
Maintaining integrity constraints and
security in real-time database systems

Q. N. Ahmed and S. V. Vrbsky
Department of Computer Science, The University of Alabama
101 Houser Hall, Box 870290, Tuscaloosa, AL 35487-0290,
U.S.A, Phone 205-348-6363, Fax 205-348-0219,
E-mail { qahmed, vrbsky@ cs. ua. edu}

Abstract
Many real-time database systems are contained in environments that exhibit
restricted access to information, such as government agencies, hospitals and
military institutions, where mandatory access control for security is required. In
addition to such security constraints, real-time database systems have real-time
integrity constraints. These real-time constraints require deadlines to be met and
data to be temporally consistent. Conventional multi-level secure database models
are inadequate for time-critical applications and conventional real-time database
models do not support security constraints. We propose a new concurrency control
algorithm for secure real-time databases. We implement the algorithm and study
the performance using a real-time database system simulation model. Results show
that the algorithm performs fairly well in terms of security and timeliness
compared to the non-secure algorithm. We argue and show that achieving more
security does not necessarily mean a great deal of sacrifice in maintaining real-time
constraints.

Keywords
Multi-level secure databases, real-time database, real-time constraints

S. Jajodia et al. (eds.), Integrity and Internal Control in Information Systems
© Springer Science+Business Media Dordrecht 1998

256

1 INTRODUCTION

Real-time database systems (Ozsoyglu 1995, Ramamritham 1993, Wolfe 1997)
have real-time integrity constraints in addition to the integrity constraints found in
conventional databases. Specifically, real-time database systems have timing
constraints and temporal consistency constraints. Some examples of real-time
databases are avionics, radar tracking, managing automated factories, robot
navigation, program stock trading, and military command and control. The timing
constraints are typically in the form of deadlines which require a transaction to be
completed by a specified time. Failure to meet such a deadline causes the results
to lose their value, and in some cases a result produced too late may have a
negative value. The temporal consistency constraints require data to be up-to-date
as well as data that is close in time. Much of the data in a real-time database is
only valid during a specified interval. Failure to meet these temporal consistency
constraints compromises the integrity of the real-time database.

Many real-time database systems are contained in environments that exhibit
hierarchical propagation of information. Such real-time database systems may
require restricted access by users to the data. Mandatory access control is used to
ensure the security of data in hierarchical environments, and is typically
implemented by multilevel secure (MLS) databases (Bell 1974, Denning 1988,
Jajodia 1991). However, major efforts to design secure MLS databases have not
considered databases with the real-time constraints of deadlines and temporal
consistency. A secure real-time system has to simultaneously satisfy two goals:
ensure that the real-time constraints are satisfied and provide security. These two
goals can conflict with each other and to achieve one goal is to sacrifice the other.
The objective of our work is to study the factors involved in security control of
real-time databases, develop suitable concurrency control algorithms, and using a
real-time database simulation, study the effect on real-time integrity of maintaining
security in real-time databases.

All MLS models (Ramamritham 1993, Jajodia 1991) are based on the
classification of the system elements, where classifications are expressed by
security levels. Data objects have security levels and users have clearance levels.
A user can read a certain object only if the subject's clearance level dominates the
object's security level. According to the Beii-LaPadula properties (George 1997)
for MLS databases, a subject cannot read an object of a higher or incomparable
security level than the subject and all writes must take place at the subject's
security level or higher. However, the concurrent execution of transactions results
in contention for data objects. As a result, it is possible to have an indirect flow of
information from objects at higher levels to subjects at lower levels due to a covert
channel (Moskowitz 1994, Qian 1994). For example, if the results from a lower
security level transaction are delayed when there is a higher level security
transaction, then the lower security level user can determine there are transactions

257

at higher levels, and may even be able to receive information from the length of the
delay.

Enforcing database security can compromise the real-time integrity by causing
deadlines to be missed and data to become temporally inconsistent. For example,
suppose there is a transaction with an earlier deadline at a high security level and a
transaction with a later deadline at a low security level, and there is a data conflict
between them. If the low security level transaction gets the data and blocks the
high security transaction, then although security is maintained, the real-time
constraints may be violated. The high security transaction has an earlier deadline,
and due to its blocking may miss its deadline. If the reverse is allowed to happen
to maintain the real-time constraints, then security is violated as a covert channel is
introduced.

Whether to maintain real-time constraints or security is dependent upon the
system. If the system requires that security be maintained regardless of the real­
time constraints, then conflict must be resolved in favor of security. On the other
hand, if the system requires the real-time constraints be maintained, then security
must be sacrificed in favor of the real-time constraints. If the system allows a
compromise between security and priority, then the goal is to maintain as much
security as possible without violating the real-time constraints significantly. In this
paper we present a new concurrency control algorithm based on 2-phase locking
(2PL). The algorithm recognizes the constraints of real-time transactions as well
as security. The algorithm can be used for systems where security can be
compromised for real-time constraints and vice versa, and also for systems where
security is a correctness criteria and must be maintained.

The rest of the paper is organized as follows. In section 2, we discuss related
work in secure real-time concurrency control and the secure real-time factor. In
section 3, we present the secure concurrency control algorithm and metrics for
security maintenance, and in section 4 we describe the simulation model and the
results. In section 5 we present our conclusions.

2 SECURE REAL-TIME CONCURRENCY CONTROL

The few works which address the security of real-time databases are described in
(George 1997, David 1995, Son 1995). In (David 1995) a concurrency control
strategy is presented which trades off security for improved timeliness if the
system does not provide the desired deadline miss percentage. They use a measure
called "capacity" to adjust the covert channel to get better real-time performance.
In (Son 1995) a secure two-phase locking algorithm is used to allow partial
violations of security for improved timeliness. Decisions are made concerning the
trade off between security and meeting deadlines by comparing two measures to
resolve conflicts: the security factor and the deadline miss factor. This comparison
is used to determine if a lower level transaction should be aborted or proceed when
it conflicts with a higher level transaction. If the security properties are more
important, then any conflict is resolved in favor of the lower level transaction,
otherwise if meeting deadlines is more important, then the higher priority

258

transaction is given precedence. Our work also considers the need to tradeoff
between security and timeliness but shows that security can be achieved with
negligible sacrifice in maintaining real-time constraints.

In (George 1997), security of firm real-time databases is addressed. In this study,
security is viewed as a correctness criterion, and the number of missed deadlines as
a performance issue. They do not trade off between missed deadlines and security,
but instead propose to minimize the number of missed deadlines without
compromising security through the choice of concurrency control strategy. They
examine the performance of such strategies as a two-phase locking priority
scheme, a prioritized optimistic concurrency control algorithm and a new
approach, called the dual approach. The dual approach utilizes different
concurrency control strategies depending on whether transactions are at the same
security level or at different security levels. In contrast, our algorithm is capable of
handling transactions both at the same and different security levels.

2.1 Secure real-time factor

The concurrency control algorithm for a secure real-time database system must use
security levels of transactions as well as their deadlines to resolve data conflicts.
Not only that, the difference in security levels of transactions also needs to be
considered when a security conflict is to be resolved. If one transaction is at the
highest security level and the another one is at the lowest and a covert channel is
introduced between them, then the severity of the covert channel will be higher
than the one where transactions are at adjacent security levels. None of the
previous works discussed in the previous section recognizes the difference in
security levels as a measure to resolve a security conflict. In secure real-time
database systems, where satisfying real-time constraints is one of the goals to be
achieved, one cannot afford to sacrifice it for some covert channel not severe
enough to be concerned about. Thus, we believe that difference in security level is
an important issue for determining whether a covert channel has to be closed by
possibly sacrificing real-time constraints. To be able to determine the severity or
consequences of security violations, we introduce the following "covert channel
property" for secure real time database systems.

Covert Channel Property: The greater the difference of security levels between two
transactions at data conflict, the greater the severity or the consequence if a covert
channel is introduced.

The covert channel property indicates that consequence is proportional to the
difference in security or access levels. In other words, the greater the difference in
access levels, the more important it is to maintain security and close the covert
channel. If two conflicting transactions are at two extreme security levels, the
consequence of opening a covert channel is the maximum. If the two conflicting
transactions are at two adjacent security levels the consequence is the minimum.
Of course, if the two transactions are at the same security level, there is no covert

259

channel, and hence no consequence. We introduce a metric to measure the
consequence of introducing a covert channel, to be known as the Covert Channel
Factor (CCF). The CCF is obtained by normalizing the difference of access levels
between the two conflicting transactions:

CCF = Difference in access levels
Maximum difference possible

Difference in access levels
=~~~~~~~~~~

of access levels -1
The maximum value of CCF is I when the two transactions are at two terminal

access levels. The minimum value of CCF is 1/(# of access levels -1) when the
two transactions are at two consecutive security levels. Of course, if two
transactions are at the same security level, CCF is obviously zero meaning no
covert channel.

2.2 Security tolerance

The CCF gives a measure of security violation. The greater the CCF, the greater
the difference in access levels in a security conflict and hence, according to the
covert channel property, the greater the severity of security violation. Depending
upon the system requirements, security violation may or may not be tolerated. The
security tolerance is defined as the maximum security violation a system permits.
Since a security violation is measured in terms of CCF, so is the security tolerance.
A security tolerance of 0 means the system does not allow any covert channel and
a security tolerance of 1 means the system allows all possible covert channels. In
other words, the security tolerance is the value of a CCF that corresponds to the
upper limit of security violation in a system. For example, assume a system only
permits the covert channels between two consecutive access levels. In this case,
any covert channel having the difference in access levels greater than 1 is not
allowed. The security tolerance in this system will be the value of the CCF
corresponding to the covert channel with one access level difference, i.e,

Security tolerance = Difference in access levels
Maximum difference possible

=---_.:_ __ _
#of access levels -1

The smaller the value of tolerance, the more important is the security and vice
versa. In the next section we will see how we can use security tolerance to
represent the importance of security. In a security conflict, if the CCF is greater
than the tolerance, then a conflict is resolved in favor of security, otherwise the
conflict is resolved in favor of priority based on the real-time constraints.

260

3 SECURE CONCURRENCY CONTROL ALGORITHMS

As mentioned earlier, secure real-time database systems have to satisfy the security
constraints in addition to the real-time constraints. Security can be thought of as a
correctness criteria where security must be enforced. It can also be thought of as a
compromising criteria with real-time constraints where security can be sacrificed
to maintain more real-time constraints. The algorithm we present here supports
both types of security. Before describing our algorithm, we give a brief
introduction to the existing non-secure algorithms upon which our algorithm is
based. This algorithm is the 2PLHP (Abbot 1992) and our algorithm is to be
known as the Secure 2PLHP algorithm. They are described in the following sub­
sections.

3.12PLHP

The 2PL High Priority (2PLHP) algorithm is a modification of the strict two-phase
locking algorithm (2PL) (Abbot 1992) and incorporates the priority of transactions.
The priority of a transaction is based on its real-time constraints. The earlier its
deadline, the higher its priority. When a transaction requests a lock on a data item
that is held by one or more higher priority transactions, the requesting transaction
waits for the data item to be released. If the data item is locked by only lower
priority transactions, the lower priority transactions are aborted and restarted with
the same deadline, and the lock is granted to the requesting transaction. If priority
is unique, 2PLHP is deadlock free.

3.2 Secure 2PLHP

The 2PLHP algorithm does not recognize security. To incorporate security we
examined all the scenarios involving deadline and access-levels between lock­
holding and lock-requesting transactions. For secure real-time database systems
five types of conflict can occur. We now describe the strategy taken by our
algorithm for each conflict. Assume Tl is the lock-requesting and T2 is the lock­
holding transaction.
1. Deadline(Tl) >Deadline(n) and Access level(Tl)>Access level(n): In this

case the requesting transaction is at a lower priority and a higher security
level. We can abort or block the requester. There will not be any covert
channel or priority violation.

Block T 1 II priority and security maintained
2. Deadline(Tl)>Deadline(n) and Access level(Tl)<Access level(n): In this

case the requester is at a lower security level and a covert channel will be
introduced if it is blocked or aborted. However, if the requester is allowed to
proceed and the lock-holder aborted, priority will be violated. In this case, we

261

compute the CCF if Tl is aborted or blocked. If the CCF is greater than the
tolerance then the lock-holder (T2) is aborted, otherwise the lock-requester
(Tl) is blocked.

If CCF>tolerance then
Abort n II security maintained

Else
Block T1 II priority maintained

3. Deadline(T1)<Deadline('n) and Access level(T1)>Access level('n): In this
case, the requester is at a higher priority and at a higher access-level and a
covert channel will be opened if the lock holder is aborted. Here we need to
compute the CCF if T2 is aborted. If the CCF is greater than the tolerance,
then T2 is allowed to proceed and T1 aborted, otherwise T1 is granted the lock
and T2 is aborted.

If CCF>tolerance then
Abort T1 II security is maintained

Else
Abort n //priority is maintained

4. Deadline(T 1)<Deadline(n) and Access level(T 1)<Access level('n): In this
case the requester is at a lower security and a higher priority, and we can
resolve the conflict by aborting T2. Priority is maintained and no covert
channel is introduced.

Abort n II priority and security maintained
5. Access level(T1) = Access level('n): In this case, two transactions are at the

same security level and therefore there is no covert channel. The conflict is
resolved according to the 2PLHP algorithm.

If deadline(T1)<deadline('n) then
Abortn

Else
Block T1

3.3 Choice of tolerance values

The choice of a tolerance value is very important and it provides a way to control
priority and security maintained in the system. The smaller the value of tolerance,
the more important it is to maintain security and the greater the number of times a
conflict is resolved in favor of security. By choosing an appropriate value for
tolerance, the system can be maintained 100% covert channel free with every data
conflict resolved in favor of the transaction at the lower security level. In order for
that to happen, the condition in the if-then in cases 2 and 3 in section 3.2 must be
true for every value of CCF. In other words, the minimum CCF should be larger
than the tolerance value, i.e., the tolerance should be smaller than the minimum
CCF. Any tolerance value greater than that will allow some violation of security.

262

3.4 Metrics of security maintenance

We now introduce two metrics or security factors to measure the security
maintenance of a system. One metric keeps track of the number of times security
has been maintained. The other one recognizes the differences between the access
levels.

S . F 1 #of times security is maintained
ecunty actor = . .

Total number of secunty confhcts

Security Factor 2
Sum of the difference in access levels for conflicts having security maintained

Sum of the difference in access levels in all security conflicts

Both the metrics are suitable for measuring the performance of the system.
Depending upon the system, one metric might be more appropriate than the other.
If only the number of conflicts maintained is of concern the first factor is
appropriate. The second factor is appropriate in systems where difference in
access-levels is crucial. In this study, we choose the security factor 2.

3.5 Metric of real-time constraint maintenance

When deadlines are missed, the temporal data is not updated in time and data
becomes temporally inconsistent. For this study we will use the percentage of
deadlines missed as one of the measures of the maintenance of the real-time
constraints.

We also use the priority maintenance factor as a second measure. In order to
express the level of priority maintenance in a system, we use the following priority
maintenance factor.

. . . #of times priority is maintained
Pnonty mamtenance factor = 1 b f d fl.

Tota num er o ata con 1cts
This metric is used to determine how priority maintenance affects the real-time
performance.

4 SIMULATION MODEL

This section outlines the structure and details of our simulation model used to
evaluate the performance of our concurrency control algorithms for real-time
database systems. Central to our simulation model is a single-site main memory
database system operating on a single processor. The database is modeled as a
collection of data pages in memory. The simulation consists of three main
components: a Transaction Manager (TM), a CPU Manager (CM), and a Log
Manager (LM). The TM is responsible for issuing lock requests, CM for granting
CPU access, and LM for log disk access. The service discipline used for the queues
is Earliest Deadline First (EDF) (Liu 1979) without preemption. Each transaction

263

consists of multiple operations each of which can be either read or write. If the
operation is read, then the accessed page is not updated. The write operation
updates the accessed page and an entry is written into the log buffer.

When an operation of a transaction makes a data access request, i.e., lock request
on a data object to the TM, the request goes through concurrency control to obtain
a lock on the data object. If the request is granted, the transaction requests CPU
access to the CM. If the CPU is free, the request is granted and the transaction does
the CPU computation. After the CPU computation, if there are any more
operations left, the transaction proceeds with the next operation and makes a lock
request to the TM. If all operations are done, the transaction requests log disk
access to the LM and if access is granted, it writes the log buffer to the log disk and
commits.

If the request for the lock is denied, the transaction will be placed into a block
queue. The blocked transaction will be awakened when the requested lock is
released.

4.1 Parameters of simulation model

Table 1 gives the system resource parameters. The parameter CPU_TIME is the
time to process a page by a CPU. The simulation does not explicitly take into
account the time required for accessing the transaction manager, the CPU manager,
and the log manager. It is assumed that those times are included in the time
required to access the resources, i.e., the CPU, and the log disk.

Table 1 System resource parameters

Parameter Explanation Value

DB SIZE Number of data pages in the database 400

CPU_TIME CPU time for processing a data page 5msec

WRITE_pROB Probability that an operation is write 0.5

MAXACCESS Number of security access levels 6

Table 2 summarizes the workload parameters that characterize the transactions and
the system workload. Transactions' inter-arrival rates are exponentially distributed.
The Rate parameter specifies the mean rate of transaction arrivals. The TransSize
determines the mean number of operations in the transactions determined from a
normal distribution with mean of TransSize. The actual data objects or pages
accessed by each operation are uniformly distributed across the whole database.

264

The LogDelay is the time required for writing a log buffer to the log disk. The
RestartDelay is the overhead for roll back when a transaction is aborted. The
parameters MinSlack and Max:Slack are used to set the lower and upper bound of
transactions' deadlines. The following deadline assignment formula (Abbot 1992)
is used to assign the deadline to the arrived transaction.
Deadline= Arrival time+ Uniform(MinSlack,Max:Slack)*Execution time
The Arrival time is the time of arrival of each transaction. The Execution time of a
transaction is calculated from the data requirements in all the operations using
TranSize, CPU_TIME, and LogDelay.

Table 2 Workload parameters

Parameters Meaning Value

Rate Arrival rate of the transactions [5,50]

TransSize Average transaction size 6

LogDelay Overhead for log disk access I unit ofCPU_TIME

RestartDelay Overhead for restarting I unit of CPU_ TIME

MinSlack Minimum slack factor 2

MaxSlack Maximum slack factor 8

4.2 Experimental setup

The simulation program is written in C++ using the next event simulation strategy
and is run for 5000 transactions. Different random seeds are used for different calls
to the random number generator to make sure that the arrived transactions are
exactly the same for different algorithms. We simulate a firm real-time system in
which a value returned after a deadline is useless. Hence, at the beginning of each
event, the system is checked to see if there is any transaction that has missed its
deadline and if so, it is removed from the system. We perform a detailed
simulation study using our proposed algorithm and compare it with an existing
non-secure one. We discuss the effectiveness of our algorithms in terms of
maintaining real-time constraints and security.

265

Simulation results

Figure 1 illustrates the deadline miss percentage for the non-secure 2PLHP and the
Secure 2PLHP with a tolerance of 0 as the arrival rate increases. Non-secure
2PLHP is priority cognizant and hence has a better performance over the secure
2PLHP algorithm. The non-secure algorithm does not have any deadlines missed
with arrival rates below 20. The secure algorithm transactions start to miss
deadlines around an arrival rate of 16. The main difference between the
performance of the two algorithms is prominent between arrival rates 15 and 25,
after which a majority of the transactions start to miss their deadlines in both the
algorithms.

100

80

60

40

20 -Non-secure 2PI..HP

0+-~~~--~----~----~----~---.
0 10 20 30 40 50 60

Arrival rate

Figure 1 Deadline miss percentage.

The Secure 2PLHP algorithm recognizes covert channels and, therefore, the
security factor of a system is improved when the algorithm is used. This result is
illustrated in the Figure 2, which compares the security factors for the secure and

1.2

0.8

0.6

0.4

••

1
-+-Secure 2FUP I

0.2 -Non-secure 2PI..I-P
o+-----~--~----~~~~~~~~~

0 10 20 30 40 50 60
Arrival rate

Figure 2 Security factors.

266

non-secure algorithm. In the secure algorithm, the security factor is 1; in contrast,
in the non-secure algorithm, it is inconsistent and remains around 0.5. It is
interesting to notice in Figure 1 that although we enforce security with the Secure
2PLHP, we do not necessarily have to sacrifice the maintenance of the real-time
constraints a great deal. This is because there are many data conflicts for which
security enforcement does not violate priority based on deadline. Increasing
security means more data conflicts resolved in favor of lower security transactions,
irrespective of their deadlines. If a lower security transaction has a later deadline,
enforcing security means loss of priority. However if it happens to have an earlier
deadline, then priority is maintained as well. Therefore, achieving complete
security (i.e. security factor 1) does not mean that we fail to meet all real-time
constraints. Figure 3 supports this claim. It shows the priority maintenance factor
at different arrival rates when the security factor is 1. In this case the priority
maintenance factor is not zero but instead varies between 0.2 to 0.6. That is the
reason why the real-time performance with the Secure 2PLHP Figure 1 is close to
the non-secure 2PLHP. This is a very important feature of our algorithm.

0.7
0.6
0.5

0.4

0.3
0.2
0.1

0
0 10 20 30 40 50 60

Arrival rate

Figure 3 Priority maintenance factor

As the arrival rate increases, the number of data conflicts also increases. When
tolerance= 0, data conflicts are always resolved in favor of security, and therefore,
the number of data conflicts resolved in favor of priority does not increase at the
same rate as the number of total data conflicts. As illustrated in Figure 3, the
priority maintenance factor decreases with the increase of arrival rate. However
when the arrival rate increases beyond 16-17, the system starts to miss deadlines
and transactions are removed from the system as soon as they are late. As a result,
the number of data conflict decreases with any subsequent increase in arrival rate.
However because of the increased arrival rate, the number of conflicts resolved in
favor of priority still increases, which in turn increases the priority maintenance
factor. Therefore, once the system starts to miss deadlines, the priority
maintenance factor increases.

267

Figure 4 shows how security tolerance affects the security factor and the priority
maintenance factor. The number of access levels in our study is 6 and therefore,
the minimum possible CCF is 0.2 (section 2.2). As a result, when the tolerance is
0, the value of CCF in any security conflict is higher than the tolerance. In this
situation our algorithm resolves a conflict in favor of security. Therefore the
security factor stays at 1 until the tolerance increases to larger than 0.2. As

1.2

0.8

0.6

0.4

0.2 ------- ---Priority factor
L-----~-----~-~

0+---------r-----------r---------~

0 0.5 Tolerance 1.5

Figure 4 Variation of security and priority factors with tolerance.

indicated earlier in section 3.3, the smaller the tolerance, the higher the number of
times conflicts are resolved in favor of security and vice versa. Therefore, the
security factor decreases with subsequent increase of tolerance values. As the
security factor decreases, more and more conflicts are resolved in favor of priority,
and as a result, the priority factor increases. The maximum value of CCF is 1.
Therefore when the tolerance is greater than 1, any CCF will be smaller than the
tolerance in which case every conflict is resolved in favor of priority. Thus the
priority maintenance factor stays at 1 for tolerance greater than I.

Figure 5 shows a comparison of the restart ratios between the non-secure and the
Secure 2PLHP algorithms. If the arrival rate is low, there are fewer conflicts and
consequently fewer restarts. However as the transactions start to miss their
deadlines, some of the aborted transactions may be already late and hence may not
even restart because they are removed from the system. With an increased arrival
rate, the number of late aborted transactions increases, which in turn decreases the
number of restarts. Thus, the restart ratio increases with the increase in arrival rate
until the system starts missing deadlines, after which the restart ratio begins
decreasing and it continues to decrease with the subsequent increase in arrival rate.
Figure 5 also illustrates that the restart ratio changes with the change of tolerance.
This is explained by cases 2 and 3 of the Secure 2PLHP algorithm described in
section 3.2 where tolerance is used to resolve the conflict. In case 3, no matter
what the value of tolerance is, both the options abort transactions and therefore, do
not change the restart ratio. Only in case 2 are there both block and abort options.
If the value of tolerance is large, the CCF is more likely to be smaller than the
tolerance, in which case the requester will be blocked yielding fewer restarts. If

268

tolerance is very large (>1), number of restarts is usually small compared to low
tolerance cases, and therefore the change in restart ratio is also not as sharp as in
other cases.

0.6

0.5

0.4

0.3

0.2

0.1

-+--Tolerance={)
Secure

---*- Tolerance=0.6

-Non-secure

0~.-~~~--~--~--~--~
0 10 20 30 40 50 60

Arrival rate

Figure 5 Restart ratio.

5 CONCLUSION

In this paper we proposed a new secure 2PL concurrency algorithm for real-time
databases. The algorithm can use security as a correctness criteria where security
must be enforced. It can also be thought of as a compromising criteria with real­
time constraints where security can be sacrificed to maintain more real-time
constraints. We have implemented the secure algorithm and a non-secure algorithm
and studied their performance using a firm real-time database system simulation
model. We have also introduced metrics to measure security in real-time database
systems. Results clearly show that our algorithm performs fairly well in terms of
maintaining real-time constraints and security compared to the non-secure
algorithm. We also have shown that achieving security does not necessarily mean a
great deal of sacrifice in maintaining real-time constraints. A system can be made
100% covert channel free, but can still have a low deadline miss percentage for an
arrival rate as high as 20. In the future we will examine new measures for temporal
consistency, design suitable concurrency control algorithms and study their
performance.

6 REFERENCES

Abbott, R. and Garcia-Molina, H. (1992) Scheduling Real-Time Transactions: A
Performance Evaluation, ACM Transactions on Database Systems, 17, 513-
560.

269

Bell, D.E. and LaPadula, L.J. (1974) Secure Computer Systems: Mathematical
Foundations and Model, in Technical Report, MITRE Corporation.

David, R.,Son, S.H., and Mukkamala, R. (1995) "Supporting Security requirements
in Multilevel Real-Time Databases," in Proceedings IEEE Symposium on
Security and Privacy, Oakland, CA, 199-210.

Denning, D.E. (1988) The Sea View Security Model, in Proceedings IEEE
Symposium on Security and Privacy, Oakland, Ca.

George, B. and Haritsa, J. (1997) Secure Transaction Processing in Firm Real­
Time Database Systems, in Proceedings SIGMOD, 462-473.

Jajodia, S. and Sandhu, R. (1991) Toward a Multilevel Secure Relational Data
Model, in Proceedings ACM SIGMOD, Denver, Colorado, May, ACM, New
York, 50-59.

Liu, C. L. and Layland, J.W. (1979) Scheduling Algorithms for Multiprogramming
in a Hard Real-Time Environment, Journal of the ACM, 20(1), 46-61.

Moskowitz, I.S. and Miller, A.R. (1994) Simple Timing Channels, in Proceedings
of the IEEE Symposium on Security, 56-64.

Ozsoyoglu, G. and Snodgrass, R.T. (1995) Temporal and Real-Time Databases: A
Survey. IEEE Transactions on Knowledge and Data Engineering, 7(4), 513-
532.

Qian, X. (1994), Inference Channel-Free Integrity Constraints in Multilevel
Relational Databases, Proceedings of the IEEE Symposium on Security, 158-
167.

Ramamritham, K. (1993) "Real-Time Databases," International Journal of
Distributed and Parallel Databases, 199-226.

Son, S.H., David, R. and Thuraisingham, B. (1995) An Adaptive Policy for
Improved Timeliness in Secure Database Systems, in Proceedings of Annual
IFIP WG 11.3 Conference of Database Security.

Wolfe, V.F. and DePippo, L.C. (1997) Real-Time Database Systems, in Database
Systems Handbook (ed. P. J. Fortier).

7 BIOGRAPHY

Quazi N. Ahmed is a Ph.D. candidate in Computer Science at the University of
Alabama. He has an MS degree in Computer Science and Systems Engineering
from Muroran Institute of Technology, Japan. His current research interests
include real-time database systems, temporal databases and database security.

Susan V. Vrbsky is an Associate Professor of Computer Science at the
University of Alabama, Tuscaloosa, AL. She received her Ph.D. in Computer
Science in 1993 from the University of Illinois, Urbana-Champaign and an MS.
from Southern Illinois University, Carbondale, IL. Her research interests include
real-time database systems, database security, approximate query processing and
temporal databases.

