however, can only be used together with the after directive. 

In general, any method can be used in the event specification. However, 
the events of interest for constraint maintenance are only the low-level op­
erations that change the state of the database. In the object-oriented model 
used as a framework, the low-level operations that can alter the state of the 
database are: 1) New-<objecLname> and Delete_<objecLname>, used to cre­
ate and delete instances, 2) Modify_<attr_name> and Modify_<sv_reLname>, 
used to change values of attributes or single-value relationships, and 3) In­
sert_<mv_reLname> and Delete-<mv_reLname>, used to create or delete 
multi-valued relationships. 

As in traditional centralized environments, the condition is a query that 
determines if the constraint is violated. A condition evaluation that returns a 
value of true, indicates that there is a violation of the constraint. An action 
can then be executed to restore the consistency of the data. Since it may be 
necessary to evaluate the rule condition in the local database and in remote 
locations, the condition is composed of a local part and a remote part. The 
local condition is evaluated first and if it returns a value of true, there is no 
need to check the remote component. In this case, the action can be triggered. 
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H the local condition returns a value of false, the condition is satisfied and 
the action is not triggered. For distributed constraints, however, there may 
not be enough information in the local database to validate a constraint. If 
the local condition evaluation returns a value of unknown, then the remote 
condition must be tested. Testing the condition of a distributed active rule is 
complicated by the fact that the condition must be evaluated for all objects 
affected by the event. As a result, for one instance of a triggered rule, some 
objects affected by the constraint may require the checking of local conditions 
only while others may require the checking of local and remote conditions. A 
more detailed description of the rule execution semantics occurs in Section 5. 

Another option in the rule specification is the omission of the condition 
clause. These types of rules are known as event-action rules, in which the 
condition is assumed to be true and the action is always executed when the 
event is triggered. 

For constraint maintenance, there are two types of actions that can be 
executed: abortive and corrective actions. An abortive action can be executed 
in the local database when a local event introduces a violation of a public 
global constraint. Corrective actions are executed when a remote event causes 
a violation of a private global constraint in the local database that owns 
the private constraint. In this case, the local database does not have the 
authority to alter the state of the remote transaction that generated the event. 
Corrective actions can be executed, however, in the local database to restore 
the consistency of the data. 

Finally, a rule priority can be defined using the before and after clauses 
in the rule definition. The rules specified in the before clause of rule R, are 
executed before R, and the rules specified in the after clause are executed 
after R,. Note that we also assume immediate coupling modes between the 
event and the condition and between the condition and the action. We have 
not yet addressed the issues of deferred coupling modes for distributed rules. 

4.2 Rule Examples 

To illustrate the distributed active rule language introduced in the previous 
section, this section presents several rule examples that refer to the airline 
application of Section 3.1. Consider again the private global constraint from 
Section 3 that restricts the planes that can be assigned to a pilot. The speci­
fication of this constraint is shown in Figure 5. 

During the rule specification process we need to identify the operations that 
can affect the constraint and the entities involved. For example, this constraint 
involves the entities LittleAir::Crew, LittleAir::Flight, LittleAir::Plane, Con­
trolAir::Crew and ControlAir::Plane. Identifying the possible updates that can 
affect this constraint is not trivial because the information about the type of 
plane a pilot can fly is stored in the database ControlAir and the assignment 



PvG CONSTRAINT LittleAir_Crew_Can..Fly 
Description: Pilots can fly only in planes for which they completed re­

quired training 
ForAll: 

c in LittleAir::Crew, fin c.flights_assigned 
Define: 

plane_type_assigned := f.plane_assigned.type 
Condition: 

end 

IF c.title ='PILOT' and plane_type..assigned<> NULL THEN 
Exists SELECT p2.type 

FROM Crew c2, c2.canfly p2 
WHERE c.ssn = c2.ssn and p2.type= plane_type..assigned 
USING ControlAir 

Figure 5 Can-fly constraint example 
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of flights is stored in LittleAir database. Furthermore, there is no direct re­
lationship between a crew member and the type of plane he/she is assigned 
to fly in any of the airline databases. The plane type must be examined by 
traversing through the flights assigned to each crew member and the plane 
assigned to each flight. 

Assigning a flight to a crew member, changing the plane assigned to a flight, 
modifying the type of a plane or removing a canfty relationship in ControlAir 
are a few examples of operations that can affect this constraint. For each 
operation, an active rule can be defined. The following examples illustrate 
two of those rules. 

Example 1 The active rule in this example is used to verify the consistency 
of the database when a plane is assigned to a flight: 

Rule Crew _Can..Fly 
Event: before LittleAir::Flight.modify _plane_assigned(Flight,Plane) 

before LittleAir: :Plane.inserLflights_assigned(Plane ,Flight) 
(Condition: 

exists C in Flight.crew_assigned where 
LocaL Crew _can..Fly ..is..invalid( C, Flight )=true OR 
(LocaL Crew _can..Fly ..is ..invalid( C, Flight )=unknown AND 
Remote_ Crew _can_Fly ..is..invalid( C, Flight )=true) 

Action: Abort 
End..Rule 

The local and remote condition are evaluated for all crew members c, E 
Flight.crew_assigned. If the condition is true for any c,, the transaction is 
aborted. The details of the local and remote conditions are: 



30 

Rule_condition LocaL Crew _canFly is_invalid ( c,f) 
Subcond 1: 

end 

if c.title='PILOT' and f.plane_assigned <> NULL then 
Execute Next condition (Subcond 2) 

else return(false) 

Subcond 2: 
plane_type..assigned := f.plane_assigned.type 
OQ_Crew _canFly( c, plane_type_assigned,found) 
if found =true then return(false) 
else return(unknown) 

end 
EndRule 

Rule_condition Remote_ Crew _canFly isinvalid ( c,f) 
Subcond 1: 

RQ_Crew _canFly( c.ssn,plane_type..assigned,found) 
if found =true then return(false) 
else return(true) 

end 
EndRule 

Using the constraint specification, local and remote tests are developed. 
The local condition is expressed in terms of local objects only. The remote 
condition is defined in terms of the results obtained in the local condition 
combined with calls to remote databases. For each combination (ci,Flight), 
the local condition is evaluated first. In the local rule condition, notice that 
there are two subconditions. The first subcondition is evaluating the local 
predicates identified in the constraint specification. The second subcondition 
contains OQ-calls that optimize the remote condition checking process with 
the introduction of additional tests that can avoid the need to evaluate the 
remote condition. The 'OQ' or Optimizer Query identifies the method call 
as a locally optimized test. In the example above, the OQ_Crew_canFly is 
checking if Ci has another flight in the local database with the same airplane 
type. If another flight is found, we can conclude that the plane type is valid and 
there is no need to test the remote condition. However, if no flight is found, the 
status of constraint satisfiability is unknown and we proceed to test the remote 
condition. The remote condition calls the remote query RQ_Crew_canFly to 
find in ControlAir if the combination Ci and plane_type_assigned is valid. 

Example 2 In this example, we illustrate that two different options for event­
action rules can be used to restore the consistency of the data when a license 
to fly a plane is revoked for a pilot in ControlAir database. Notice that in 
this example, LittleAir receives a remote event originated in ControlAir. Let 
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('John','B777') be the link removed in ControlAir. To eliminate the violation 
there are two options: 

1. To remove all the flights with plane 'B777' that 'John' has in LittleAir. 

Rule Crew _Cannot..Fly _l 
Event: after ControlAir: :Crew .delete_can-fly( C,Plane-type) 
Action: LittleAir::Crew.Delete..ftights_assigned(C.ssn, Plane-type) 

End ...Rule 

The action Delete..ftights_assigned is implemented as the following update: 

Delete relationship flights_assigned (crew _assigned) 
from crew c2, c2.flights_assigned f 
where c2.ssn='John...ssn' and f.plane_assigned.type='B777' 
using LittleAir 

2. To remove the plane 'B777' from all the flights that 'John' has in LittleAir. 

Rule Crew _Cannot..Fly _2 
Event: after ControlAir:Crew.delete_can-fly(C,Plane-type) 
Action: LittleAir: :Flight.Delete_plane_assigned( C .ssn, Plane-type) 

End....R.ule 
The action Delete_plane_assigned corresponds to the following update: 

Delete relationship plane_assigned (flights_assigned) 
from crew c2, c2.flights_assigned f 
where c2.ssn='John...ssn' and f.plane_assigned.type='B777' 
using LittleAir 

5 RULE EXECUTION SEMANTICS 

Given the presentation of distributed active rules in the previous section, 
this section describes the execution semantics for such rules. The distributed 
active database architecture that supports the execution of the distributed 
active rules is presented in Section 5.1. Section 5.2 describes the algorithm for 
processing distributed active rules. 

5.1 Distributed Active Database Architecture 

The architecture of the active component of the multidatabase environment 
is illustrated in Figure 6. We assume that each component can respond to 
read-only requests from remote components. In addition, local components 
can receive an event notification from a remote component and start the 
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execution of local transactions. Since the system does not support distributed 
transactions, local components are not allowed to send update requests to 
remote components. The database components can be passive databases. A 
layered approach is used to support the active functionality required for the 
detection of the events and the processing of the rules (Widom et al. 1996). 

Local Database 

Update r- Query Processor I Local 

Processor ,.. Transaction 

I T 
Manager Constraint I 

Update Analyzer 
OperaUon 

Local Condition 

Local Event Evaluator Constraint f--
Processor 

Catalog l Rule Generator-~ l 
I--

Remote Event ------ Local Rule Local Rule 
Processor Manager Repository 

Remote Remote 

E~ent Conditions and Results 

::> ~ Corba Interlace :::::> 

Remote Rule P~esslng Mechanl"" 

rl ~==e r GlObal Rule 
Repository 

Remote Event I J Remote r-
Remote 

~ C~a lntertac? 
Database 

Detector -I Condition 
Evaluator 

I 

Figure 6 Architecture of the active multidatabase system 

The rules used in the distributed active rule system are stored in the data 
repositories. The Constraint Catalog contains the specification of the con­
straint in MCSL. This specification is used to report violations to the user. 
The Local Rule Repository contains global and local rules used to maintain 
consistency of the local database. The Global Rule Repository contains infor­
mation about the remote queries and the corresponding global rules. 

As shown in Figure 6, every component database is assumed to have an 
Update Processor that executes update requests in the local database. If an 
update is specified as an event of an active rule, the rule is executed. If the local 
database is a traditional passive database, then the update processor must be 
extended to signal the local event processor when a change has occurred in 
the database. The Query Processor executes read-only requests in the local 
database. Since these requests do not change the state of the database, the 
query processor does not trigger any integrity constraint rule. However, the 
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query manager participates in the rule execution process by evaluating local 
conditions. 

The Local Rule Manager controls the execution of local and distributed 
active rules. When an event is detected, the rule manager triggers the rules 
associated with the event and calls the Local Condition Evaluator to test 
conditions in the local database. If there is not enough information to verify 
the constraint locally, the rule manager invokes the remote rule processing 
mechanism. 

The remote rule processing mechanism provides the communication inter­
face between databases and controls the execution of global rules. The Global 
Rule Processor executes the remote calls needed to check constraint conditions 
from a remote database. The Remote Condition Evaluator is invoked by the 
global rule processor to evaluate read-only queries in a remote database. In a 
distributed environment, the same rule may be triggered by events in differ­
ent databases. Therefore, it is necessary to provide an execution model that 
supports both concurrent and sequential rule execution. The Global rule pro­
cessor allows concurrent execution of rules but also serializes rule execution 
when conflicts in the concurrent access of data are detected. Concurrency con­
trol and recovery for transactions operating in the local database is provided 
by the Local Transaction Manager. 

The Remote Event Processor is invoked when an event is executed at a 
remote database. When the remote event occurs, the database in which it 
occurs must notify the Remote Event Detector of the remote rule processing 
mechanism. The remote event detector then signals the remote event processor 
at the local databases that are interested in the occurrence of the event. 
When the signal is received, an active rule is triggered. Typically, the actions 
executed within the rule are local corrective operations to satisfy a constraint 
that was violated by the remote database. 

lnteroperability of all database components in the environment is achieved 
through the use of CORBA technology (CORBA 1993). In particular, we have 
used ORBeline (ORBeline 1994) to develop the prototype for this research 
(Healy 1997). The use of the CORBA distributed object framework provides 
several advantages. First, CORBA provides the mechanisms by which objects 
transparently make requests and receive responses by simply invoking meth­
ods calls. Second, the low-level communication is hidden by CORBA and the 
modules are written independently of the communication. Finally, CORBA 
objects are not attached to a specific location. Therefore, it is easy to redis­
tribute modules as the system matures. 

5.2 Rule Processing 

In this section we present the algorithm for processing of distributed active 
rules. To formally describe the rule processing algorithm, we first introduce 
several concepts and definitions. 
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Definition 1 Let Ki be a constraint. The Constraint Class Set of K; denoted 
as CCS(Ki) = {CI,Cz, ... ,Cn} is the set of all class names on which the 
constraint K; has an effect. 

Definition 2 Let E; be an event in the database. The Potentially Violated 
Set of constraint K; by the event E;, denoted PVS(K;,E;), is the set of 
object instances {P1 ,P2 , ••. ,Pn} that can violate the constraint K; when E; 
is executed. Each P; is a tuple of the form [ 0 1 , Oz, ... , On], where each 0; is a 
member of a class in CCS(K;). 

Definition 3 The before-event rule set BR(E;) = {br1, brz, ... , brn} is the set 
of rules with the before directive in the specification of event E;. Likewise, 
the after-event rule set AR(E;) = {arl,arz, ... ,arn} is the set of rules with 
the after directive in the specification of event E;. 

Yes 

No 

Yes-1 
No 

ves-1 

Abort 
Transaction 

Abort 
Transaction 

Figure 7 Transaction processing 

The control flow for transaction processing at each local site is shown in 
Figure 7. When the event E; is detected, the rule process starts for the 
before-event rules {br1 ,br2 , ••• ,brn}· If an abort directive occurs with such a 
rule, the transaction is aborted immediately. If a rule does not invoke an abort, 
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the event is executed. Finally, the set of after-event rules {ar1 ,ar2 , ... ,arn} is 
processed in the same manner. 

Each rule set is processed sequentially before and after the event using al­
gorithm 1. In each rule set, rules are ordered based on priority. During the 
rule evaluation process, there are two queues that contain the object instances 
that are being tested for constraint violation. The local condition queue con­
tains the object instances P; that need to be evaluated in the local database. 
Similarly, the remote condition queue contains the object instances P; that 
need to be evaluated in the remote database. 

Algorithm 1. Let Ej be the update operation that triggered the rule, the 
processing of the before-event and after-event rule set is as follows: 

While rule set not empty { 

} 

1. Select a Rule R; from rule set 
2. Identify potentially violated set PV S( K;, Ej) and append each 

P; E PVS(K;,Uj) to the local condition queue. 
3. While local condition queue not empty 

3.1 Get tuple [01 , 0 2 , ... , On] from local-condition-queue 
3.2 result= evaluate-local-condition( condition-name, 0 1 , 0 2 , ... , On) 
3.3 if result =unknown then 

enqueue( remote-condition-queue, [ 01, 02, ... , On]) 
3.4 if result= true then 

execute action 
4. While remote condition queue not empty 

4.1 Get tuple ( 01, 02, ... , On] from remote-condition-queue 
4.2 result = evaluate-remote-condition( condition-name, 0 1 ,02 , ... ,On) 
4.3 if result. = true then 

execute action 

The condition evaluation of each P; involves local and remote condition 
checking. A result of unknown in the evaluation of the local condition for tuple 
P; indicates that there is not enough information in the local database to test 
the constraint. Therefore, the condition checking is not complete and the P; 
is appended to the remote condition queue for further processing. If the result 
of the condition is false, there is no constraint violation and there is no need 
to check the condition for P; in the remote database. However, if the result of 
the condition is true, the constraint is violated and the rule action is executed 
immediately. If the rule action is an abort, the rule processing algorithm 
terminates. If the rule action is a corrective action then the corrective action 
is invoked as a subtransaction to the triggering event for each object that 
violates the constraint. After the local condition is tested for all P; 's in the 
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potentially violated set, the remote condition is evaluated for the Pi's in the 
remote condition queue. 

Example 3 Assume that John, Mike and Peter are pilots. Eagle and Early­
Bird are planes of type 'A320'. Sky and Sunrise are planes of type 'B777'. The 
information of the type of planes that the pilots can fly as well as the flight 
assignments is shown in tables 1 and 2 : 

Flight 

flOO 
flOl 
f102 
f103 

Crew canfly 

John 'B777', 'A320', 'A340' 
Mike 'B777', 'A320' 
Peter 'A320', 'A340' 

Table 1 Crew Information 

crew-assigned 

John, Mike, Ann 
John, Mike 
Peter, Ann 
John, Ann 

plane-assigned 

Eagle 
Eagle 
Sky 

Table 2 Flight Information 

For simplicity we use the crew name instead of ssn to identify the crew mem­
bers. Also we show directly the values of the attributes instead of object 
identifiers. Notice how the algorithm is executed when the following events 
trigger the distributed active rules: 

1. Assign plane EarlyBird to flight flOO. 
The rule crew _can_fly is triggered and the potentially violated set is iden­
tified. When the local condition is checked, all elements satisfied the local 
condition. John and Mike have another flight with type 'A320'. Since Early­
bird is also of type 'A320' it is assumed that the constraint is not violated. 
Ann is not a pilot and therefore satisfies the constraint. As a result, there 
is no need to check the remote constraint. 
PVS= { [John, flOO), [Mike, flOO), [Ann, flOO) } 
Local Condition Queue= { [John, flOO), [Mike, flOO), [Ann, flOO) } 
Remote Condition Queue{ null } 
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2. Assign plane Sunrise to flight flOO. 
The rule crew _can _fly is triggered and the potentially violated set is identi­
fied. When the local condition is checked, John and Ann satisfied the local 
condition because John has another flight with type 'B777' and Ann is not 
a pilot. The remote constraint is only verified for Mike and no violation of 
the constraint occurs. 
PVS= { [John, flOO], [Mike, flOO], [Ann, flOO] }. 
Local Condition Queue= { [John, flOO], [Mike, flOO], [Ann, flOO] } 
Remote Condition Queue{ [Mike, flOO] } 

3. Revoke license for plane type 'B777' to John. 
Assume that we are using the Crew _Cannot ..Fly _l rule presented in Ex­
ample 4.2 The action will eliminate relationship crew _assigned {John} for 
flights {flOO,fl03}. 

6 SUMMARY AND FUTURE WORK 

This paper has presented the concept of distributed active rules for the check­
ing and maintenance of constraints in a multidatabase environment. Dis­
tributed rules extend the traditional notion of event-condition-action rules 
with the specification of rule conditions that involve local and remote com­
ponents. We presented an execution model for distributed active rules as well 
as a distributed rule processing architecture for the execution of such rules. 
Distributed active rules support the use of complex constraints between het­
erogeneous database systems by decoupling multidatabase constraint enforce­
ment from application code and providing a more general mechanism for the 
enforcement of complex constraints between distributed data sources. 

There are several directions for future research that we are currently investi­
gating. As illustrated in this paper, the rule definition process is not a trivial 
task. We are investigating techniques for the automated analysis of MCSL 
constraints to assist in the generation of the distributed rules. An important 
aspect of this work is to develop techniques for optimizing rule conditions 
so that the need for remote condition testing is minimized by making use of 
local data whenever possible. Another important aspect of this work involves 
a thorough analysis of distributed constraints to identify the operations that 
can violate a constraint and the databases in which those operations can oc­
cur. Finally, although we have experimented with the implementation of the 
concepts presented in this paper, a full implementation of a distributed active 
rule processing environment is still under development so that we can better 
analyze architectural and execution issues of distributed active rules. 
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