Invited Talk I



A LOGICAL FRAMEWORK FOR
DISTRIBUTED SYSTEMS AND
COMMUNICATION PROTOCOLS

José Meseguer

Computer Science Laboratory
SRI International, Menlo Park
California 94025, USA

meseguer@csl.sri.com

WHY REWRITING LOGIC

I will introduce the main ideas of rewriting logic [11]—a logic for the specifica-
tion, prototyping and programming of concurrent systems in which concurrent
computation exactly corresponds to logical deduction—and will discuss some
promising directions for its use as a logical and semantic framework for dis-
tributed computing and communication protocols. An important aspect is its
wide-spectrum character. Thus, on the one hand it connects smoothly with—
and provides a formal foundation for—notations suitable for the early phases of
software design, such as architectural description languages and object-oriented
modeling languages [14, 19]; and on the other hand it also provides a natural
implementation path through subsets of the logic that are efficiently imple-
mentable as distributed or mobile languages [9]. Similarly, rewriting logic spec-
ifications, when supported by appropriate tools, can be used in a wide range of
specification, prototyping, code generation, testing, formal analysis, and formal
verification efforts to reach high levels of assurance about a system’s correct-
ness. All these capabilities seem potentially useful for specifying, prototyping,
testing, validating, and implementing distributed systems in general and com-
munication protocols in particular; and they offer the promise of substantially
narrowing the gap between specification and code, and of reaching high assur-
ance about the correctness of implementations that can themselves be realized
in efficient subsets of rewriting logic.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35394-4_29
S. Budkowski et al. (eds.), Formal Description Techniques and Protocol Specification, Testing and Verification

© TFIP International Federation for Information Processing 1998


http://dx.doi.org/10.1007/978-0-387-35394-4_29

328

For such applications, an attractive feature of rewriting logic is its simple
and smooth integration of three levels of description that ultimately need to be
addressed in a distributed system’s formal specification, namely, the data level
of data structures and functions, the dynamic level of processes and concurrent
computation, and the requirements level of formal properties that must be
satisfied by the system.

Indeed, a rewrite theory is a triple R = (%, E, R), with (X, E) an equational
theory, and R a collection of labeled rewrite rules that are applied modulo the
equations E; they axiomatize the basic concurrent transitions of the specified
system. The two main kinds of axioms in a rewrite theory, namely, equations
t = t', and rewrite rules r : t — t', specify, respectively, the data and dynamic
levels. That is, the data types and the overall state space of the system are
axiomatized as the initial algebra Tx; g associated to the equational specification
(X, E), and the rewrite rules! in R are understood as local rules of concurrent
change in the intended system, so that rewriting logic deduction with such
rules describes exactly those concurrent computations possible in the system.
This one-to-one correspondence between concurrent computation and logical
deduction is of course of great practical usefulness, because it means that, given
an adequate implementation of rewriting logic, a rewrite theory R becomes
an ezxecutable specification of the concurrent system that it formalizes. Such
a specification can then be used for rapid prototyping, symbolic simulation,
formal analysis, and formal verification, to uncover design errors very early in
the design process; and can also be used to generate correct code by means of
adequate semantics-preserving transformations.

Since a rewrite theory R has an initial model Tr [11] that mathematically
characterizes the system as a category whose objects are the system’s states
and whose morphisms are the system’s concurrent computations, formal sys-
tem properties are in essence inductive properties of such a model. They can
be expressed either in a natural extension of rewriting logic allowing arbitrary
quantification, or in a temporal or modal logic providing a convenient nota-
tion for such properties. In this way, the three levels of data, dynamics and
properties are naturally and seamlessly addressed.

A REFLECTIVE LOGICAL AND SEMANTIC FRAMEWORK

Being a semantic framework means that rewriting logic, instead of building in
a particular model of concurrency or distribution such as, for example, process
algebras, allows a wide range of such models—including indeed process algebras
and languages such as LOTOS, but including also many other models such as
Petri nets, Actors, the Unity language, dataflow, concurrent objects, concur-
rent graph rewriting, the w-calculus, and real-time systems [12, 13]. Being a
logical framework means that rewriting logic can be used as a metalogic in which
many other logics can be naturally defined and executed [10]. Natural and sim-
ple faithful such representations have been defined for a wide range of logics
including classical, intuitionistic and linear logic, temporal and modal logics,
inductive equational logic, and any logics with a sequent calculus presentation.



329

In particular, logical representations of this kind have been used to define and
build theorem proving tools in a rewriting logic language such as Maude [3].
The way in which a model of computation, a programming language, a de-
sign or architectural language, or a logic are represented in the rewriting logic
framework is by means of representation maps of the form

® . L — RWlLogic.

Such maps give a rewriting logic semantics to the language £ in question.

A key property of rewriting logic is that it is reflective [6, 2], in the sense
that rewriting logic can represent its own metalevel as well as those of other
logics. In fact, there is a finitely presented rewrite theory i that is universalin
the sense that for any finitely presented rewrite theory R (including U itself)
we have the following equivalence

REtt o UF (R = (R,

where R and f are terms representing R and t as data elements of I. Specif-
ically, R is a term of sort Module, and # is a term of sort Term in I{. Since U
is representable in itself as a term of sort Module, we can achieve a “reflective
tower” with an arbitrary number of levels of reflection, since we have

Rbtot o UFRD = RE) & Uk T RD) = U R, ...

For efficiency reasons, the Maude language provides key features of the universal
theory I{ in a built-in module called META-LEVEL that supports an arbitrary
number of levels of reflection [4].

An important use of reflection is defining and executing within rewriting
logic itself representation maps ® : £ — RWLogic. Such maps associate to
each module M in the language £ a rewrite theory ®(M) in RWLogic. In se-
mantic framework applications the language £ can be a model of computation,
a programming language, or an architectural description language; in logical
framework applications £ is typically a logic. In all cases, both £ and ® are
metalevel entities that are, in principle, outside rewriting logic; however, thanks
to reflection, they can be internalized—or as it is sometimes said reified—within
rewriting logic. The idea is that in the universal theory I/ rewrite theories are
already reified in an algebraic data type Module; we can then define another
such data type Module, reifying the modules in £, and can reify @ as a function

® : Module; — Module.

Since typically @ is a total computable function, by general results of Bergstra
and Tucker [1] it can always be specified by Church-Rosser and terminating
rewrite rules, and therefore can be defined and executed in a reflective rewriting
logic language such as Maude.

Yet another important application of reflection is that rewriting logic com-
putations can be controlled at the metalevel by means of internal strategies



330

defined with rewrite rules [6, 2]. This is of great practical use for the formal
analysis of highly concurrent systems such a communication protocols, because,
once they have been specified in rewriting logic, we can define strategies that
explore all the possible concurrent computations from some given initial state
or states, and that check whether some key property is satisfied or violated in
the new states. In this way, formal specifications can be analyzed and corrected
very early in the design process by what amounts to symbolic model checking
and symbolic testing.

RECENT AND FUTURE DEVELOPMENTS

Rewriting logic is at present a young international research program with over
a hundred papers by authors in Europe, the US and Japan, and three language
implementations (see the survey [13] and the upcoming Second Workshop Pro-
ceedings [8]). We are still in an early phase in the task of applying rewriting
logic to distributed computing and communication protocols. However, in ad-
dition to the work on foundations, on models of concurrent computation, and
on languages, some recent research focusing specifically on this area seems quite
promising. For example, the paper [7] shows how cryptographic communica-
tion protocols and attackers can be specified, executed, tested, and analyzed
in Maude, and how adequate execution strategies can search and find security
violations. Similarly, Appendix B of [4] discusses a reliable broadcast proto-
col Maude specification currently being jointly developed by researchers at the
University of California, Santa Cruz, Stanford University, and SRI Interna-
tional (Denker, Garcia-Luna, Meseguer, Smith, Olveczky, and Talcott); using
executable specifications very early in the design process has quickly exposed a
number of mistakes and deadlocks in the initial design. In the same vein, sev-
eral fault-tolerant communication protocols have also been specified in Maude,
and active network algorithms written in the PLAN language are currently be-
ing specified and formally analyzed in Maude as part of a joint collaboration
between researchers at the University of Pennsylvania and at SRI International
(Gunter, Meseguer, and Wang). Other very promising developments include
the work of Najm and Stefani using rewriting logic to specify computational
models for open distributed systems [15], Talcott’s work on open distributed
components [18], Pita’s and Marti-Oliet’s work specifying a network manage-
ment system in rewriting logic [17], Nakajima’s work on the semantics of the
calculus of mobile ambients and on specifying a Java/ORB implementation
of a network management system [16], and Wirsing’s and Knapp’s work on a
systematic translation from object-oriented design notations to Maude specifi-
cations [19].

Much more work remains ahead. More experience should be gained through
examples and case studies; compositional aspects—so that protocols and other
distributed systems and services can be specified, reasoned about, and built in
a much more modular way—should be systematically studied; specification and
proof techniques for system properties at the requirements level—in adequate
temporal or modal logics above rewriting logic—also need to be much further



331

advanced; and efficient implementations of distributed and mobile rewriting
logic languages need to be developed. All this will require a lively international
cooperation between individual researchers and entire research teams that is
already taking place and whose prospects seem very encouraging.

Acknowledgments

I wish to thank the organizers of FORTE/PSTV’98 for kindly suggesting the possi-
bility of giving this talk. I also wish to thank all the researchers at SRI, Stanford
University, UC Santa Cruz, the University of Pennsylvania and other research institu-
tions with whom I am collaborating on these ideas for their many contributions. Some
have been already mentioned by name above or in the references, and many other con-
tributions are surveyed in {13]; I would like to thank also Jonathan Millen at SRI, who
has given us many good suggestions about cryptographic protocols. This work has
been supported by DARPA through Rome Laboratories Contract F30602-97-C-0312,
by Office of Naval Research Contracts N00014-95-C-0225 and N00014-96-C-0114, and
by National Science Foundation Grant CCR-9633363.

Notes

1. Both equations and rewrite rules can be conditional, but for simplicity I discuss the
unconditional case.

References

[1] J. Bergstra and J. Tucker. Characterization of computable data types by
means of a finite equational specification method. In J. W. de Bakker and
J. van Leeuwen, editors, Automata, Languages and Programming, Seventh
Colloquium, pages 76-90. Springer-Verlag, 1980. LNCS, Volume 81.

[2] M. Clavel. Reflection in general logics and in rewriting logic, with applica-
tions to the Maude language. Ph.D. Thesis, University of Navarre, 1998.

[3] M. Clavel, F. Duréan, S. Eker, and J. Meseguer. Building equational logic
tools by reflection in rewriting logic. In Proc. of the CafeOBJ Symposium
'98, Numazu, Japan. CafeOBJ Project, April 1998.

[4] M. Clavel, F. Durén, S. Eker, J. Meseguer, and P. Lincoln. An introduction
to Maude (beta version). Manuscript, SRI International, March 1998.

[5] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and its
Applications, volume 4 of Electronic Notes in Theoretical Computer Science.
Elsevier, 1996. http://wwwl.elsevier.nl/mcs/tcs/pc/volumed.htm.

[6] M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic. In
J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and its
Applications, volume 4 of Electronic Notes in Theoretical Computer Science.
Elsevier, 1996. http://wwwl.elsevier.nl/mcs/tcs/pc/volumed.htm.



332

[7] G. Denker, J. Meseguer, and C. Talcott. Protocol Specification and Analysis
in Maude. In N. Heintze and J. Wing, editors, Proc. of Workshop on Formal
Methods and Security Protocols, 25 June 1998, Indianapolis, Indiana, 1998.

(8] C. Kirchner and H. Kirchner (eds.). Proc. 2nd Intl. Workshop on Rewriting
Logic and its Applications, ENTCS, North Holland, 1998.

[9] P. Lincoln, N. Marti-Oliet, and J. Meseguer. Specification, transformation,
and programming of concurrent systems in rewriting logic. In G. Blel-
loch, K. Chandy, and S. Jagannathan, editors, Specification of Parallel Al-
gorithms, pages 309-339. DIMACS Series, Vol. 18, American Mathematical
Society, 1994.

(10] N. Marti-Oliet and J. Meseguer. Rewriting logic as a logical and semantic
framework. In J. Meseguer, editor, Proc. First Intl. Workshop on Rewrit-
ing Logic and its Applications, volume 4 of Electronic Notes in Theoretical
Computer Science. Elsevier, 1996. http://wwwl.elsevier.nl/mcs/tcs/
pc/volume4.htm.

[11] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73-155, 1992.

[12] J. Meseguer. Rewriting logic as a semantic framework for concurrency: a
progress report. In Proc. CONCUR’96, Pisa, August 1996, pages 331-372.
Springer LNCS 1119, 1996.

[13] J. Meseguer. Research directions in rewriting logic. In U. Berger and
H. Schwichtenberg, editors, Computational Logic, NATO Advanced Study
Institute, Marktoberdorf, Germany, July 29 — August 6, 1997. Springer-
Verlag, 1998.

[14] J. Meseguer and C. Talcott. Using rewriting logic to interoperate architec-
tural description languages (I and II). Lectures at the Santa Fe and Seattle
DARPA-EDCS Workshops, March and July 1997. http://www-formal.
stanford.edu/clt/ArpaNsf/adl-interop.html.

[15] E. Najm and J.-B. Stefani. Computational models for open distributed
systems. In H. Bowman and J. Derrick, editors, Formal Methods for Open
Object-based Distributed Systems, Vol. 2, pages 157-176. Chapman & Hall,
1997.

[16] S. Nakajima. Encoding mobility in CafeOBJ: an exercise of describing mo-
bile code-based software architecture. In Proc. of the CafeOBJ Symposium
'98, Numazu, Japan. CafeOBJ Project, April 1998.

[17] L. Pita and N. Marti-Oliet. A Maude specification of an object oriented
database model for telecommunication networks. In J. Meseguer, editor,
Proc. First Intl. Workshop on Rewriting Logic and its Applications, vol-
ume 4 of Electronic Notes in Theoretical Computer Science. Elsevier, 1996.
http://wwwl.elsevier.nl/mcs/tcs/pc/volume4.htm.

[18] C. L. Talcott. An actor rewrite theory. In J. Meseguer, editor, Proc.
First Intl. Workshop on Rewriting Logic and its Applications, volume 4 of



333

Electronic Notes in Theoretical Computer Science. Elsevier, 1996. http:
//wwwl.elsevier.nl/mcs/tcs/pc/volumed . htm.

[19] M. Wirsing and A. Knapp. A formal approach to object-oriented software
engineering. In J. Meseguer, editor, Proc. First Intl. Workshop on Rewrit-
ing Logic and its Applications, volume 4 of Electronic Notes in Theoretical
Computer Science. Elsevier, 1996. http://wwwl.elsevier.nl/mcs/tcs/
pc/volume4.htm.



	Invited Talk ill
	A LOGICAL FRAMEWORK FOR DISTRIBUTED SYSTEM'S AND
COMMUNICATION PROTOCOLS
	WHY REWRITING LOGIC
	A REFLECTIVE LOGICAL AND SEMANTIC FRAMEWORK
	RECENT AND FUTURE DEVELOPMENTS
	Acknowledgments
	Notes
	References




