
AN ALGEBRAIC SEMANTICS FOR
MESSAGE SEQUENCE CHART

DOCUMENTS
Thomas Gehrke, Michaela Huhn*,

Arend Rensink, Heike Wehrheimo

Universitat Hildesheim. Institut fur Informatik (Prof. U. Goltz).
Postfach 101363. 0-31113 Hildesheim. Germany

* Universitat Karlsruhe. Institut fur Rechnerentwurf und Fehlertoleranz (Prof. O. Schmid) .
. Postfach 6980. 0-76128 Karlsruhe. Germany

° Universitat Oldenburg. Fachbereich Informatik. Abt. Semantik (Prof. E-R. Olderog).
Postfach 2503. 0-26111 Oldenburg. Germany

gehrkelrensink@informatik.uni-hildesheim.de.

Michaela.Huhn@informatik.uni-karlsruhe.de.

Heike.Wehrheim@informatik.uni-oldenburg.de

Abstract: Message Sequence Charts (MSCs) are a graphical and textual lan­
guage for the specification of message passing systems, in particular telecommu­
nication systems. MSCs are standardised by the Internal Telecommunication
Union in standard Z.120. Included in the standard is a formal semantics for
MSCs by means of a process algebra. This semantics covers the complete lan­
guage of single MSCs but lacks an interpretation for conditions which are used as
continuation points of MSCs within an MSC document (a collection of MSCs).
In this paper, we give a process algebraic semantics for basic MSCs including
conditions, enabling the formal interpretation of entire MSC documents.

1 INTRODUCTION

Message Sequence Charts (MSCs) are a widely used formalism for the specifi­
cation of the communication behaviour of reactive systems. It allows for the
graphical and textual representation of the communication structure of systems.
MSCs focus on the temporal ordering of interaction among system components
by specifying the executable traces of a system. They are for instance used as
a graphical representation of executable traces of SDL [17] specifications but
also as a specification language in their own right. The language has been stan­
dardised in the standard ITU-T Z.120 of the International Telecommunication

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 1998
S. Budkowski et al. (eds.), Formal Description Techniques and Protocol Speci�cation, Testing and Veri�cation

10.1007/978-0-387-35394-4_29

http://dx.doi.org/10.1007/978-0-387-35394-4_29

4

Union [7]. Communication in MSCs is asynchronous; the synchronous variant
are Interworkings [15]. MSC-like diagrams have nowadays also been incorpo­
rated into various object-oriented specification technique, like for instance the
Unified Modeling Language (UML) [18].

In order to give a precise meaning to MSCs and to allow verification, a for­
mal semantics is needed. In the standard, the semantics of MSCs is given via
a translation, originally developed in [13], transforming the textual represen­
tation of MSCs into a process algebra, based on [1], for which an axiomatic
semantics exists. Other semantics based on Petri-nets or Biichi automata can
be found in [11, 10, 6]. However, the standard process algebra semantics does
not capture a specific feature of MSCs called conditions. Conditions are a rudi­
mentary form of MSC composition: Within an MSC document (a collection of
MSC diagrams), a condition describes possible continuation points of system
behaviour. Every MSC describes a part of the interaction behaviour of the
system, and an MSC ending with a specific condition can be "glued together"
with every other MSC starting with this condition. This gives rise to a form of
sequential composition, followed by a choice of follow-up MSCs, which is indis­
pensable for the specification of infinite behaviour by means of a set of finite
MSCs. The only semantics incorporating this interpretation of conditions is
the automata semantics of [11]. The latter, however, presumes finite-stateness
of the system under consideration, which in our opinion is not a priori fixed,
given that MSCs are based on asynchronous communication and, even more
important, conditions easily allow the specification of non-regular behaviour.

In this paper, we therefore present an alternative proposal for a process
algebra semantics for MSCs, which is capable of handling the composition of
MSCs via conditions. Conditions are translated into process names, which are
interpreted according to the semantics of the MSCs starting with the condition.
The composition operator used for glueing MSCs together is a form of weak
sequential composition based on [19], which is essentially sequential composition
on the level of instances (the MSC equivalent of a sequential process). This
operator captures precisely the right interplay between sequential composition
and the choice of the follow-up MSC.

Apart from communication behaviour, other aspects specifiable in MSCs are:

Local actions: actions going on within a single instance that do not influence
and cannot be influenced by the environment. Our treatment coincides
with the standard.

Timer actions: the setting of timers and the resulting timeouts. Since we
have no timing aspects in our model, and timer actions are local to in­
stances, their formalisation would coincide with that of local actions (see
above). For that reason, we ignore timer actions in this paper.

General ordering: explicit orderings of actions of different instances, by un­
specified means. We have not attempted to model such arbitrary order­
ing; in fact, we know of no formal semantics to date. A straightforward
formalisation would be to use a special kind of communication for this
purpose and hide it (in a process algebra sense) afterwards.

5

Coregions: segments of a given instance where the ordering of the actions
is not fixed but may be arbitrarily interleaved. We model this by non­
synchronising parallel composition, coincident with the standard treat­
ment.

Instance creation: the generation of a new instance and its eventual termi­
nation. We ignore instance creation in this paper; in the conclusions we
briefly discuss how it might be integrated, using a technique inspired by
the standard semantics.

Instance decomposition: the replacement, within a given MSC, of a single
instance by an entire sub-MSC, with corresponding redirection of mes­
sages sent to or received from the refined instance. Because of the consis­
tency requirements involved, as well as the issue of redirection and various
other technical questions (not all of which are answered or even addressed
in the official standard), decomposition is a very complex matter. We in­
tend to investigate instance decomposition in the future but omit it for
now.

More involved structuring mechanisms mentioned in [7], also not modelled
here, include inline expressions, MSC references and High-level MSCs. A se­
mantics for the latter has recently been proposed in [14]. High-level MSCs
involve the explicit composition of basic MSCs in a flow chart style, as opposed
to their implicit composition through conditions. The formalisation of sequen­
tial composition in High-level MSCs in [14] is also based on [19], just as our
approach, with the difference that we explicitly recognise the localities of the
MSC instances, whereas they model them indirectly through dependencies -
which is closer to the formalisation in [19] and more powerful than our locality­
based approach, but for the purpose of formalising MSCs poses unwarranted
complications. The combination of the standard basic MSC semantics in [7]
and the High-level MSC semantics in [14] gives rise to a framework that is
significantly more complicated than the one we present here.

In Section 2, we start with a description of MSC documents. In Section 3, we
present our process algebra with its structural operational semantics. Section
4 is concerned with a translation of MSC documents into our process algebra.
Section 5 discusses the correspondence of our semantics with the standard one
for single basic MSCs according to [13] and shows some algebraic properties
of our translation. Finally, Section 6 contains conclusions and discusses the
relation of our work with [14] in somewhat more detail.

2 MESSAGE SEQUENCE CHART DOCUMENTS

We start with a brief description of the functionality of MSC documents, as far
as it is relevant for our approach. According to the ITU-T standard Z.120 [7], a
Message Sequence Chart document consists of a collection of Message Sequence
Charts and Message Sequence Chart diagrams (Le., high-level MSCs). In this
paper, we merely consider MSCs. They specify communication/interaction sce­
narios among a set of instances exchanging messages. Instances can be seen as

6

processes residing on different locations. In the graphical charts, the temporal
behaviour of one instance is written along a vertical axis. The execution of dif­
ferent instances is assumed to be asynchronous, thus an axis denotes the local
time of the associated instance running from top to bottom. The behaviour
of the external environment of a system is modelled as a specific instance in
MSCs whose time axis is the frame of the MSC. See for instance the MSC Alt2
in Figure 1, in which an instance communicates with the environment.

Figure 1: Example: A simple MBC document

msc Ini! msc AltI msc AIt2

m3

m6
m4

The actions an instance may execute are depicted as follows: Communi­
cations are denoted by horizontal or diagonal arrows linking the sender of a
message to the receiver. The message to be sent is written as a name upon the
arrow. For instance, in the MSC Init in Figure 1, instances i and j exchange
messages ml and m2. In case a message is lost, the head of the arrow does
not end at the receiver instance, but in a bullet with the name of the intended
receiver associated. Vice versa, a message may be spontaneously generated.
Internal (or local) actions are drawn as rectangles containing the name of the
action inside; see for instance the action a in the MSC Init. In the ITV-T
standard Z.120, internal actions are simply called "actions" and describe some
activity local to an instance. A further class of actions are timer actions; how­
ever, as mentioned in the introduction, we follow [13] and (essentially) [7] in
regarding these as special cases of internal actions.

Instances are assumed to run sequentially. Thus, the order of action occur­
rences along the time axis specifies a total order of execution for an instance.
An exception to this rule are so-called coregions, which specify unordered events
of an instance. In a coregion, the time axis is depicted as a dashed line. See
for instance the sending of m5 and m6 in Al t2.

An important concept for the composition of MSCs are conditions. Graph­
ically, conditions are represented as horizontally elongated hexagons, with the
name of the condition inside. Conditions can be shared between instances; a
condition that is shared by all instances of an MSC is called global. A global
condition is initial if it is the first item of all instances, and final if it is the last.
According to the lTV standard [7], conditions can be used either for informal
annotations or for the 'composition of different MSCs of a document. The lat­
ter role is reserved for (global) initial and final conditions: a chart ending with

7

a specific global condition can be continued by any other chart starting with
the same global condition. Thus, conditions determine possible continuations
of MSCs. Since the standard semantics does not take MSC composition into
account, it treats all kinds of conditions as empty steps. In this paper, we deal
with global conditions only; local conditions would still be translated to empty
steps.

It is important to note that conditions are not intended as a synchronisa­
tion device: although they are sometimes referred to as "global states" in the
standard, there is no requirement that all instances partaking in a condition
are simultaneously at that point of their time axis.

Figure 1 shows an MSC document which consists of three MSCs connected
by conditions. The MSCs describe the interaction between two instances i
and j. Assume that execution is started at the initial MSC lnit.1 The final
condition c2 of lni t is also the initial condition of the MSCs Al t 1 and Al t2;
therefore, after performing lnit either Alt1 or Alt2 can be executed. In Alt1,
the condition c2 is also its final condition, which means that this MSC describes
a loop.

Events which are not causally related may be executed independently; for
example, after composing lnit and Alt1 through the condition c2, the output
event of message m3 and the input event of message m2 are independent, which
means that they may occur in any order. In particular, since the condition c2
is not a synchronisation point, there is nothing to prevent the sending of m4
(by instance j) to occur before the reception of m2 (by instance i). The same
holds for the input event of m4 and the output events of m5 and m6.

In the case where there are several "follow-up" MSCs with the same initial
condition, there is an interesting, subtle issue involved in their composition:
namely, the choice of the actual follow-up MSC during a concrete run of the
system. For instance, in Figure 1, after lni t has finished m3 can be sent;
this automatically involves continuing with Alt1 and rejecting A1t2. Another
possibility is that either m5 or m6 is sent, deciding the choice in favour of Alt2.
However, sending m3 and m5/m6 are independent actions, since they occur in
different instances. Yet the case where instances i and j simultaneously decide
to send m3 resp. m5/m6 is not a valid system run. The choice between the two
follow-up charts is apparently taken on a global level. This is an effect that any
formal semantics has to take into account; for instance, [12) follows precisely
this solution.2

Finally, we want to comment on an issue raised by [12). In our opinion,
and consequently in our semantics, MSC documents do not a priori specify
finite-state systems, even though, of course, finite-state behaviour is a desirable
property. For a counterexample, consider an MSC over two instances with

1 Note that the standard does not prescribe an unambiguous starting point; rather, single
MSCs are thought to represent possible fragments of behaviour.
2 Another point of view is that such a global choice is a specification error and should be ruled
out in advance. However, we are of the opinion that formulating a semantics comes properly
before deciding whether the specified behaviour is implementable.

8

identical initial and final condition (i.e., a loop) containing just one message
sent from one instance to the other. The execution traces of this MSC are
all traces (1 over {in(i, m)@j, out(j, m)@i} such that in each prefix of (1 the
number of in(i, m)@j's never exceeds the number of out(j, m)@i and finally in
(1 the amount of in(i, m)@j's and out(j, m)@i's is equal. Clearly, this is not a
finite-state recognisable language. In fact, we conjecture that it is undecidable
whether the behaviour specified by an MSC document is finite-state. As in
the issue of global choice, we feel that the semantics should be well-defined
regardless of whether or not the behaviour is finite-state.

Table 2: Textual representation of MSC documents.

<document>
<msc>
<inst def>

::= mscdocument <docid>; { <msc>; }* endmscdocument
::= msc <mscid>; { <inst def>; }* endmsc
::= instance <iid>; { <event>; }* endinstance

<event> ::= <comm event>
I action <aid>
I condition <cid> shared all
I concurrent { <comm event>; }* endconcurrent

<comm event>::= in <mid> from [found] <address>
lout <mid> to [lost] <address>

<address> ::= <iid> I env

The relevant fragment of the textual grammar of MSCs is reproduced in
Table 2.3 The grammar contains the following undefined non-terminals:

• <docid>: MSC document identifiers, ranged over by V;

• <mscid>: message sequence chart identifiers, ranged over by M;

• <iid>: instance identifiers, collected in Inst, such that env ¢ Inst. We
denote Addr = Inst U {env} for the set of addresses, ranged over by i, j.

• <mid>: message identifiers, collected in Mess and ranged over by m;

• <aid>: internal action identifiers, collected in Int and ranged over by r;

• <cid>: condition identifiers, collected in Cond and ranged over by c, d.

It should be clear that not every syntactically correct MSC document is ac­
ceptable: the above discussion contains a large number of "consistency require­
ments". In fact, one additionally needs a static semantics for MSC documents,
for instance in the form of a type system, such that a document is well-formed
(well-typed) if and only if it satisfies all those criteria. Some of the crucial
points are:

• Outgoing and incoming messages must be matched precisely;

• The ordering imposed by messages may not be circular;

3In fact, the grammar is an adapted version of that in [7], but the syntax it generates is a
subset of the standard.

9

• Global conditions (which are the only ones we model) must occur in all
instancesj

• All MSCs in a document must have the same set of instances.

3 THE PROCESS ALGEBRA CMSC

We now introduce the process algebra LMse into which we will translate MSC
documents. The basic building blocks are events of one of the following kind:

• out(i, m): normal output of m E Mess to i E Addrj

• lost(i, m): discarded output of m E Mess to i E Addrj

• in(i, m): normal reception of mE Mess from i E Addrj

• found(i, m): spontaneous input of mE Mess from i E Addr;

• act(r): an internal action r E Int;

• J: a termination event.

Events of the first five kinds are collected in Evt, ranged over by ej furthermore,
Evt,; = Evt U {J} is ranged over bya. In each case, a@j denotes the event
a taking place at instance j E Inst, and a@Inst the collection of all such
a@j. Additionally, we assume a set of process names Names to allow recursive
definitions. LMse is then given by the following abstract grammar:

B ::= 8 I e I e@i lB· BIB + BIB IIA B I X I 1. ,

where A Evt@Inst and X E Names. The operators have the following
intuition:

• 8 is an empty, non-terminated (Le., deadlocked) process.

• e is an empty process, terminated at all instances (corresponding to
"skip").

• e@i specifies an event at instance i, and is, furthermore, terminated at
all instances except for i.

• . specifies weak sequential composition of its operands. It has been intro­
duced in [19] in a more general setting and we adapt it here to handle
MSC composition. A similar operator has also been used for Interwork­
ing composition (which are the synchronous variant of MSCs) in [15] and
as a sequencing operator on High-level MSCs [14]. The effect is that of
ordinary sequential composition within each instance, whereas different
instances are allowed to proceed independently. That is, termination of
the first operand at a given instance i (signalled by a J@i-transition)
allows the second operand to perform events a@i but not a@j for j "I i.
(It is important to keep in mind that a term may be terminated at one
instance but not at another, so that termination of a term at one instance
does not imply the inability to do some real event at another; witness e@i
above.)

10

• + specifies a choice between its operands, which is resolved by the first
non-termination event that occurs. The behaviour with respect to termi­
nation is somewhat more complex, based on the principles developed in
[19]: Bl + B2 terminates at i if either of its operands does, but the choice
is only resolved thereby if the other operand does not terminate at i. We
let Bn denote a choice over all terms Bn where n is out of some
finite set N; consequently, Bn equals 8.

• IIA is a TCSP-parallel composition [2] requiring synchronisation on all
events in A; that is, the operands may do events e@i E A together (i.e.,
both at the same time) or events e@i ft A on their own. Moreover, we
require implicit synchronisation on termination, i.e., events J@i may also
only be performed by both operands together.

• X E Names stands for the invocation of the process names X. Processes
are defined by a process environment () : Names -t CMsa, which is
assumed to be given.

• Finally,.l stands for an empty message pool. This is the only really
non-standard operator in CMsa; it is defined especially to model MSCs.
Message pools will be used for the modelling of the asynchronous commu­
nication of MSCs using the synchronous communication of C Msa. Mes­
sage pools are inspired by the modelling of asynchronous communication
in of coordination languages; see, e.g., [3]. A message pool is used to
buffer the sent but not yet received messages. Operationally, this is done
by generating a parallel in(i, m)@j-event whenever an out(j, m)@i-event
is sent.

As usual, the formal semantics of C Msa will be derived via SOS rules generating
a labelled transition system over Evt,;@Inst. We recall the general definition:

1 Definition. A labelled transition system over a set of labels L is a tuple
(8, -t, q) such that 8 is a set of states, -t 8 x L x 8 is a transition
relation and q E 8 is the initial state.

In our case, the labels are taken form the localised alphabet Evt,;@Inst. A
transition B B' means that the term B may signal termination of instance
i, thereby evolving into B'. For instance, a term B not referring to instance i in
any of its events (and not containing 8) may always signal termination of i; it
in fact has no information on i and assumes it to be terminated. Table 3 gives
the structural operational semantics of .c Msa. This gives rise to a transition
system semantics for each .cMsa-term. We briefly discuss the intuitive meaning
of some of the operational rules. The first rule for weak sequential composition
equals the one for (normal) strong sequential composition: the first process is
allowed to proceed. The second rule, on the other hand, describes the fact
that the second component may also execute events at instance i if in the first
component instance i is terminated, as specified by the second rule. For a term
that only refers to events from one instance i, weak sequential composition
coincides with strong sequential composition; i.e., the second operand starts
execution only if the first one is completely terminated.

Empty process

Events

Weak sequential
composition

Choice

Parallel
composition

Process names

Empty pool

Table 3: Operational semantics for LMSC

e@i e@i) E

B B e@i B' B 1· 2..c::.=t 1· 2

j =I i
e@j y'@i) c@j

B1 B2 B2

B1 . B2 a@i) . B2

B1 B2 B2

B1 + B2 y'@i) + B2

B2A

B1 + B2 y'@i)

B1 e@i A

BIllA B2 e@i) IIA B2

B1 A
B1 + B2 y'@i) B2

B2 B2 c@i A

BIllA B2 e@i) BIllA B2

B1 B2 B2 a@i E Au .../@Inst

BIllA B2 a@i) IIA B2

B(X) B'

X a@i) B'

j E Inst

.1 out(j,m)@i) in(i, m)@j 110 .1

11

Choices can be resolved both by normal events and by termination signals
within one operand, i.e. a term containing choices is terminated if one of its
components is. This is in accordance with the usual interplay of termination
and choice; see, for instance, [1]. However, if both operands of a choice may
terminate for an instance i, the choice is not yet resolved and both components
execute their termination transition. In this way, we avoid that a choice can be
resolved by the termination of an instance not participating in an execution.

"@ For instance, using the rules in Table 3, we can derive (e@1+e'@2) ·e"@3
(e@l + e'@2)·E rather than (e@l + e'@2)·e"@3 e"@3) e@l·E or (e@l + e'@2)·
e"@3 e"@3) e'@2· E.

Process names behave according to their instantiation by B.
The semantics of .1 shows a process algebraic modelling of a message pool: If

the pool receives a message from a sender, i.e., the pool performs out(j, m)@i,

12

it stores it for the receiver by evolving into the term in(i, m)@jIl0.L Delivering
the message to the receiver will be done by synchronising on in(i, m)@j; this
does not cause any interference with the rest of the message pool. The details
of the semantics of ..L will become clearer in the next section. There we describe
how MSC documents can be translated into £MSC.

4 TRANSLATION OF MSC DOCUMENTS INTO [MSC

We assume that the document in question has instances Inst (i.e., all MSCs
in the document contain definitions of the instances Inst), messages Mess and
conditions Cond; we let Cond S;;; Names, i.e., conditions serve as names for
recursive processes. For the corresponding process definition 0 see below. We
let init(M) equal the initial condition of an MSC M, if it exists, and e otherwise;
likewise, fin(M) equals the final condition of M, if it exists, and e otherwise.
The translation is defined in Table 4. MSCs, instances and events are mapped

Table 4: Translation functions.

[.]doe : <doc> -t 2 MSC

[document V; <m>l; ... ; <m>n; endmscdocument]doe = {[<m>k] .. e 11 :5 k:5 n}

[.]mae : <msc> -t £MSC

[msc M; <i>1 ; ... j <i>n; endmsc]lIae = { 1. 11"001
([<i>I]i ... t 11 0 ... 11 0 [<i>nh ... t)

) ·fin{M)
where pool = {in{i, m)@j, out{i, m)@j I i,j E Inst, mE Mess}

[.h .. a. : <inst def> -t CMSO

[instance i; <e>l; ... ; <e>n; endinstanceh .. at = [<e>I]!v ... t· [<e>n]!vent
[.]!v ... t : <event> -t £MSO

[<ce>]!vent =
[action r]!v ... t = act{r)@i

[condition c shared all]!v ... t = e
[concurrent <ce>l; ... ; <ce>n; endconcurrent]!v ... t = [<ce>I]!ollll 110 ... 110 [<ce>n]!o.,.

[.]eo_ : <comm event> -t £MSO

[in m from j]!ollll = in(j, m)@i
[in m from found j]!ollll =/ound{j,m)@i

[out m to j]!ollll = out(j, m)@i
[out m to lost j]!ollll = lost(j, m)@i

to £Msc-terms and MSC documents to sets of £Msc-terms. The following
abbreviations occur in the table:

• B1 · . ••• Bn , denoting the right-associative weak sequential composition
of a series of terms Bk for 1 k n. The combined term equals Bl if
n = 1 and e if n = O.

• Bl 11 0 .. ·110 Bn , denoting the right-associative parallel composition of the
terms Bk, 1 k n. The combined term equals Bl if n = 1 and e if
n=O.

13

BM denotes the translation of an MSC M of a given document V according
to Table 4, and Bf'I denotes the sub-term of instance i of MSC M. The
terms resulting from the translation of V are to be interpreted in a process
environment ()1) defined as follows:

for all c E Cond

In words, the behaviour of a condition equals the sum of the MSCs of which
it is the initial condition. Since the translation of an MSC ends in the invo­
cation of its final condition (if any), the "glueing together" of MSCs works as
planned: after an MSC is terminated, a choice of continuations exists, as deter­
mined by the condition names. Moreover, since we are using weak composition,
termination is local to an instance.

2 Example. For the MSC document in Figure 1 we get the following instance
and MSC terms:

Bfnit out(j, ml)@i . in(j, m2)@i
B]nit in(i, ml)@j . act(a)@j . out(i, m2)@j
Btltl in(j, m3)@i . out(j, m4)@i
BJltl out(i, m3)@j . in(i, m4)@j
Btlt2 out(j, m5)@i 110 out(env, m6)@i
BJlt2 in(i, m5)@j ·Zost(i, m7)@j

B A1t2 (.1l1 pool (out(j, m5)@i 110 out(env, m6)@iIl0
in(i, m5)@j ·Zost(i, m7)@j)) . c3

Moreover, we get the following process environment:

()1): c1 1--+ (.1l1 poo l (out(j, ml)@i . in(j, m2)@iI10
in(i, ml)@j . act(r)@j . out(i, m2)@j)) . c2

c2 1--+ (.1l1 pool (in(j, m3)@i . out(j, m4)@iI10
out(i, m3)@j . in(i, m4)@j)) . c2

+ (.1l1 pool ((out(j,m5)@i 110 out(env,m6)@i)110
in(i,m5)@j ·Zost(i,m7)@j))·c3

c3 1--+ c5

It can be seen from the translation that the instances may proceed indepen­
dently in parallel (except that they have to synchronise on termination) but
have to synchronise with the message pool on all communication (and termina­
tion) events. Thus, the role of .1 is as described in the previous section: It takes
the message from a sender by performing a synchronised out(i, m)@j-event and
stores the corresponding receive event in(j, m)@i until the receiving instance,
j, wants to synchronise on that event.

In Fig. 5 the transition system for our example is given, as derived from the
structural operational semantics. The states corresponding to the three MSCs
are marked, as are the states corresponding to the conditions. An interesting
parts of the behaviour is the region surrounding the state marked c2.

14

• The global choice between the outgoing out(i, m3)@j- and out(j, m5)@i­
transitions is as described in Section 2.

• Starting from Init, this choice can be taken prematurely in favour of
out(i, m3)@j, which can already be done before in(j, m2)@i occurs. This
is the effect of weak sequential composition.

Other noteworthy aspects are that the event in(i, m4)@j can be executed con­
currently to the events out(j, m5)@i and out(env, m6)@i, and that the com­
bined behaviour may loop around, i.e., is infinite.

Figure 5: Example: Transition system for the document in Fig. 1.

cl (I oil)

t out(j,ml)@i

t in(i,ml)@j

l a@j
Alt2

out(j,m5)@i

out(env,m6)@i

Alii __ .c.:..---'--"--___

out(env,m6)@i

out(j,m5)@i

out(env,m6)@i

in(i,m4)@j

5 RESULTS

In this section we discuss two issues concerning our semantics: its consistency
with the standard semantics of [13J, and an algebraic property concerning mes­
sage pools.

The standard semantics The standard MSC semantics in [7J, based on the
work of Mauw and Reniers in [13], is also process algebraic. We show consis­
tency of our semantics with the standard by comparing the resulting transition
systems up to strong bisimulation equivalence [16]. Since the standard seman­
tics does not capture continuations via conditions, a comparison can be made
only for single MSCs and not for documents.

For the purpose of comparison, we recall the relevant part of [13]. We refrain
from giving the full semantics but instead focus on the major differences. The

Table 6: Operational semantics for additional operators.

Termination

Sequential

B I+ B2+
(B I ;B2H

BI e@i)

composition B I ; B2 e@i) B2 B I ; B2 e@i)

State a@i ¢ pool B B' B out(j,m)@i) B'

operator AAdB) e@i) AM(B') AM(B) out(j,m)@i) AM+out(j,m)@i(B')

out(j,m)@i E M B in(i,m)@j) B'

\ (B) in(i,m)@j \ (B')
AM) AM-out(j,m)@i

15

semantics of events is essentially the same up to some renaming. Coregions
are not handled in [13], but in [7] they are translated into a free-merge of (the
semantics of) all events in the coregion. The free-merge of ACP (denoted II)
coincides with TCSP parallel composition with an empty synchronisation set
(11 0 above) -except for termination, on which more below. From now on, we
ignore the differences in the translation of events.

The major differences start on the level of instances. In [13], instances are
interpreted as the strong sequential composition of their events, in contrast
to weak sequential in our semantics. To define the operational semantics of
strong sequential composition, instead of termination transitions local to in­
stances (,j@i) above), Mauw and Reniers use a global termination predicate:
B+ denotes the successful termination of process B. The operational semantics
are given in Table 6. To avoid confusion, we use ; to denote strong sequential
composition instead of . as in [13].

The second difference concerns the composition of instances into MSCs. For
modelling asynchronous communication, Mauw and Reniers use a state operator
AM [1]. This operator plays the role of the message pool in our semantics.
M is a multiset containing out-events: If AM(B) performs an out-event, this
event is added to the set M. An in-event of B can only be performed if the
corresponding out-event is an element of M; this element is then removed.
(We denote addition and subtraction of multisets by + and -, respectively).
Therefore, the state operator ensures that the sending of a message occurs
before its receipt.

The translation function of [13] is given by

S[msc M; <i>l; ... j <i>n; endmsc]msc = A0(S[<i>dinst II ... II S[<i>n]inst)

S[instance i; <e>l; ... ; <e>n; endinstancehnst = ... ;

The function S[.hnst translates a single instance i into a process term which
consists of the strong sequential composition of the events performed by i.
As before, the events are translated by the function given in Table 4.
The function S[.]msc translates a MSC into a parallel composition (free merge)
of the terms resulting from the translation of the instances. Moreover, the
term is enclosed in a state operator '\0 to achieve the correct causal order of
corresponding out- and in-events.

16

As mentioned above, we compare our semantics with the standard one up
to strong bisimulation, where, however, we have to take the different notions
of termination into account somehow. The natural thing is to consider the
global termination used in the standard semantics (as indicated by B.J,) to be
equivalent to the termination of all instances (B B for all i E Inst). This
gives rise to the following definition:

3 Definition. Two transition systems Ti = (Si, -+, qi) for i = 1,2 are called
bisimilar, denoted T1 '" T2, if there exists a relation R S1 X S2 such
that (q1, q2) E R and whenever (S1' S2) E R we have

- S1 a:@i) implies S2 a:@i) such that E R;

- 82 a:@i) implies S1 a:@i) such that E R.

Note that our operational semantics (Table 3) as well as the standard one (Ta­
ble 6) fall into the SOS format of [20], and therefore bisimulation is a congru­
ence. Consistency of the semantics holds for all well-formed MSC definitions,
which we defined above to mean that for every outgoing message, a correspond­
ing incoming one is specified as well. Since we are just comparing single MSCs,
we interpret all process names (i.e., MSC conditions) in the environment 8'[)
where 8'[)(c) = c (no continuation).

1 Theorem. Let <i> be an instance definition and <m> a well-formed MSC
definition. Then [<i>];nst '" S[<i>];nst and [<m>]msc '" S[<m>]msc'

The proof can be found in the full version of the paper [5].

Distribution of the message pool Our translation of MSC documents into
CMsc-terms introduces a message pool per MSC: control is transferred from
one MSC to the next (as directed by the conditions) only if the message pool
of the first contains no more remaining elements. This does not correspond to
the actual assumption about the communication structure underlying MSCs,
where there is a single global medium. Now we indicate that our model is
equivalent to such a global medium. The crucial algebraic properties necessary
to show this are the following:

(B1 IIpool .1.) . (B2 IIpool .1.)

(B1 IIpool .1.) + (B2 II pool.1.) =
(B1 . B2) IIpool .1.

(B1 + B2) II pool .1.

(1)

(2)

The first of these states that communication with an empty message pool may
be distributed over weak sequential composition. This is valid up to ,...., if B1 and
B2 are well-formed in the sense that they contain as many out(i, m)@j-events
as in(j, m)@i-events. In fact, (1) is reminiscent of the communication closed
layers law of [4], which also plays an important role in the work of Janssen and
Zwiers [8]. The second equation states a similar distribution property for the
choice operator.

17

As a consequence of these laws, we can give an alternative translation func­
tion featuring a global message pool rather than local ones to each MSC, by
replacing the functions [']doc and [.]msc of Table 4 by the following:

G[document V; <m>!; ... ; <m>n; endmscdocument]doc = {.l Il pool G[<m>k]mBc 11 k n}

G[msc M; <i>!; "'; <i>n; endmsC]mBc = ([<i>din.t 110 ... 110 [<i>n]inBt) . fin(M)

The following theorem states the equivalence of [.] and G[.]

2 Theorem. Let <m> be an MSC definition. Then ..llipoop[<m>]msc row [<m>]mac.

We regard the fact that this equivalence can be shown by relying on the alge­
braic distribution properties (1) and (2) as evidence of the power of the process
algebraic approach.

6 CONCLUSION

We have presented a structural operational semantics for Message Sequence
Chart documents based on process algebras. The semantics, which is consis­
tent with the standard semantics, covers all basic MSC features including the
use of conditions as composition operators. Instance creation can quite easily
be mimicked with asynchronous communication. The creating instance sends
a special message create to the instance to be created which as an initial ac­
tion has to perform a receive action of the create message (a kind of "await
creation"). Instance decomposition can be incorporated in a way similar to the
standard semantics, namely by syntactic substitution in the MSC term.

The main advantage of our semantics is the conceptually clear modelling of
the issues termination and sequential composition. Sequential composition of
MSCs in the context of high-level MSCs, also based on [19], has been given
in [14J. In contrast to [14], we use a single concept of termination and just
one sequential composition operator; the latter can be used both on the level
of instances and for MSCs. Moreover, we have adapted the weak sequential
composition operator of [19J to the specific setting of MSCs, allowing to replace
the complex notion of "permission" by a concept of local termination which is
the natural translation of termination into the area of MSCs. Starting from
our semantics, it should be easy to develop a semantics for high-level MSCs;
sequential composition in high-level MSCs is already present here.

Acknowledgements. We are grateful to Peter Niebert for cooperation in an
initial draft version of this paper.

References

[IJ J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge Univer­
sity Press, 1990.

[2J S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communi­
cating sequential processes. J. ACM, 31(3):560-599, July 1984.

[3] N. Busi, R. Gorrieri, and G. Zavattaro. A Process Algebraic View of
Linda Coordination Primitives. Technical Report UBLCS-97-6, University
of Bologna, May 1997. To appear in: Theoretical Computer Science.

18

[4] T. Elrad and N. Francez. Decomposition of distributed progams into com­
munication closed layers. Science of Computer Programming, 2, 1982.

[5] T. Gehrke, M. Huhn, A. Rensink, and H. Wehrheim. An Algebraic Seman­
tics for Message Sequence Chart Documents. Hildesheimer Informatik­
Bericht 5/98, Universitat Hildesheim, Institut fur Informatik, May 1998.

[6] P. Graubmann, E. Rudolph, and J. Grabowski. Towards a Petri Net Based
Semantics Definition for Message Sequence Charts. In Proceedings of the
6th SDL Forum (SDL '93), 1993.

[7] International Telecommunication Union. Message Sequence Chart (MSC),
z.120 edition, 1996.

[8] W. Janssen and J. Zwiers. From sequential layers to distributed processes.
In Principles of Distributed Computing, pp. 215-227. ACM, 1992.

[9] B. Jonsson and J. Parrow, eds., Concur '94: Concurrency Theory, volume
836 of Lecture Notes in Computer Science. Springer-Verlag, 1994.

[10] P. Ladkin and S. Leue. Interpreting message flow graphs. Formal Aspects
of Computing, 7(5):473-509, 1995.

[11] P. B. Ladkin and S. Leue. What do Message Sequence Charts mean?
In R. L. Tenney, P. D. Amer, and M. U. Uyar, eds., Formal Description
Techniques VI, IFIP Transactions C, pp. 301-316. North-Holland, 1994.

[12] P. B. Ladkin and S. Leue. Four issues concerning the semantics of Mes­
sage Flow Graphs. In D. Hogrefe and S. Leue, eds., Formal Description
Techniques VII, pp. 355-369. Chapman & Hall, 1995.

[13] S. Mauw and M. Reniers. An Algebraic Semantics of Basic Message Se­
quence Charts. The Computer Journal, 37(4):269-277, 1994.

[14] S. Mauw and M. Reniers. High-level message sequence charts. In A.Cavalli
and A.Sarma, eds., SDL'97: Time for testing - SDL, MSC and Trends.
Elsevier, 1997.

[15] S. Mauw, M. v. Wijk, and T. Winter. A formal semantics of synchronous
Interworkings. In O. Frergemand and A. Sarma, eds., SDL'93: Using Ob­
jects, pp. 167-178, North-Holland, 1993.

[16] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[17] A. Olsen, O. Frergemand, B. M0ller-Pedersen, R. Reed, and J. Smith.
Systems Engineering Using SDL-92. North Holland, 1994.

[18] Rational Software Corporation. UML Notation Guide - version 1.1, Sept.
1997. URL: http://www.rational.com/uml.

[19] A. Rensink and H. Wehrheim. Weak sequential composition in process
algebras. In Jonsson and Parrow [9], pp. 226-241.

[20] C. Verhoef. A congruence theorem for structured operational semantics
with predicates and negative premises. In Jonsson and Parrow [9], pp.
433-448.

	AN ALGEBRAIC SEMANTICS FOR MESSAGE SEQUENCE CHART DOCUMENTS
	1 INTRODUCTION
	2 MESSAGE SEQUENCE CHART DOCUMENTS
	3 THE PROCESS ALGEBRA LMSC
	4 TRANSLATION OF MSC DOCUMENTS INTO LMSC
	5 RESULTS
	6 CONCLUSION
	Acknowledgements
	References

