
On the improvement of Estelle based automatic
implementations

O. Catrina a· , A. N ogai b

a Institut National des Telecommunications, 9 Charles Fourier 91011 Evry France.
e-mail: tavi@hugo.int-evry.Jr

b Politehnica University of Bucharest, 1-3 Bv. 1. Maniu, Bucharest 77202 Romania.
e-mail: anogai@elcom.pub.ro

Key words: Automatic protocol implementation, Estelle, transport protocol

Abstract: The main challenges for the tools which derive implementations from formal
descriptions are to enhance the efficiency and facilitate the integration in
various implementation contexts. We study in this paper the Estelle based
implementations. Using the Estelle Development Toolset (EDT), we obtained
a realistic implementation of a complex transport protocol, XTP 4.0, func­
tionally comparable with the hand-coded reference implementation. This of­
fered an experimental ground for a survey concerning the automated imple­
mentation. Based on runtime measurements, analysis of the Estelle model
and of the tool's support, we studied the factors influencing the performance
and the solutions to improve it.

1. INTRODUCTION

The use of the formal description techniques (FDT) in the development of
the telecommunication systems is continuously extending. For protocol de­
sign, validation and test generation, the advantages of the FDT -based methods
became obvious. The main challenge remains the complexity of the systems.

However, the ultimate goal of the protocol development process is to
obtain the implementation. The automated derivation from the formal specifi­
cation can ensure that the implementation complies with the specification and
can greatly reduce the development and maintenance effort. Therefore, the

• On leave from Politehnica University of Bucharest, Romania. This work has been partially
supported by the KlT-IDEMCOP action.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 1998
S. Budkowski et al. (eds.), Formal Description Techniques and Protocol Speci�cation, Testing and Veri�cation

10.1007/978-0-387-35394-4_29

http://dx.doi.org/10.1007/978-0-387-35394-4_29

372

adequate support for implementation, as part of a consistent development
methodology, can be the cutting edge of an FDT-based tool. Besides the
conformance, the implementation must match the efficiency requirements of
the application (runtime properties, code size). Although tool support has
been available for a long time, the applications are still limited. The main
cause is the relatively modest efficiency, compared with the current hand­
coding methods. Furthermore, part of the implementation often cannot be
obtained automatically: operations not supported by the specification lan­
guage (e.g., checksum computation, packet encoding and decoding) or not
detailed in the formal specification ("local matters" in the protocol defmition,
e.g., related to resource management). Also, a non-negligible effort is often
necessary for integrating the implementation in a particular context (e.g., to
interface it with other components, implemented by hand).

The aim of our study was to investigate these difficulties, by obtaining a
realistic implementation from an Estelle specification, using EDT (Estelle
Development Toolset) [11]. The Xpress Transport Protocol (XTP) 4.0 was an
ideal example [15]. XTP 4.0 is a challenge for the implementer: it covers the
functionality of existing protocols (TCP, UDP), includes new features needed
by modern applications (e.g., multicast) and can accommodate various
communication paradigms, media requirements and network properties. We
already had a (virtually) complete Estelle specification, verified by simulation
[3]. A hand-coded C++ implementation of the protocol, SandiaXTP, was
available for comparison [14]. It runs on UNIX machines, in user space, on
top of IP or UDP, and provides an application programming interface (API)
adapted to the XTP extended functionality.

We used EDT to implement XTP 4.0 from the Estelle specification, for
the same environment. The implementation, called E-XTP, provides full XTP
functionality to real UNIX applications, can inter-operate with SandiaXTP
and has a similar API (E-XTP is an enhanced version of the implementation
presented in [4]). Section 2 introduces the EDT implementation model and
section 3 contains an overview of the resulted XTP implementation.

The derivation of E-XTP offered a valuable experimental ground for our
survey concerning the improvement of the Estelle based automated
implementation. We made a joint analysis of the runtime measurements, of the
Estelle model and of the tool's runtime environment, to identify the factors
affecting the efficiency and to evaluate their influence. We studied pragmatic
improvement solutions, including the integration of efficient hand-coding
techniques, implementation aware specification styles, optimisation of the
tool's libraries. The results are summarised in section 4, structured in two
parts: communication issues and system management. Part of the solutions
have been experimented during the derivation of the XTP implementation,
others are currently being studied for future integration in EDT. Conclusions
and further work are presented in section 5.

373

2. EDT AUTOMATED IMPLEMENTATION

2.1 The C code generation

EDT maps an Estelle system module instance (SYSTEMPROCESS or
SYSTEMACTIVlTY) to a process of the target operating system and imple­
ments the children modules as procedures. It generates a separate program for
each body of an Estelle system module in the specification [12].

First, the Universal Generator tool (U g) splits the original specification,
e.g., spec.sti, in several separate specifications, one for each system module
body, e.g., mb_k.sti. Each specification mb_k.sti contains a system module
from spec.sti, embedded (as unique child) in a new Estelle system module,
automatically generated by U g. The role of the embedding module is to
transfer messages between the original system module and the environment.

Next, for each specification mb_k.sti, the Estelle to C compiler (Ec) gen­
erates a C program and a make file. The C code generated by Ec is independ­
ent of the target implementation platform. Moreover, the same C code is used
to obtain the simulator program, with the EDT simulation library, and the im­
plementation, with the EDT implementation library. One can thus be confi­
dent that the implementation reproduces the behaviour verified by simulation.

We can continue either by immediately producing a prototype of the dis­
tributed system, or by further refinement, to obtain a final implementation.
For the first case, EDT can automatically distribute the system's components
on user selected hosts. The set of Estelle system module instances and com­
munication links from spec.sti is mapped on a set of processes communicating
via TCPIIP. Alternatively, we can adapt the implementation to a particular
context and improve its efficiency, by customising the primitives in the tool's
libraries. The XTP implementation was obtained using the second approach.

2.2 The interface with the environment

The embedding module added by Ug is the interface between the contained
module and the environment. Each external interaction point of the original
module is attached to an internal interaction point of the embedding module.
The transitions of the added module perform the adaptation between the
Estelle message based communication and any inter-process communication
mechanisms provided by the target operating system (e.g., sockets, message
queues, signals, etc.). For this purpose, the EDT implementation library offers
four generic primitives, mxinit, mxwhen, mxoutput and mxsend, used by Ug
as shown in this example:

INITIAliZE
BEGIN

mxinit;
END;

([PC mechanism(s) initialization}

374

TRANS (Outgoing interactions processing: for each interaction point and type)
WHEN s-p'_sap.DataJeq
BEGIN

mxsend(1, 0); (send DataJeq using an IPC mechanism)
END; (s-p_sap identifier =1, DataJeq interaction identifier =0)

(... and the transitions for the other outgoing interactions)

TRANS {Incoming interactions processing (2 interaction points in this example))
ANY x : 0 .. 1 (for x = any of the interaction points)
PROVIDED mxwhen(x) (a message is received for interaction point x)
BEGIN

mxoutput(x);
END;

{ output the corresponding Estelle interaction
(to the interaction point x)

This approach avoids any modification of the original Estelle specification
and offers maximum flexibility for implementing the interface. The user can
choose interface functions from the tool's library or develop customised ver­
sions. The restriction is that the IPC mechanisms used for input events must
match those known by the kernel function which detects the events, described
in the following.

2.3 The dispatcher function

The dispatcher function, provided by the EDT library, is the core of the
process which implements an Estelle system module. It contains an infmite
loop, in which the process waits for an event, selects the frreable transitions
(system management phase) and then frres them (execution phase).

The process blocks waiting for the arrival of incoming messages from the
environment or the expiration of running timers (corresponding to enabled
delayed transitions). The detection of an event wakes up the process, which
starts to execute the loop. A timer management function updates the list of
running timers and marks the delayed transitions which become frreable.
Then, a set of transitions is selected and frred. The set may contain several
transitions, for the SYSTEM-PROCESS attribute, and a single transition, for the
SYSTEMACI'IVITY attribute

The process continues to run as long as frreable transitions exist, i.e., until
it achieves the treatment of the event which woke it up and those which
occurred in the mean time. Eventually, the process blocks waiting for another
input or time-out event. During a run, the process fetches (at most) one
incolning message from each input port and achieves their treatment before
letting other messages in. Therefore, an implicit flow control on incoming
messages is provided. This is a useful property for an implementation, which
is not guaranteed by the Estelle semantics, due to the asynchronous communi­
cation model with unlimited queues. As a side effect, the parallelism between
the Estelle sub-modules is reduced.

375

3. XTP AUTOMATIC IMPLEMENTATION

3.1 Overview of the specification and the implementation

The goal of the XTP design was to obtain a connection oriented transport
protocol with extended functionality and flexible configuration, adaptable to
the fast evolution of the networks and the applications (high speed networks,
distributed applications with transactional, multipeer and multimedia commu­
nications). The protocol kernel is a toolkit of mechanisms with orthogonal
functionality. They can be independently enabled, to obtain combinations
permitting various communication paradigms. The protocol definition [15, 2]
is not accompanied by a transport service definition. It only suggests how to
use the toolkit to obtain a basic set of service types: unicast and multicast
connection oriented or datagram service, unicast transaction service, etc.

We adopted an implementation context similar to that of SandiaXTP [14],
the reference XTP 4.0 implementation, hand-coded in c++: UNIX environ­
ment, UDPIIP sockets at the data delivery service interface, UNIX domain
sockets and XTP-specific application programming library at the transport
service interface. Figure 1 shows E-XTP and SandiaXTP running on hosts
connected to Internet. Figure 2 is a closer look at a host running E-XTP, with
the XTP process providing connections for 2 transport service user processes.

The block XTP corresponds to the original XTP Estelle specification. The
block XTPI is the embedding Estelle module produced by Ug. The Estelle
module XTP describes an XTP entity. It only performs management tasks. For
each communication, an XTP entity keeps a state record, called a context. A
communication (any type of service) requires an association of contexts from
the participating XTP entities. A CONTEXT module is the state machine which
controls the activity at one association endpoint. The CONTEXT instances are
dynamically created by XTP, for the duration of an association. The module
PACKET _MNGM is the interface with the underlying connectionless network
service. It submits outgoing packets to the network layer and decodes
incoming packets and routes them to the destination CONTEXT instances.

The Estelle specification covers almost completely the XTP features pre­
sented in the informal specification. The mechanism for allocating CONTEXT
instances to users, a "local matter", was not specified in Estelle (it was left to
the C primitives of the interface). An interaction of the transport service
interface just carries the index of the source or destination CONTEXT instance.
The specification remained of moderate size (8000 lines), compared with the
rich XTP functionality, by exploiting the XTP design principles (mainly for
multicast) and by using a parametric transport service. The Estelle support
for complex algorithms was essential for covering the XTP functionality, e.g.,
for managing the receiver group state in a multicast transmitter.

The core of the implementation consists of the C code generated by the
Estelle compiler from XTPI (20000 lines) and the EDT library functions

376

which implement the Estelle model (inter-module communication, transition
selection, etc.). The size of the executable code is 210 kilobytes, similar to
that of SandiaXTP 1.5.

hampton.i nt -evry.fr

Figure 1. Hosts running E-XTP and SandiaXTP (fS = transport service).

Figure 2. E-XTP structure and the interactions with the user processes.

377

UIF-TS is the interface of the user process for access to the transport
service. It provides an API library [5] similar to that of SandiaXTP. UIF-TS
is a state machine driven by messages received from E-XTP and by function
calls made by the application program. Two communication mechanisms are
involved: message transfer, via a UNIX domain datagram socket (UX-DSO),
and shared memory, for sent and received data units. UIF-TS takes all the
data types necessary for communicating with E-XTP from two C header files
generated by the Estelle compiler from the specification.

XIF-TS is the interface of the XTP process with the transport service user
processes. It consists of four C primitives, which are customised versions, for
the XTP transport service interface, of the four EDT generic interface primi­
tives (section 2.2). XIF-TS provides the adaptation between the Estelle inter­
module communication mechanism and the UNIX domain datagram socket
(UX-DSO), used for exchanging messages with the user processes. It is also
responsible for the allocation of CONTEXT instances to users and for routing
the messages between the user processes and the CONTEXT instances.

XIF-DS is the interface of the XTP process with the underlying data deliv­
ery service. It consists of four C primitives, customised versions for the
UDPIIP interface, of the four EDT generic interface primitives. XIF-DS pro­
vides the adaptation between the Estelle inter-module communication mecha­
nism and the UDP datagram socket (UDP/IP-DSO). It also performs the ad­
aptation between the XTP packets representation in the Estelle specification
and the real XTP packet formats, as well as the checksum computation.

UDT/UDR-SHM are shared memory buffers of the UIF-TS interface, used
for data transmission and data reception, respectively. They are created by the
user process and shared with the XTP process. These buffers permit the data
transfer between the user process and an XTP context with a single data copy.
XDTIXDR-BUF are collections of data buffers used by the XIF-DS interface.
They store the data segments of the outgoing XTP packets and the received
XTP packets, respectively. The transfer of the XTP data packets between the
XTP contexts and the data delivery service requires a single data copy.

A CONTEXT instance contains the pair of buffers CDT/CDR-FIFO. CDT
stores the transmitted data until acknowledgement. CDR stores the received
data until·the recovery of the lost segments and the delivery to the user. They
existed in the Estelle specification, but the Pascal procedures for managing
them are replaced by C primitives, aware of the UIF-TS and XIF-DS buffers.

3.2 E·XTP versus SandiaXTP

E-XTP and SandiaXTP provide similar XTP functionality, with similar
API functions and can inter-operate. Both are user space implementations for
UNIX environment and use sockets and shared memory for inter-process
communication. However, there are important differences in the state machine

378

design and some protocol functions are performed using different policies.
Figure 3 shows throughput measurement results for SandiaXTP and E­

XTP. They are made for a one-way data transfer, with Sparc stations Ultra 1,
running Solaris 2.5, on 10 Mbitls Ethernet. The following protocol settings
are used: flow control, error control and checksum enabled; rate control
disabled; no segmentation, acknowledgement at end of window. For these
typical settings, the two implementations offer quite similar throughput
values. E-XTP seems better tuned for multicast communications. Running in
user space is a major handicap for both of them. As shown in the next section,
about 50% of the processing time per data unit goes to system calls.

Multicast, 3 recehers

I_SandmxTPl
.&XTP

256 512 1024 256 512 1024

data unit size (bytes) data unit size [bytes]

Figure 3. Throughput of E-XTP and SandiaXTP (user buffer to user buffer) as
a function of the data unit size. The window size is 24 data units.

4. THE FACTORS AFFECTING THE EFFICIENCY

4.1 Communication mechanisms

Data and packets manipUlation is the most obvious cause of overhead in a
layered protocol architecture [6]. The various optimisation techniques used in
hand-coded implementations [13] are based on the following principles:
- Avoid moving the data units by storing them in shared memory buffers

and passing pointers to buffers between the communicating entities.
- Manage the variable size of the data units (insertion and removal of layer

specific headers) without copying them, using either off-setting or scatter­
gather. In the former case, a data unit is stored in contiguous memory, in a
buffer accommodating the maximum data unit size, at a variable offset. In
the latter case, the components of a data unit are kept in individual buffers
and a descriptor indicates the number of buffers and their addresses.

- Integrate data processing (checksum computation, encryption, etc.) for
multiple layers, to reduce the number of memory cycles [1].

- Anticipate the contents of the packet's or message's components, to
minimise processing when sending them.

379

However, the integration of these optimisations in the automatic code gen­
erators is complicated by the FDT constraints and the difficulty to determine
when and what some particular technique is useful and can be safely applied.

For a system modelled in Estelle, the communication consists (mainly) of
asynchronous message exchange. The mapping of module instances to proc­
esses or procedures and the scheduling algorithm affect the implementation of
the communication mechanisms. We refer in the following to the EDT model
(a typical solution). Two kinds of communication can be identified:
- external communications, with the environment of the process;
- internal communications, with (sub)modules within the process.

For the first category, the implementation must rely on the inter-process
communication (IPC) mechanisms offered by the target operating system. The
tool must provide interface libraries for various operating systems and IPC
mechanisms orland enough flexibility to allow the user make the necessary
adaptations. The latency of the IPC mechanisms is often the main cause of
inefficiency. Shared memory and scatter-gather, if available and exploited by
the tool's libraries, can avoid or minimise the data copying overhead.

The efficiency of the internal communications is mainly affected by the
FDT restrictions. A general (always safe) solution cannot avoid copying the
message parameters. For the implementations obtained with EDT, the transfer
of an interaction implies a single copy of the parameters. First, an interaction
buffer is allocated from a common pool and the parameters' values are copied
to it. Next, the buffer's address is appended to the destination queue. The
interaction's parameters are directly accessible to the receiving transition. The
buffer is released when the execution of the receiving transition tenninates.

However, the modules often just forward received information, possibly
adding or removing some parts. This is due to the information transfer princi­
ples in layered protocol architectures and to message routing within the proto­
col entities. In such cases, the copy operation is redundant and very harmful
to the implementation's performance (e.g., for a non-trivial protocol entity
architecture, the packets are repeatedly copied). Queue management and mes­
sage routing have a relatively more modest contribution.

Here is a simple example of packet transmission:

VAR p: pdu_type;
BEGIN

build-pdu(p);
OUTPUT ip_out.pdu(p);

END;

First, the packet is built in a local variable. Then, the OUTPUT statement is
executed, allocates a buffer and copies the variable. The packet's fields
(control, data segment) are copied twice, first to the variable, next to the
interaction buffer. Obviously, the operations should be done in the reverse

380

order: one should fIrst allocate the buffer, then use it to build the packet. For
instance, the local variable p could be mapped to an interaction buffer. This
requires a code generator able to detect that the variable is used as a
parameter in a single OUTPUT statement and it is not modifIed afterwards.

The remark also inspires a different specification style. It is often possible
to have most of the contents of the packet already prepared, as part of the
local state. One can define the components of the packet as parameters of the
interaction and let the OUTPUT statement assemble them (which is also more
favourable for optimisations using scatter-gather or off-setting). Here is
another example, a data transmission using the suggested solutions:

WHEN ip_in.dataJeq(sdu)
BEGIN

pucbuf(sdu); { append the data to the transmission buffer}
IF can_send THEN BEGIN {flow control permits transmission}

crCheader.sequence := (crCheader.sequence + 1) mod MaxSeq;
OUTPUT ip_out.dCpdu(crCheader, sdu);

END; { else: send when a received CNTL packet advances the window}
END;

With this specification style, the transfer of the interaction causes only one
copy of the packet's fields. The example also introduces another element in­
volved in data manipulation: the transmission buffer, responsible for storing
the data until the transfer is acknowledged. The copy operations to/from this
buffer can be avoided if the data are stored in shared memory buffers and
both the message transfer management and the transmission buffer manage­
ment are aware of this. The operations depend on the protocol rules, unknown
to the code generator. However, there are solutions which do not require spe­
cial code generator capabilities and satisfy the generality required from a
specification. We can make the sdu type a buffer descriptor (which can be
copied without harm) and use C primitives for protocol buffer management.

In conclusion, several strategies can be used for integrating optimised data
manipulation techniques in the automatic implementations.

One approach relies on the code generator for detecting particular situa­
tions when it can use an optimisation, instead of the general (always safe)
method. Such a solution is proposed in [9]. Alternatively, the code generator
could be guided with annotations inserted in the specification, indicating
explicitly the context of the desired application of some optimisation tech­
nique. We are currently studying this solution, which seems more flexible and
realistic, as it relies on the user's knowledge of the protocol's functionality.

Another approach uses C primitives for buffer management provided by
the tool's library. It is the only solution which can address particular features
of the implemented system and of the implementation context. It can comple­
ment the previous approaches, limited to general message transfer issues.

381

The latter strategy was used for E-XTP. One goal was to optimise the data
path between the user buffer and the UDPIIP interface, with external and in­
ternal communications and semI/receive buffer management. Another goal
was to treat packet manipulation issues: encoding, decoding, checksum com­
putation. The FDT data types and operators do not allow the use of real
packet formats in the specification. Hence, the protocol machine works with
an internal packet format (also "readable" by the simulator, for validation).
The adaptation between the internal format and the real XTP format and the
checksum computation are made by the primitives of the UDPIIP interface.

However, these problems mainly concern the control information in the
packets. For data segments, the size and the order are the only issues which
interest the protocol state machine. Therefore, it only knows a descriptor indi­
cating the size of the data unit and the buffer which holds it. A transmitted
data segment joins the header only when moved to UDP/IP and a received
packet is split as soon as it is retrieved from UDP/IP (using scatter-gather).
All the user data manipulations are done by a set of C primitives, responsible
for moving the required amount of data between the CDT/CDR ring buffers in
the CONTEXT module and the UDT/UDR user buffers or the XDTIXDR buff­
ers in the XIF-DS interface (figure 2). Two copy operations are implied by
this scheme (solutions with less copy operations were difficult to apply to the
existing specification, requiring the redesign of the data streams manage­
ment). The buffer management primitives used in the CONTEXT module coop­
erate with the interface primitives in the XTPI module. Hence, efficient solu­
tions offered by the implementation context could be used: shared memory
buffers at the upper interface and scatter-gather at the UDP/IP interface.

transmission (microsec/JXlcket)

237 410
3790 6390

interfaces
.XTPmodule

reception [microsec/piCketj

238 343
4190 5gq&

II interfaces
.XTPmodule

Figure 4. Contribution of the interfaces to the total processing time per data unit, for the
XTP implementation (1024 bytes data units, Sparc station Ultra I).

The experiments with E-XTP indicate a 300% increase of the user-to-user
throughput, just by avoiding the copy operations for user data [4]. Figure 4
points out another major cause of throughput limitation: the latency of the
socket interface. The values include three system calls: an exchange of mes­
sages with the user process, via the UNIX domain datagram socket, and the
transmission or the reception of the XTP data packet, via the UDP socket.

E-XTP uses a connection less underlying service. The lower interface just
maps Estelle interactions to UDP/IP socket datagrams. This can be done by

382

primitives from a general purpose library, which call user defmed functions
for application specific message processing. In general, the mapping can be
much more complex, e.g., for a connection oriented service accessible through
an API library like TCP sockets or TLI. The flexibility of the EDT approach
to external communications can be an important advantage in such cases.

4.2 System management overhead

An Estelle specification describes an hierarchically structured collection of
module instances. The system modules occupy the top of the hierarchy. They
run independently and synchronise with each other only by message exchange.
Within a system module, further synchronisation rules are imposed: priority
of a parent module over the children modules and, depending on the module
attributes, either parallel synchronous or asynchronous interleaving execution.

According to the operational semantics, a system module performs cycli­
cally a management phase, to identify the fireable transitions, followed by a
transition execution phase. This is the usual approach adopted by the Estelle­
based implementation tools. The transition selection algorithm is complex and
can cause an excessive overhead. Various solutions to reduce this overhead
have been investigated [7, 8]: optimisation of the algorithm defined by the
operational semantics, structural transformation of the specifications, identifi­
cation of favourable specification styles, different scheduling policies, etc.

As pointed out in [13], two main classes of models are used in hand-coded
implementations: the server model and the activity thread model. With the
server model, each system component processes events in an endless loop.
The set of components communicate asynchronously and a scheduler offers to
each one a fair chance to run. With the activity thread model, the components
are implemented by procedures and communicate synchronously. The output
of a message from a component is implemented by a call to the procedure
which treats that message in the destination component. The system treats one
event at a time, as a sequence of procedure calls (i.e., the "activity thread").

The existing automatic implementation tools, including EDT, use the
server model, which better matches the Estelle and SDL semantics. The ac­
tivity thread model can provide a considerable performance improvement,
when applicable. However, there are major contradictions between the Estelle
model and the activity thread implementation model. Hence, excessive restric­
tions for the Estelle specifications are needed to permit its use [10].

The current EDT implementation kernel uses a (relatively) optimised tran­
sition selection algorithm. It performs a single-pass search in the tree of
module instances. For each instance, it looks for fireable transitions using
table-based decodification (input/state table) followed by programmed selec­
tion (checking of provided clauses, interaction point identity, priorities). The
algorithm is fully compliant with the Estelle operational semantics and does

383

not impose any restrictions concerning the Estelle language features.
One of our goals was to evaluate the influence of the system management

overhead on the implementation's performance and its dependence on the
Estelle model features and specification styles. The analysis was based on
measurements made by probes inserted in the dispatcher loop (section 2.3).
The time-stamps provided by these probes allow the calculation of pairs of
values representing the execution duration for a transition and the duration of
the preceding system management phase. The histograms in figure 5 show re­
sults of the measurements for E-XTP (average values). They were made on a
Sparc station Ultra 1, for the following settings: SYSTEMACTNITY attribute,
one way transfer with 1024 bytes data units, error control, flow control and
checksum enabled, no segmentation, one acknowledgement packet for 10 data
packets. Figure 6 shows the overall contribution of the management phase to
the processing time per data unit, done within the XTP module (computed
from the collected samples, taking into account the relative firing rate).

receive send receive receive send receive start
send_req dl_pdu dl_pdu recv_feq recv_cnf cnlLpdu wtimer

Figure 5. Management and transition execution duration for the data transfer,
in a CONTEXT module instance.

transmission [microscc/pocketj

Figure 6. Contribution of the system management duration
to the processing time per data unit, in the XTP module.

The joint analysis of various measurements, of the transition selection
algorithm and of the specification, summarised in the following, points out the
main causes of this relatively important overhead, as well as some solutions.

Due to the synchronisation constraints and the necessity to provide a cer­
tain fairness, the scheduler maintains a relatively complicated, tree-like, list of

384

module instances, reflecting the hierarchy. A selection implies a traversal of
this list, often partial, but always starting from the root. For each instance, the
fast, table-driven decoding, based on main state and input (if any), offers in
general two sets of transitions, not just a single transition. One set contains
the input transitions for the received interaction(s). The other set contains
spontaneous transitions (no input), including delayed transitions, used to
model timers. A slower, programmed selection must be used to choose a tran­
sition from these sets, by checking the PROVIDED clause, the priority and (for
input transitions only) the interaction point.

The influence of the synchronisation rules on the selection duration de­
pends on the depth of the hierarchy and the module attributes. An adequate
choice of the attributes can reduce the overhead per executed transition. The
SYSTEMPROCESS or PROCESS attributes require the visiting of all the children
instances (when the parent has no fireable transition), but all the offered tran­
sitions are executed before the next management phase. The SYSTEM­
AcrIVITY or AcrIVITY attributes allow the termination of the search at the
first module instance offering a transition (with some fairness rule). For a
high degree of concurrency between children instances, the former attributes
are the preferred choice, otherwise, the latter.

The spontaneous transitions, mainly the delayed ones, are a major cause of
overhead. They should be avoided, but two Estelle features demand their use.

The first one is the constraint to indicate the next main state in the transi­
tion header, before processing the received interaction. If the next state cannot
be determined by a simple condition, tested in a PROVIDED clause, a sponta­
neous transition must be added just to change the main state. This artificial
solution can be avoided by relying on variables and the PROVIDED clause,
instead of the STATE declaration and the clauses FROM and TO. However, in
this case, the table-driven decodification works on input only and a larger set
of transitions remains for programmed selection. The possibility to change the
state in the transition's body and to use output interactions in procedures
would reduce to a large extent the need to use spontaneous transitions.

The second source of spontaneous transitions is timer modelling, using
delayed transitions. A timer is associated to each delayed transition and runs
while the transition is enabled. The enabling of a delayed transition corre­
sponds to a "start" timer command and the disabling to a "stop" timer com­
mand. The transition is fired when the timer expires. The main state and/or a
provided clause can be used to control the timer's activity. The inefficiency is
due to the fact that the start/stop commands are implicit and the scheduler
must check systematically the conditions of the delayed transitions to detect if
a timer must be started or, conversely, if a running timer must be stopped. It
is often necessary to restart a timer before expiring. Such a "restart" timer
command, can be obtained by combining a "stop" and a "start". However, two
computation steps are necessary: the first one to disable the delayed transition,

385

the second one to re-enable it. Another spontaneous transition must be added
for the second step (e.g., the transition "start wtimer", in figure 5).

The presence of multiple interaction points, individual queues and transi­
tion priorities complicates the selection of the input transitions. First, there is
a list of queues to be visited. Next, all the queues must be visited, even after
fmding an interaction, to check the priorities. Therefore, the preferable speci­
fication style is to indicate common queue as default and use individual
queues only when really necessary. A common queue is especially important
for multiplexer modules (e.g., PACKET_MNGM in the XTP specification) and
usually there is no inconvenience. This kind of functionality is present very
often in the systems and requires arrays of interaction points and transitions
parameterised using the ANy clause. The selection algorithm and the code
generator must treat these features with special care.

The excessive overhead of the outlined algorithm is due to the complex
search of the transitions to fire. It is a general method, able to deal with the
worst case. The solution we are studying is to replace the search by an event
based management of a list of instances scheduled for (transition selection
and) execution. If there are no spontaneous transitions, the list can be organ­
ised based on transferred messages: once a message is output, the receiving
instance is inserted in the list. The solution can be extended for spontaneous
transitions, if the PROVIDED clauses do not contain primitives or exported
variables. In such a case, they can only be enabled by the execution of another
transition of the same instance. The spontaneous transitions are checked only
in this situation. If anyone is fireable, the instance qualifies for the scheduling
list. It seems possible to obtain a considerable improvement for limited
restrictions, acceptable by many applications.

5. CONCLUSIONS

The derivation of E-XTP from the XTP 4.0 Estelle specification, allowed
us to asses the current EDT support for automatic implementation. E-XTP is
functionally comparable with the hand-coded implementation SandiaXTP and
inter-operates with it. They have similar, but relatively moderate performance.

The automatic implementation methods can match the requirements of the
modem high speed network environment only if they integrate the highly effi­
cient techniques already used in hand-coded implementations [9, 13]. Of main
interest are the solutions used for data and packets manipulation and for
mapping the system's components (e.g., entities in a layered protocol ar­
chitecture) to processes or threads of the target implementation environment.

We experimented the optimisation of the data stream implementation using
libraries of primitives which integrate the internal and external communica­
tions and the protocol buffer management. The approach is pragmatic and
flexible. The libraries can be reused for applications having the same imple-

386

mentation context. Further benefits can be obtained by adding automatic code
generator support for general message transfer optimisation.

Our analysis pointed out the Estelle features responsible for the excessive
system management overhead. It also showed that the scheduling algorithm
can be substantially improved, for widely acceptable constraints. The effi­
ciency can approach that of the activity threads, without the excessive restric­
tions imposed by the strict application of this model [10].

The solutions used in the specification must take into account implemen­
tation issues and must be correlated with the support offered by the tool. A
good basis for the implementation could be obtained without loss of the speci­
fication's generality, using just an adequate specification style. The adaptation
in the implementation phase is expensive, harmful and should be avoided.

REFERENCES
[1] M. Abbot, L. Peterson. Increasing Network Throughput by Integrating Protocol Layers.

IEEElACM Transactions on Networking, vol. 1, no. 5, 1993.
[21J.W. Atwood, O. Catrina, J. Fenton, W.T. Strayer. Reliable Multicasting in the Xpress

Transport Protocol. Proceedings of the 21st Conference on Local Computer Networks
(LCN'96), Minneapolis, Minnesota, USA, 1996.

[3] O. Catrina, E. Borcoci. Estelle specification and validation of XTP 4.0. Deliverable 2 for
Task 2.1, Copernicus Project COP62 (COP#621WP212), 1996.

[4] O. Catrina, E. Lallet, S. Budkowski. Implementation automatique d'XTP a partir d'une
specification Estelle. Ingenierie des Protocoles - CFIP'97. Hermes, Paris, 1997.

[5] O. Catrina, E. Lallet, S. Budkowski. Automatic protocol implementation using Estelle
Development Toolset. Research Report 971001, INT Evry, France, 1997.

[6] D. Clark, V. Jacobson, J. Rornkey, H. Salwen. An Analysis ofTCP Processing Overhead.
IEEE Communications, 27(6), 1989, pp. 23-29.

[7] R. Gotzhein, et al. Improving the Efficiency of Automated Protocol Implementation Using
Estelle. Computer Communications 19, 1996.

[8] T. Held, H. Konig. Increasing the efficiency of computer-added protocol implemen­
tations. Protocol Specification Testing and Verification XIV. Chapman & Hall, 1995.

[9] R. Henke, H. Konig, A. Mitschele-Thiel. Derivation of Efficient Implementations from
SDL Specifications Employing Data Referencing, Integrated Packet Framing and Activity
Threads. SDL'97: Time for testing - SDL, MSC and trends. Elsevier, 1997.

[10] R. Henke, A. Mi tschele-Thiel, H. Konig. On the influence of semantic constraints on
the code generation from Estelle specifications. Formal Description Techniques X and
Protocol Specification, Testing and Implementation XVII. Chapmann & Hall, 1997.

[11] Estelle Development Toolset (version 4.1). Institut National des Telecommunications,
Evry, France. http://alix.int-evry.fr/-stan/edt.html.

[12] E. LaBet, S. Fischer, J.-F. Verdier. A new Approach for Distributing Estelle Specifi­
cations. Formal Description Techniques VIII. Chapman & Hall, 1995.

[13] L. Svobodova. Implementing OSI Systems. IEEE Journal on Selected Areas of
Communication, vol. 7, no. 7, 1989, pp. 1115-1130 ..

[14] T. Strayer. SandiaXTP User's Guide. SandiaXTP Reference Manual. Sandia National
Laboratories, USA, 1996.

[15] Xpress Transport Protocol specification revision 4.0, XTP Forum, Santa Barbara, CA,
USA, 1995. For the revised multicast procedures, see [2].

	On the improvement of Estelle based automaticimplementations
	1. INTRODUCTION
	2. EDT AUTOMATED IMPLEMENTATION
	2.1 The C code generation
	2.2 The interface with the environment
	2.3 The dispatcher function

	3. XTP AUTOMATIC IMPLEMENTATION
	3.1 Overview of the specification and the implementation
	3.2 E·XTP versus SandiaXTP

	4. THE FACTORS AFFECTING THE EFFICIENCY
	4.1 Communication mechanisms
	4.2 System management overhead

	5. CONCLUSIONS
	REFERENCES

