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Abstract: Message Sequence Charts (MSCs) are a graphical and textual lan­
guage for the specification of message passing systems, in particular telecommu­
nication systems. MSCs are standardised by the Internal Telecommunication 
Union in standard Z.120. Included in the standard is a formal semantics for 
MSCs by means of a process algebra. This semantics covers the complete lan­
guage of single MSCs but lacks an interpretation for conditions which are used as 
continuation points of MSCs within an MSC document (a collection of MSCs). 
In this paper, we give a process algebraic semantics for basic MSCs including 
conditions, enabling the formal interpretation of entire MSC documents. 

1 INTRODUCTION 

Message Sequence Charts (MSCs) are a widely used formalism for the specifi­
cation of the communication behaviour of reactive systems. It allows for the 
graphical and textual representation of the communication structure of systems. 
MSCs focus on the temporal ordering of interaction among system components 
by specifying the executable traces of a system. They are for instance used as 
a graphical representation of executable traces of SDL [17] specifications but 
also as a specification language in their own right. The language has been stan­
dardised in the standard ITU-T Z.120 of the International Telecommunication 
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Union [7]. Communication in MSCs is asynchronous; the synchronous variant 
are Interworkings [15]. MSC-like diagrams have nowadays also been incorpo­
rated into various object-oriented specification technique, like for instance the 
Unified Modeling Language (UML) [18]. 

In order to give a precise meaning to MSCs and to allow verification, a for­
mal semantics is needed. In the standard, the semantics of MSCs is given via 
a translation, originally developed in [13], transforming the textual represen­
tation of MSCs into a process algebra, based on [1], for which an axiomatic 
semantics exists. Other semantics based on Petri-nets or Biichi automata can 
be found in [11, 10, 6]. However, the standard process algebra semantics does 
not capture a specific feature of MSCs called conditions. Conditions are a rudi­
mentary form of MSC composition: Within an MSC document (a collection of 
MSC diagrams), a condition describes possible continuation points of system 
behaviour. Every MSC describes a part of the interaction behaviour of the 
system, and an MSC ending with a specific condition can be "glued together" 
with every other MSC starting with this condition. This gives rise to a form of 
sequential composition, followed by a choice of follow-up MSCs, which is indis­
pensable for the specification of infinite behaviour by means of a set of finite 
MSCs. The only semantics incorporating this interpretation of conditions is 
the automata semantics of [11]. The latter, however, presumes finite-stateness 
of the system under consideration, which in our opinion is not a priori fixed, 
given that MSCs are based on asynchronous communication and, even more 
important, conditions easily allow the specification of non-regular behaviour. 

In this paper, we therefore present an alternative proposal for a process 
algebra semantics for MSCs, which is capable of handling the composition of 
MSCs via conditions. Conditions are translated into process names, which are 
interpreted according to the semantics of the MSCs starting with the condition. 
The composition operator used for glueing MSCs together is a form of weak 
sequential composition based on [19], which is essentially sequential composition 
on the level of instances (the MSC equivalent of a sequential process). This 
operator captures precisely the right interplay between sequential composition 
and the choice of the follow-up MSC. 

Apart from communication behaviour, other aspects specifiable in MSCs are: 

Local actions: actions going on within a single instance that do not influence 
and cannot be influenced by the environment. Our treatment coincides 
with the standard. 

Timer actions: the setting of timers and the resulting timeouts. Since we 
have no timing aspects in our model, and timer actions are local to in­
stances, their formalisation would coincide with that of local actions (see 
above). For that reason, we ignore timer actions in this paper. 

General ordering: explicit orderings of actions of different instances, by un­
specified means. We have not attempted to model such arbitrary order­
ing; in fact, we know of no formal semantics to date. A straightforward 
formalisation would be to use a special kind of communication for this 
purpose and hide it (in a process algebra sense) afterwards. 
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Coregions: segments of a given instance where the ordering of the actions 
is not fixed but may be arbitrarily interleaved. We model this by non­
synchronising parallel composition, coincident with the standard treat­
ment. 

Instance creation: the generation of a new instance and its eventual termi­
nation. We ignore instance creation in this paper; in the conclusions we 
briefly discuss how it might be integrated, using a technique inspired by 
the standard semantics. 

Instance decomposition: the replacement, within a given MSC, of a single 
instance by an entire sub-MSC, with corresponding redirection of mes­
sages sent to or received from the refined instance. Because of the consis­
tency requirements involved, as well as the issue of redirection and various 
other technical questions (not all of which are answered or even addressed 
in the official standard), decomposition is a very complex matter. We in­
tend to investigate instance decomposition in the future but omit it for 
now. 

More involved structuring mechanisms mentioned in [7], also not modelled 
here, include inline expressions, MSC references and High-level MSCs. A se­
mantics for the latter has recently been proposed in [14]. High-level MSCs 
involve the explicit composition of basic MSCs in a flow chart style, as opposed 
to their implicit composition through conditions. The formalisation of sequen­
tial composition in High-level MSCs in [14] is also based on [19], just as our 
approach, with the difference that we explicitly recognise the localities of the 
MSC instances, whereas they model them indirectly through dependencies -
which is closer to the formalisation in [19] and more powerful than our locality­
based approach, but for the purpose of formalising MSCs poses unwarranted 
complications. The combination of the standard basic MSC semantics in [7] 
and the High-level MSC semantics in [14] gives rise to a framework that is 
significantly more complicated than the one we present here. 

In Section 2, we start with a description of MSC documents. In Section 3, we 
present our process algebra with its structural operational semantics. Section 
4 is concerned with a translation of MSC documents into our process algebra. 
Section 5 discusses the correspondence of our semantics with the standard one 
for single basic MSCs according to [13] and shows some algebraic properties 
of our translation. Finally, Section 6 contains conclusions and discusses the 
relation of our work with [14] in somewhat more detail. 

2 MESSAGE SEQUENCE CHART DOCUMENTS 

We start with a brief description of the functionality of MSC documents, as far 
as it is relevant for our approach. According to the ITU-T standard Z.120 [7], a 
Message Sequence Chart document consists of a collection of Message Sequence 
Charts and Message Sequence Chart diagrams (Le., high-level MSCs). In this 
paper, we merely consider MSCs. They specify communication/interaction sce­
narios among a set of instances exchanging messages. Instances can be seen as 
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processes residing on different locations. In the graphical charts, the temporal 
behaviour of one instance is written along a vertical axis. The execution of dif­
ferent instances is assumed to be asynchronous, thus an axis denotes the local 
time of the associated instance running from top to bottom. The behaviour 
of the external environment of a system is modelled as a specific instance in 
MSCs whose time axis is the frame of the MSC. See for instance the MSC Alt2 
in Figure 1, in which an instance communicates with the environment. 

Figure 1: Example: A simple MBC document 

msc Ini! msc AltI msc AIt2 

m3 

m6 
m4 

The actions an instance may execute are depicted as follows: Communi­
cations are denoted by horizontal or diagonal arrows linking the sender of a 
message to the receiver. The message to be sent is written as a name upon the 
arrow. For instance, in the MSC Init in Figure 1, instances i and j exchange 
messages ml and m2. In case a message is lost, the head of the arrow does 
not end at the receiver instance, but in a bullet with the name of the intended 
receiver associated. Vice versa, a message may be spontaneously generated. 
Internal (or local) actions are drawn as rectangles containing the name of the 
action inside; see for instance the action a in the MSC Init. In the ITV-T 
standard Z.120, internal actions are simply called "actions" and describe some 
activity local to an instance. A further class of actions are timer actions; how­
ever, as mentioned in the introduction, we follow [13] and (essentially) [7] in 
regarding these as special cases of internal actions. 

Instances are assumed to run sequentially. Thus, the order of action occur­
rences along the time axis specifies a total order of execution for an instance. 
An exception to this rule are so-called coregions, which specify unordered events 
of an instance. In a coregion, the time axis is depicted as a dashed line. See 
for instance the sending of m5 and m6 in Al t2. 

An important concept for the composition of MSCs are conditions. Graph­
ically, conditions are represented as horizontally elongated hexagons, with the 
name of the condition inside. Conditions can be shared between instances; a 
condition that is shared by all instances of an MSC is called global. A global 
condition is initial if it is the first item of all instances, and final if it is the last. 
According to the lTV standard [7], conditions can be used either for informal 
annotations or for the 'composition of different MSCs of a document. The lat­
ter role is reserved for (global) initial and final conditions: a chart ending with 
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a specific global condition can be continued by any other chart starting with 
the same global condition. Thus, conditions determine possible continuations 
of MSCs. Since the standard semantics does not take MSC composition into 
account, it treats all kinds of conditions as empty steps. In this paper, we deal 
with global conditions only; local conditions would still be translated to empty 
steps. 

It is important to note that conditions are not intended as a synchronisa­
tion device: although they are sometimes referred to as "global states" in the 
standard, there is no requirement that all instances partaking in a condition 
are simultaneously at that point of their time axis. 

Figure 1 shows an MSC document which consists of three MSCs connected 
by conditions. The MSCs describe the interaction between two instances i 
and j. Assume that execution is started at the initial MSC lnit.1 The final 
condition c2 of lni t is also the initial condition of the MSCs Al t 1 and Al t2; 
therefore, after performing lnit either Alt1 or Alt2 can be executed. In Alt1, 
the condition c2 is also its final condition, which means that this MSC describes 
a loop. 

Events which are not causally related may be executed independently; for 
example, after composing lnit and Alt1 through the condition c2, the output 
event of message m3 and the input event of message m2 are independent, which 
means that they may occur in any order. In particular, since the condition c2 
is not a synchronisation point, there is nothing to prevent the sending of m4 
(by instance j) to occur before the reception of m2 (by instance i). The same 
holds for the input event of m4 and the output events of m5 and m6. 

In the case where there are several "follow-up" MSCs with the same initial 
condition, there is an interesting, subtle issue involved in their composition: 
namely, the choice of the actual follow-up MSC during a concrete run of the 
system. For instance, in Figure 1, after lni t has finished m3 can be sent; 
this automatically involves continuing with Alt1 and rejecting A1t2. Another 
possibility is that either m5 or m6 is sent, deciding the choice in favour of Alt2. 
However, sending m3 and m5/m6 are independent actions, since they occur in 
different instances. Yet the case where instances i and j simultaneously decide 
to send m3 resp. m5/m6 is not a valid system run. The choice between the two 
follow-up charts is apparently taken on a global level. This is an effect that any 
formal semantics has to take into account; for instance, [12) follows precisely 
this solution.2 

Finally, we want to comment on an issue raised by [12). In our opinion, 
and consequently in our semantics, MSC documents do not a priori specify 
finite-state systems, even though, of course, finite-state behaviour is a desirable 
property. For a counterexample, consider an MSC over two instances with 

1 Note that the standard does not prescribe an unambiguous starting point; rather, single 
MSCs are thought to represent possible fragments of behaviour. 
2 Another point of view is that such a global choice is a specification error and should be ruled 
out in advance. However, we are of the opinion that formulating a semantics comes properly 
before deciding whether the specified behaviour is implementable. 
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identical initial and final condition (i.e., a loop) containing just one message 
sent from one instance to the other. The execution traces of this MSC are 
all traces (1 over {in(i, m)@j, out(j, m)@i} such that in each prefix of (1 the 
number of in(i, m)@j's never exceeds the number of out(j, m)@i and finally in 
(1 the amount of in(i, m)@j's and out(j, m)@i's is equal. Clearly, this is not a 
finite-state recognisable language. In fact, we conjecture that it is undecidable 
whether the behaviour specified by an MSC document is finite-state. As in 
the issue of global choice, we feel that the semantics should be well-defined 
regardless of whether or not the behaviour is finite-state. 

Table 2: Textual representation of MSC documents. 

<document> 
<msc> 
<inst def> 

::= mscdocument <docid>; { <msc>; }* endmscdocument 
::= msc <mscid>; { <inst def>; }* endmsc 
::= instance <iid>; { <event>; }* endinstance 

<event> ::= <comm event> 
I action <aid> 
I condition <cid> shared all 
I concurrent { <comm event>; }* endconcurrent 

<comm event>::= in <mid> from [found] <address> 
lout <mid> to [lost] <address> 

<address> ::= <iid> I env 

The relevant fragment of the textual grammar of MSCs is reproduced in 
Table 2.3 The grammar contains the following undefined non-terminals: 

• <docid>: MSC document identifiers, ranged over by V; 

• <mscid>: message sequence chart identifiers, ranged over by M; 

• <iid>: instance identifiers, collected in Inst, such that env ¢ Inst. We 
denote Addr = Inst U {env} for the set of addresses, ranged over by i, j. 

• <mid>: message identifiers, collected in Mess and ranged over by m; 

• <aid>: internal action identifiers, collected in Int and ranged over by r; 

• <cid>: condition identifiers, collected in Cond and ranged over by c, d. 

It should be clear that not every syntactically correct MSC document is ac­
ceptable: the above discussion contains a large number of "consistency require­
ments". In fact, one additionally needs a static semantics for MSC documents, 
for instance in the form of a type system, such that a document is well-formed 
(well-typed) if and only if it satisfies all those criteria. Some of the crucial 
points are: 

• Outgoing and incoming messages must be matched precisely; 

• The ordering imposed by messages may not be circular; 

3In fact, the grammar is an adapted version of that in [7], but the syntax it generates is a 
subset of the standard. 
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• Global conditions (which are the only ones we model) must occur in all 
instancesj 

• All MSCs in a document must have the same set of instances. 

3 THE PROCESS ALGEBRA CMSC 

We now introduce the process algebra LMse into which we will translate MSC 
documents. The basic building blocks are events of one of the following kind: 

• out(i, m): normal output of m E Mess to i E Addrj 

• lost(i, m): discarded output of m E Mess to i E Addrj 

• in(i, m): normal reception of mE Mess from i E Addrj 

• found(i, m): spontaneous input of mE Mess from i E Addr; 

• act(r): an internal action r E Int; 

• J: a termination event. 

Events of the first five kinds are collected in Evt, ranged over by ej furthermore, 
Evt,; = Evt U {J} is ranged over bya. In each case, a@j denotes the event 
a taking place at instance j E Inst, and a@Inst the collection of all such 
a@j. Additionally, we assume a set of process names Names to allow recursive 
definitions. LMse is then given by the following abstract grammar: 

B ::= 8 I e I e@i lB· BIB + BIB IIA B I X I 1. , 

where A Evt@Inst and X E Names. The operators have the following 
intuition: 

• 8 is an empty, non-terminated (Le., deadlocked) process. 

• e is an empty process, terminated at all instances (corresponding to 
"skip"). 

• e@i specifies an event at instance i, and is, furthermore, terminated at 
all instances except for i. 

• . specifies weak sequential composition of its operands. It has been intro­
duced in [19] in a more general setting and we adapt it here to handle 
MSC composition. A similar operator has also been used for Interwork­
ing composition (which are the synchronous variant of MSCs) in [15] and 
as a sequencing operator on High-level MSCs [14]. The effect is that of 
ordinary sequential composition within each instance, whereas different 
instances are allowed to proceed independently. That is, termination of 
the first operand at a given instance i (signalled by a J@i-transition) 
allows the second operand to perform events a@i but not a@j for j "I i. 
(It is important to keep in mind that a term may be terminated at one 
instance but not at another, so that termination of a term at one instance 
does not imply the inability to do some real event at another; witness e@i 
above.) 
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• + specifies a choice between its operands, which is resolved by the first 
non-termination event that occurs. The behaviour with respect to termi­
nation is somewhat more complex, based on the principles developed in 
[19]: Bl + B2 terminates at i if either of its operands does, but the choice 
is only resolved thereby if the other operand does not terminate at i. We 
let Bn denote a choice over all terms Bn where n is out of some 
finite set N; consequently, Bn equals 8. 

• IIA is a TCSP-parallel composition [2] requiring synchronisation on all 
events in A; that is, the operands may do events e@i E A together (i.e., 
both at the same time) or events e@i ft A on their own. Moreover, we 
require implicit synchronisation on termination, i.e., events J@i may also 
only be performed by both operands together. 

• X E Names stands for the invocation of the process names X. Processes 
are defined by a process environment () : Names -t CMsa, which is 
assumed to be given. 

• Finally,.l stands for an empty message pool. This is the only really 
non-standard operator in CMsa; it is defined especially to model MSCs. 
Message pools will be used for the modelling of the asynchronous commu­
nication of MSCs using the synchronous communication of C Msa. Mes­
sage pools are inspired by the modelling of asynchronous communication 
in of coordination languages; see, e.g., [3]. A message pool is used to 
buffer the sent but not yet received messages. Operationally, this is done 
by generating a parallel in(i, m)@j-event whenever an out(j, m)@i-event 
is sent. 

As usual, the formal semantics of C Msa will be derived via SOS rules generating 
a labelled transition system over Evt,;@Inst. We recall the general definition: 

1 Definition. A labelled transition system over a set of labels L is a tuple 
(8, -t, q) such that 8 is a set of states, -t 8 x L x 8 is a transition 
relation and q E 8 is the initial state. 

In our case, the labels are taken form the localised alphabet Evt,;@Inst. A 
transition B B' means that the term B may signal termination of instance 
i, thereby evolving into B'. For instance, a term B not referring to instance i in 
any of its events (and not containing 8) may always signal termination of i; it 
in fact has no information on i and assumes it to be terminated. Table 3 gives 
the structural operational semantics of .c Msa. This gives rise to a transition 
system semantics for each .cMsa-term. We briefly discuss the intuitive meaning 
of some of the operational rules. The first rule for weak sequential composition 
equals the one for (normal) strong sequential composition: the first process is 
allowed to proceed. The second rule, on the other hand, describes the fact 
that the second component may also execute events at instance i if in the first 
component instance i is terminated, as specified by the second rule. For a term 
that only refers to events from one instance i, weak sequential composition 
coincides with strong sequential composition; i.e., the second operand starts 
execution only if the first one is completely terminated. 
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Table 3: Operational semantics for LMSC 

e@i e@i) E 

B B e@i B' B 1· 2..c::.=t 1· 2 

j =I i 
e@j y'@i) c@j 

B1 B2 B2 

B1 . B2 a@i) . B2 

B1 B2 B2 

B1 + B2 y'@i) + B2 

B2A 

B1 + B2 y'@i) 

B1 e@i A 

BIllA B2 e@i) IIA B2 

B1 A 
B1 + B2 y'@i) B2 

B2 B2 c@i A 

BIllA B2 e@i) BIllA B2 

B1 B2 B2 a@i E Au .../@Inst 

BIllA B2 a@i) IIA B2 

B(X) B' 

X a@i) B' 

j E Inst 

.1 out(j,m)@i) in(i, m)@j 110 .1 

11 

Choices can be resolved both by normal events and by termination signals 
within one operand, i.e. a term containing choices is terminated if one of its 
components is. This is in accordance with the usual interplay of termination 
and choice; see, for instance, [1]. However, if both operands of a choice may 
terminate for an instance i, the choice is not yet resolved and both components 
execute their termination transition. In this way, we avoid that a choice can be 
resolved by the termination of an instance not participating in an execution. 

"@ For instance, using the rules in Table 3, we can derive (e@1+e'@2) ·e"@3 
(e@l + e'@2)·E rather than (e@l + e'@2)·e"@3 e"@3) e@l·E or (e@l + e'@2)· 
e"@3 e"@3) e'@2· E. 

Process names behave according to their instantiation by B. 
The semantics of .1 shows a process algebraic modelling of a message pool: If 

the pool receives a message from a sender, i.e., the pool performs out(j, m)@i, 
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it stores it for the receiver by evolving into the term in(i, m)@jIl0.L Delivering 
the message to the receiver will be done by synchronising on in(i, m)@j; this 
does not cause any interference with the rest of the message pool. The details 
of the semantics of ..L will become clearer in the next section. There we describe 
how MSC documents can be translated into £MSC. 

4 TRANSLATION OF MSC DOCUMENTS INTO [MSC 

We assume that the document in question has instances Inst (i.e., all MSCs 
in the document contain definitions of the instances Inst), messages Mess and 
conditions Cond; we let Cond S;;; Names, i.e., conditions serve as names for 
recursive processes. For the corresponding process definition 0 see below. We 
let init(M) equal the initial condition of an MSC M, if it exists, and e otherwise; 
likewise, fin(M) equals the final condition of M, if it exists, and e otherwise. 
The translation is defined in Table 4. MSCs, instances and events are mapped 

Table 4: Translation functions. 

[.]doe : <doc> -t 2 .... MSC 

[document V; <m>l; ... ; <m>n; endmscdocument]doe = {[<m>k] .. e 11 :5 k:5 n} 

[.]mae : <msc> -t £MSC 

[msc M; <i>1 ; ... j <i>n; endmsc]lIae = { 1. 11"001 
([<i>I]i ... t 11 0 ... 11 0 [<i>nh ... t) 

) ·fin{M) 
where pool = {in{i, m)@j, out{i, m)@j I i,j E Inst, mE Mess} 

[.h .. a. : <inst def> -t CMSO 

[instance i; <e>l; ... ; <e>n; endinstanceh .. at = [<e>I]!v ... t· ... . [<e>n]!vent 
[.]!v ... t : <event> -t £MSO 

[<ce>]!vent = 
[action r]!v ... t = act{r)@i 

[condition c shared all]!v ... t = e 
[concurrent <ce>l; ... ; <ce>n; endconcurrent]!v ... t = [<ce>I]!ollll 110 ... 110 [<ce>n]!o.,. 

[.]eo_ : <comm event> -t £MSO 

[in m from j]!ollll = in(j, m)@i 
[in m from found j]!ollll =/ound{j,m)@i 

[out m to j]!ollll = out(j, m)@i 
[out m to lost j]!ollll = lost(j, m)@i 

to £Msc-terms and MSC documents to sets of £Msc-terms. The following 
abbreviations occur in the table: 

• B1 · . ••• Bn , denoting the right-associative weak sequential composition 
of a series of terms Bk for 1 k n. The combined term equals Bl if 
n = 1 and e if n = O. 

• Bl 11 0 .. ·110 Bn , denoting the right-associative parallel composition of the 
terms Bk, 1 k n. The combined term equals Bl if n = 1 and e if 
n=O. 
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BM denotes the translation of an MSC M of a given document V according 
to Table 4, and Bf'I denotes the sub-term of instance i of MSC M. The 
terms resulting from the translation of V are to be interpreted in a process 
environment ()1) defined as follows: 

for all c E Cond 

In words, the behaviour of a condition equals the sum of the MSCs of which 
it is the initial condition. Since the translation of an MSC ends in the invo­
cation of its final condition (if any), the "glueing together" of MSCs works as 
planned: after an MSC is terminated, a choice of continuations exists, as deter­
mined by the condition names. Moreover, since we are using weak composition, 
termination is local to an instance. 

2 Example. For the MSC document in Figure 1 we get the following instance 
and MSC terms: 

Bfnit out(j, ml)@i . in(j, m2)@i 
B]nit in(i, ml)@j . act(a)@j . out(i, m2)@j 
Btltl in(j, m3)@i . out(j, m4)@i 
BJltl out( i, m3)@j . in( i, m4)@j 
Btlt2 out(j, m5)@i 110 out( env, m6)@i 
BJlt2 in(i, m5)@j ·Zost(i, m7)@j 

B A1t2 (.1l1 pool (out(j, m5)@i 110 out(env, m6)@iIl0 
in(i, m5)@j ·Zost(i, m7)@j)) . c3 

Moreover, we get the following process environment: 

()1): c1 1--+ (.1l1 poo l (out(j, ml)@i . in(j, m2)@iI10 
in(i, ml)@j . act( r)@j . out(i, m2)@j)) . c2 

c2 1--+ (.1l1 pool (in(j, m3)@i . out(j, m4)@iI10 
out(i, m3)@j . in(i, m4)@j)) . c2 

+ (.1l1 pool ((out(j,m5)@i 110 out(env,m6)@i)110 
in(i,m5)@j ·Zost(i,m7)@j))·c3 

c3 1--+ c5 

It can be seen from the translation that the instances may proceed indepen­
dently in parallel (except that they have to synchronise on termination) but 
have to synchronise with the message pool on all communication (and termina­
tion) events. Thus, the role of .1 is as described in the previous section: It takes 
the message from a sender by performing a synchronised out(i, m)@j-event and 
stores the corresponding receive event in(j, m)@i until the receiving instance, 
j, wants to synchronise on that event. 

In Fig. 5 the transition system for our example is given, as derived from the 
structural operational semantics. The states corresponding to the three MSCs 
are marked, as are the states corresponding to the conditions. An interesting 
parts of the behaviour is the region surrounding the state marked c2. 
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• The global choice between the outgoing out(i, m3)@j- and out(j, m5)@i­
transitions is as described in Section 2. 

• Starting from Init, this choice can be taken prematurely in favour of 
out(i, m3)@j, which can already be done before in(j, m2)@i occurs. This 
is the effect of weak sequential composition. 

Other noteworthy aspects are that the event in(i, m4)@j can be executed con­
currently to the events out(j, m5)@i and out( env, m6)@i, and that the com­
bined behaviour may loop around, i.e., is infinite. 

Figure 5: Example: Transition system for the document in Fig. 1. 

cl (I oil) 

t out(j,ml)@i 

t in(i,ml)@j 

l a@j 
Alt2 

out(j,m5)@i 
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Alii __ .c.:..---'--"--___ ..... 

out(env,m6)@i 

out(j,m5)@i 

out(env,m6)@i 

in(i,m4)@j 

5 RESULTS 

In this section we discuss two issues concerning our semantics: its consistency 
with the standard semantics of [13J, and an algebraic property concerning mes­
sage pools. 

The standard semantics The standard MSC semantics in [7J, based on the 
work of Mauw and Reniers in [13], is also process algebraic. We show consis­
tency of our semantics with the standard by comparing the resulting transition 
systems up to strong bisimulation equivalence [16]. Since the standard seman­
tics does not capture continuations via conditions, a comparison can be made 
only for single MSCs and not for documents. 

For the purpose of comparison, we recall the relevant part of [13]. We refrain 
from giving the full semantics but instead focus on the major differences. The 



Table 6: Operational semantics for additional operators. 

Termination 

Sequential 

B I+ B2+ 
(B I ;B2H 

BI e@i) 

composition B I ; B2 e@i) B2 B I ; B2 e@i) 

State a@i ¢ pool B B' B out(j,m)@i) B' 

operator AAdB) e@i) AM(B') AM(B) out(j,m)@i) AM+out(j,m)@i(B') 

out(j,m)@i E M B in(i,m)@j) B' 

\ (B) in(i,m)@j \ (B') 
AM ) AM-out(j,m)@i 
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semantics of events is essentially the same up to some renaming. Coregions 
are not handled in [13], but in [7] they are translated into a free-merge of (the 
semantics of) all events in the coregion. The free-merge of ACP (denoted II) 
coincides with TCSP parallel composition with an empty synchronisation set 
(11 0 above) -except for termination, on which more below. From now on, we 
ignore the differences in the translation of events. 

The major differences start on the level of instances. In [13], instances are 
interpreted as the strong sequential composition of their events, in contrast 
to weak sequential in our semantics. To define the operational semantics of 
strong sequential composition, instead of termination transitions local to in­
stances ( ,j@i) above), Mauw and Reniers use a global termination predicate: 
B+ denotes the successful termination of process B. The operational semantics 
are given in Table 6. To avoid confusion, we use ; to denote strong sequential 
composition instead of . as in [13]. 

The second difference concerns the composition of instances into MSCs. For 
modelling asynchronous communication, Mauw and Reniers use a state operator 
AM [1]. This operator plays the role of the message pool in our semantics. 
M is a multiset containing out-events: If AM(B) performs an out-event, this 
event is added to the set M. An in-event of B can only be performed if the 
corresponding out-event is an element of M; this element is then removed. 
(We denote addition and subtraction of multisets by + and -, respectively). 
Therefore, the state operator ensures that the sending of a message occurs 
before its receipt. 

The translation function of [13] is given by 

S[msc M; <i>l; ... j <i>n; endmsc]msc = A0(S[<i>dinst II ... II S[<i>n]inst) 

S[ instance i; <e>l; ... ; <e>n; endinstancehnst = ... ; 

The function S[.hnst translates a single instance i into a process term which 
consists of the strong sequential composition of the events performed by i. 
As before, the events are translated by the function given in Table 4. 
The function S[.]msc translates a MSC into a parallel composition (free merge) 
of the terms resulting from the translation of the instances. Moreover, the 
term is enclosed in a state operator '\0 to achieve the correct causal order of 
corresponding out- and in-events. 
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As mentioned above, we compare our semantics with the standard one up 
to strong bisimulation, where, however, we have to take the different notions 
of termination into account somehow. The natural thing is to consider the 
global termination used in the standard semantics (as indicated by B.J,) to be 
equivalent to the termination of all instances (B B for all i E Inst). This 
gives rise to the following definition: 

3 Definition. Two transition systems Ti = (Si, -+, qi) for i = 1,2 are called 
bisimilar, denoted T1 '" T2, if there exists a relation R S1 X S2 such 
that (q1, q2) E R and whenever (S1' S2) E R we have 

- S1 a:@i) implies S2 a:@i) such that E R; 

- 82 a:@i) implies S1 a:@i) such that E R. 

Note that our operational semantics (Table 3) as well as the standard one (Ta­
ble 6) fall into the SOS format of [20], and therefore bisimulation is a congru­
ence. Consistency of the semantics holds for all well-formed MSC definitions, 
which we defined above to mean that for every outgoing message, a correspond­
ing incoming one is specified as well. Since we are just comparing single MSCs, 
we interpret all process names (i.e., MSC conditions) in the environment 8'[) 
where 8'[)(c) = c (no continuation). 

1 Theorem. Let <i> be an instance definition and <m> a well-formed MSC 
definition. Then [<i>];nst '" S[<i>];nst and [<m>]msc '" S[<m>]msc' 

The proof can be found in the full version of the paper [5]. 

Distribution of the message pool Our translation of MSC documents into 
CMsc-terms introduces a message pool per MSC: control is transferred from 
one MSC to the next (as directed by the conditions) only if the message pool 
of the first contains no more remaining elements. This does not correspond to 
the actual assumption about the communication structure underlying MSCs, 
where there is a single global medium. Now we indicate that our model is 
equivalent to such a global medium. The crucial algebraic properties necessary 
to show this are the following: 

(B1 IIpool .1.) . (B2 IIpool .1.) 

(B1 IIpool .1.) + (B2 II pool.1.) = 
(B1 . B2) IIpool .1. 

(B1 + B2) II pool .1. 

(1) 

(2) 

The first of these states that communication with an empty message pool may 
be distributed over weak sequential composition. This is valid up to ,...., if B1 and 
B2 are well-formed in the sense that they contain as many out(i, m)@j-events 
as in(j, m)@i-events. In fact, (1) is reminiscent of the communication closed 
layers law of [4], which also plays an important role in the work of Janssen and 
Zwiers [8]. The second equation states a similar distribution property for the 
choice operator. 
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As a consequence of these laws, we can give an alternative translation func­
tion featuring a global message pool rather than local ones to each MSC, by 
replacing the functions [']doc and [.]msc of Table 4 by the following: 

G[document V; <m>!; ... ; <m>n; endmscdocument]doc = {.l Il pool G[<m>k]mBc 11 k n} 

G[msc M; <i>!; "'; <i>n; endmsC]mBc = ([<i>din.t 110 ... 110 [<i>n]inBt) . fin(M) 

The following theorem states the equivalence of [.] and G[.] 

2 Theorem. Let <m> be an MSC definition. Then ..llipoop[<m>]msc row [<m>]mac. 

We regard the fact that this equivalence can be shown by relying on the alge­
braic distribution properties (1) and (2) as evidence of the power of the process 
algebraic approach. 

6 CONCLUSION 

We have presented a structural operational semantics for Message Sequence 
Chart documents based on process algebras. The semantics, which is consis­
tent with the standard semantics, covers all basic MSC features including the 
use of conditions as composition operators. Instance creation can quite easily 
be mimicked with asynchronous communication. The creating instance sends 
a special message create to the instance to be created which as an initial ac­
tion has to perform a receive action of the create message (a kind of "await 
creation"). Instance decomposition can be incorporated in a way similar to the 
standard semantics, namely by syntactic substitution in the MSC term. 

The main advantage of our semantics is the conceptually clear modelling of 
the issues termination and sequential composition. Sequential composition of 
MSCs in the context of high-level MSCs, also based on [19], has been given 
in [14J. In contrast to [14], we use a single concept of termination and just 
one sequential composition operator; the latter can be used both on the level 
of instances and for MSCs. Moreover, we have adapted the weak sequential 
composition operator of [19J to the specific setting of MSCs, allowing to replace 
the complex notion of "permission" by a concept of local termination which is 
the natural translation of termination into the area of MSCs. Starting from 
our semantics, it should be easy to develop a semantics for high-level MSCs; 
sequential composition in high-level MSCs is already present here. 

Acknowledgements. We are grateful to Peter Niebert for cooperation in an 
initial draft version of this paper. 
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