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Abstract: The parametric representation of surfaces is often avoided in best-fit com­
putations because of the large number of unknowns. By exploiting the 
matrix structure, D. Sourlier has developed an effective best-fit software 
'FUNKE', which is based on parametric representation. FUNKE is per­
fectly applicable for sculptured surfaces. We report on the best-fit of a 
turbine blade. 
In the second part we propose a new shape distance measure to compare 
two CAD-described surfaces. We give algorithms in Matlab to compute this 
shape distance and the corresponding transformation. 

1. Introduction and Notations 
In this paper we will represent a patch of a sculptured surface (i.e. a polynomial 
surface) as a tensor product surface 

(
X(U,V)) (fT(U)Ag(V)) 

x(u,v)= y(u,v) = fT(u)Bg(v) , 
z(u,v) fT(U)C g(v) 

(1) 

f(u) = [/I (u), ... , fn(u)f and g(v) = [gl(V), ... , gm(V)]T are given basis functions of 
the surface parameters u and v. These basis functions could be NURBS, B-splines, 
Bezier-polynomials or simply monomes i.e. fi(U) = U i - 1 . The coefficients specifying 
the surface are given by the three matrices A, B, C E JRffiXn . It will be convenient to 
write the surface (1) sometimes as 

( 
X(U,V)) aijfi (u)gj (v) ) Q!kFk(U,V)) 
y(u,v) = bijfi (u)gj (v) = . 
z(u, v) 2:i=l2:j =l Cij fi (u)gj (v) 2:k=l 'YkFk(U, v) 

(2) 

The coefficients Q!k, .Bk and 'Yk and the basis functions Fk (u, v) are obtained by 
rearranging the data as follows: Q!Hn(j-l) = aij, .BHn(j-l) = bij, 'YHn(j-l) = Cij 
and FHn(j-l)(U,V) = fi(U)gj(v). 

2. Least Squares Fit of sculptured surface 
A problem in coordinate metrology is the best-fit of a geometric element into mea­
suring points. Best-fit means that the sum of squares of the geometric distances of 
the measuring points to the geometric element with optimally fitted parameters is to 
be minimized. 

Although the parametric surface representation is a standard in all fields of CAD / 
CAM/CAQ (cf. B-splines/NURBS) as well as in related fields like e.g. surface re­
construction, this representation is not widely introduced and used so far in the 
commercial software for the practical needs of coordinate measuring techniques. The 
best-fit calculation is still based there on implicit surface representation f(x) = O. The 
main reason for that is the advantage of not having the two surface coordinates u and 
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v involved as additional unknowns in the least squares fit. The problem with implicit 
surface representation is, however, that only for standard surfaces like plane, sphere, 
cylinder, cone an explicit distance function is known. For more complex surfaces 
like ellipsoids, with no explicit expression for the distance, an approximation for 
the geometric distance is often used. Of course by using such an approximation the 
computed fit is not the exact best-fit and this may not be acceptable. 

With the parametric approach the number of unknowns is dramatically enlarged: 
each measuring point generates an additional unknown when fitting a 3D-curve, or 
even two unknowns if we wish to fit a surface (cf. (Gander, Golub and Strebel, 1994) 
or (Sourlier, 1995)). However, Sourlier has developed a software FUNKE (Sourlier, 
1995) based on the parametric representation which allows to compute best-fits of 
surfaces. He shows that by exploiting the structure of the Jacobian matrix even with 
the additional unknowns the computational complexity is comparable to a fit using 
an implicit surface representation. Interesting features of FUNKE are 

best-fit of sculptured surfaces, complex features (e. g. involute, helical toroid), 
combined features (e. g. quadrant to be fitted by position/orientation, length, 
width and height), 
best-fit with frozen degrees of freedom (e. g. fix-radius cylinder fit), 
best-fit available for any new defined surface, standardization of best-fit-imple­
mentation, 
function-independent best-fit procedure by separating geometry from position/o­
rientation description), 
improved possibilities for probe radius correction and deflection compensation. 

The software FUNKE computes the best-fit (in the 2-norm) to given measuring 
points for every parameterized surface function. FUNKE is based on a generic surface 
function x( u, v) which is replaced in each function call by the current surface that 
we wish to fit. There is a strict separation of geometric and position/orientation 
parameters. The surface is thus described in its simplest position. We call this the 
special parametric description in which only the parameters p occur which describe 
the geometry of the surface. Here are some examples: 

x' plane(u, v, p) 

x' sphere(u, v, p) 

x' cylinder ( u, v, p) 

(u, v, 0) 

(PI cos U cos v, PI sin u cos v, sin v) 

(PI cos U, PI sin u, v) 

x' screw(u, v, p) (v cos u, v sin U,PI u) 
The general description of a surface which includes the position/ orientation 

information 
t=(t""ty,tz ) and the angles a=(a,b,c) 

is given by the transformation (R(a) is an orthogonal matrix): 

x(u, v, p, a, t) = R(a)x/(u, v, p) + t = R(a)(x' (u, v, p) + t). 
If we wish to compute the distance dx of a measuring point x to the surface, we have 
to solve a minimization problem in order to find the foot-point coordinates 

dx = min IIx - x(u, v, p, a, t)ll. 
u,v 

To compute the best-fit of a surface to n measuring points we need to minimize the 
sum of squares of the distances and thus we have to introduce 2n more unknowns for 
the foot-point coordinates U = (UI, VI, ... , Un, Vn ): 

n 

Q2(U, p, a, t) = L IIXi - X(Ui' Vi, p, a, t)1I2 = min 
i=l 
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At first it seems that these new unknowns would make the problem much more difficult 
to solve. However, as shown in (Sourlier, 1995) by exploiting the structure of the 
Jacobian, the complexity grows only linearly with the number of measuring points. 

Because we separate geometry from position/orientation it is possible to fit a set of 
N geometrically different surfaces with common position/orientation as a compound 
object. For the implementation we have to define a relation 

i t-+ K(i)j 1:::; i :::; n and A:::; K :::; N 

which assigns the i-th point to a specific surface K. In this way we obtain for each 
pair (Ui, Vi) of surface coordinates the values of the corresponding surface point from 
the generic function 

x(i) = x,(K(i))(Ui,Vi,p). 

If, for example, we have N different surfaces of the same type (e.g. planes) but 
in different positions/orientations, we can start from the same nominal surface func­
tion, e.g. x' (u, v) = (u, V, 0), and construct the N surface functions by attributing 
appropriate values to their position/orientation offsets: 

x'(A)(u,v,p) = R(a(A)). (x'(u,v,p) +t(A)) 

X'(N)(U,V,p) = R(a(N)). (x'(u,v,p) +t(N)). 

The position/orientation offsets a(A), t(A), . .. , a(N), t(N) which define the (known and 
fixed) relative position/orientations of the N surfaces are stored individually and are 
not changed during the best-fit procedure, in contrast to the position/orientation 
parameters a and t which are common for all actually fitted surfaces and which are 
subject to best-fit. 

With this technique it is possible to best-fit a set of surfaces patches as a whole. 
We can even mix standard surfaces with sculptured surfaces. Sculptured surfaces are 
a special case. It is important to maintain the Co or C 1 continuity of the patches 
as defined by the CAD dates. Therefore a best-fit respecting the given relative po­
sition/orientation is very important. For this purpose FUNKE is able to read and 
process CAD data of a sculptured surface. 

Imagine a turbine blade as shown in Figure 1. What can we do to completely 
separate form deviations from position/orientation deviations? It is not enough to 
compare the CAD-defined surface against the measuring points in a coordinate system 
e.g. defined by some reference points or determined by the turbine base (on which we 
are able to measure and best-fit standard surfaces). Doing this we would get a larger 
form deviation than effectively possible (with the theoretically optimal alignment)! In 
order to obtain the pure form deviation (free from any position/orientation deviation) 
we have to determine the "intrinsic" coordinate system of the sculptured surface of the 
turbine blade itself. In other words: form deviations can be shown in that workpiece 
coordinate system where the sum of squares of all surface scan points attains its 
minimum. 

To show this we perform the evaluation in two ways. Figure 1 shows the form 
deviations computed by FUNKE in the theoretical optimal way: We obtain here for 
a sculptured surface the same good results as we would also obtain (with commercial 
software) for standard surfaces. The mathematical description (in polynomial form) 
is given in the "VDA-FS"-Format (well-known in Europa), but as well we could use 
also other sculptured surface formats, like IGES or STEP. 

For 981 measuring points the computation took about 0.3 seconds on a PC 
equipped with a Pentium processor. The average deviation for this best-fit is 3.8/-!. 
After 5 steps of Gauss-Newton iterations we obtained convergence. The average 
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Figure 1. Turbine blade: pure form deviation u = 3.83JL 

deviation declined as 

2363.62912J.t -+ 205.70313J.t -+ 5.65472J.t -+ 3.8342J.t -+ 3.83208J.t -+ 3.83208J.t 

Figure 2 shows the same deviations in a coordinate system defined by the turbine 
base. This coordinate system - which can easily be determined also by commer­
cial CMM software - delivers too large form deviations due to the relative posi­
tion/orientation deviation between turbine base and blade. This can clearly be seen 
as systematic deviation in Figure 2 and 3. 

3. A Shape Distance Measure for Sculptured Surfaces 

3.1. NORM OF A SURFACE 

In the preceding chapter we have discussed a best-fit method for sculptured surfaces. 
The best-fit problem is defined as the fit of a point cloud (measuring points) against 
a given surface (CAD-description). But what about comparing two surfaces (i.e. two 
CAD-descriptions) to each other? This is what we are concerned in this chapter: we 
first propose a shape distance measure D which tells how close two surfaces described 
parametrically by polynomials (monomials, Bezier-polynomials or B-splines) are, with 
respect of their geometrical shape. Then we will show a method which minimizes this 
shape measure D as function of the relative position and orientation of these two 
surfaces. This allows us to compare two slightly different geometries, regarding their 
"similarity of shape" independently of their actual position/orientation and thus their 
description with rather different coefficients. 

We will assume in the following that the parameterization (u, v) of both surfaces is 
compatible and comparable (e.g. using a chordal parameterization), so that in some 
sense points with the same u, v-coordinates correspond to each other. We will call 
such surfaces similarly parameterized. This assumption may be questionable from a 
mathematical viewpoint. However, we think that for practical purposes the shape 
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Figure 2. Thrbine blade: deviation evaluated in the coordinate system defined by the 
turbine base (combined form and position/orientation deviations t7 = 56J.L) 

Figure 3. Left: distribution of form deviation from Figure 1. Right: same for Figure 
2. The theoretical Gaussian distribution is marked by the dots. 

distance measure based on this assumption and introduced in the following may be 
useful anyway. We will show examples where this measure proves to be valuable. 

DEFINITION 1. The 2-norm of a surface is 

Ilxll:= 11 11 Ilx(u, dudv, 
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where Ilx(u, = x(u, v? + y(u, V)2 + z(u, V)2. 

Using the representation (1) we obtain the expression 

Considering only the first term in (4) we obtain 

/,' /,' (f' A g)' dudv /,' /,' (t: aij /,g;) (p'd'9') dudv (5) 

L aijakl 11 !i(U)!k(U) du 11 gj(V)gl(V) dv. 
i,j,k,l 0 0 

Now, if the basis functions are orthogonal i.e. if 

11 /iCu)fk(u) du = 11 gi (U)gk (u) du = { 6: 
then (5) simplifies to 

11 11 (fT A g)2 dudv = a;j = 
',3 

i=k 
i=/=k 

The same simplifications hold for the other terms. Thus we obtain the theorem: 

THEOREM 1. Let x( u, v) be defined by {1} with orthonormal basis functions fi (u) 
and gj (v). Then the 2-norm can be computed by the expression: 

IIxll2 = dudv = + + (6) 

where IIIIF denotes the Frobenius norm. 

3.2. MEAN SQUARE DISTANCE OF SURFACES 

DEFINITION 2. The mean square distance D of two surfaces x( u, v) and x' (u, v) 
is given by 

D2 = 11 11 Ilx(u, v) - X/(U, dudv. (7) 

If we perform a change of basis and represent the two surfaces by the same set of 
orthogonal basis functions then by Theorem 1 the .mean square distance (the shape 
distance) can be computed by 

D2 = + + (8) 

where = A - A' etc. 
Let us consider now the following problem: Given two similarly parameterized 

surfaces x(u, v) and X/(U, v), find an orthogonal matrix R (a product of three rota­
tions) and a translation vector t such that the shape distance between x(u, v) and 
RX' (u, v) + t is minimized: 

D2 = 11 111IRx/(u,v) + t - dudv = min 
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Using the representation (2) 

where r denotes the matrix 

[ 
Q1 ... Q nm 1 r = {31 ... {3nm 

'Y1 ... 'Ynm 

and 
F = [F1(U, v), ... , Fmn(u, v)f 

the problem becomes 

n 2 = 11 11 II(Rr' - r)F + dudv = min 

The problem simplifies if we make the assumption that F1 (u, v) == 1. This assumption 
is not very restrictive since it is very often the case that the constant 1 belongs to the 
set of orthogonal functions. If F1 (u, v) == 1 the translation vector t can be subtracted 
from the first column of r, giving the matrix r*. Now the problem becomes 

n2 = 11 1111 (Rr' - dudv = IIRr' - = min. (9) 

We have now reduced the problem to compute the shape distance of two similarly 
parameterized surfaces to a standard problem, namely to an orthogonal Procrustes 
Problem (Golub and Van Loan, 1996): find an orthogonal matrix R such that 

(10) 

A problem of type (10) also occurs when computing a least squares fit of two point 
clouds; cf. (Hanson and Norris, 1981) and (Gander, 1997). 

By minimizing Q with respect to t we obtain the necessary equation (note that 
A(:, 1) indicates the first column of the matrix A): 

t = r(:, 1) - R r'(:, 1) (11) 

which means, that after computing R, we can always choose t such that the first 
column of the matrix Rr' - r* is zero. Thus we first determine R such that 

IIRr'(:,2 : mn) - r(:, 2: = min 

and then compute t using(l1). 

3.3. ORTHOGONAL BASIS FUNCTIONS 

(12) 

The surface x(u,v) represented by (1) makes use of the basis functions fT(U) 
[h(u), ... , [fn(u)) and gT(V) = [gl(V), ... , [gm(V)). 

Surfaces are often given in the monomial basis i.e. fi(t) = gi(t) = ti-1. For our 
purpose we need to transform this basis in an orthogonal basis. For the interval (0,1), 
the orthogonal polynomials are the scaled and normalized Legendre polynomials: 

po(t) 

P1 (t) 

P2(t) 

1 

V3 - 2V3t 
v'5 - 6v'5t + 6v'5t2 
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If we denote the monomial basis functions by mT(t) = [1, t, ... , tn-I] and with p the 
scaled and normalized Legendre polynomials then there exists a linear transformation 
p = Tm. The lower triangular transformation matrix T is 

o -20 0 .. . 
(

1 0 0 ... ) 

T= -6;V5 ::: . 

T can be generated by the following Matlab function: 

function T = ng (n) 
% p = T m 
i = 1:n-1; 
F diag(i./(4*i-2),-1) + 1/2*eye(n) + diag(i./(4*i+2),1); 
T = eye(n); 
for k = 2:n, 

T(:,k) = F*T(:,k-1); 
end; 
for i = 1:n, 

T(i,:) = T(i,:)/sqrt(2*i-1); 
end; 
T = T'; 

The matrix U = T- I of the inverse transformation m = Up is also easy to 
compute: 

function U = gn (n) 
% m = U P 
U = eye(n); 
for k = 2:n, 

U(:,k) = (2-1/(k-1))*(2*[O; U(1:end-1,k-1)] - U(:,k-1)); 
if (k>2), U(:,k) = U(:,k) - (1-1/(k-1))*U(:,k-2); end; 

end; 
for k = 1 :n, 

U(:,k) = U(:,k)*sqrt(2*k-1); 
end; 
U =U'; 

Thus if a surface is given in the monomial basis 

x(u,v) = = 
z(u,v) mT(u)C m(v) 

then using m = Up we obtain the representation in the orthogonal basis 

x(u,v) = = 
z(u,v) pT(U)C p(v) 

with A = UT AU, B = UT EU and {) = UTCU. 
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3.4. SHAPE DISTANCE ALGORITHM 

The following Matlab program computes the minimal mean square distance (shape 
distance) as function of Rand t between two surfaces x and Rx' + t that are given 
according to (1) by the three matrices A,B and 0 respectively A', B' and 0'. We 
assume that the monomes m are used as basis functions and that all matrices are 
nxm. 

function [D, R, t] = distance(A,B,C,Ap,Bp,Cp); 
% [D, R, t] = distance(A,B,C,Ap,Bp,Cp) computes an 
% orthogonal matrix R and a translation vector t, 
% such that the mean square distance D between the 
% sculptured surfaces x(u,v) and Rx'(u,v)+t is 
% minimized. 
% The basis functions used for representing x and 
% x' are supposed to be the monomes. 

[n,m] = size(A); 

% transform coefficients for orthogonal basis functions 
Urn = ng(m); Un ng(n); 
At = Un'*A*Um; Apt = Un'*Ap*Um; 
Bt = Un'*B*Um; Bpt = Un'*Bp*Um; 
Ct = Un'*C*Um; Cpt = Un'*Cp*Um; 

% compute 
Gamma 
Gammap = 

Gamma Matrices 
reshape([At,Bt, Ct],[m*n,3]')' 
reshape([Apt,Bpt,Cpt],[m*n,3]')'; 

% solve Procrustes problem: find R such that 
% norm(R*Gammap(:,2:m*n)-Gamma(:,2:m*n),'fro') = min 

[u s v] = svd(Gammap(:,2:m*n)*Gamma(:,2:m*n)'); 
R = v*u'; 

% compute the translation vector t 
t = Gamma(:,l) - R*Gammap(:,l); 

% compute shape distance 
D = sqrt(norm(R*Gammap(:,2:m*n)-Gamma(:,2:m*n),'fro')); 

If we wish to decompose the orthogonal matrix R into the product of three 
rotations R = R3R2Rl where 

R1 = (6 R2 = ( and R3 = (18) 
o -81 C1 -82 0 C2 0 0 1 

are plane rotation matrices specified by Ck = cosBk and Sk = sinBk , k = 1,2,3, 
defining rotations about the x-, y- and z-axes, respectively, we can use the Matlab 
function 
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function [theta] = rotangle(H) 
% 
if det(H)<O, 

error('The matrix is not a product of rotations') 
end 
n = size (H, 1) ; 
theta = []; 
for i = 1 : n - 1 

for j = i + 1 n 

end 
end 

theta_k = atan2(-H(j,i),H(i,i)); 
theta = [theta_k, theta]; 
c = cos(theta_k); s = sin(theta_k); 
R = eye(n); 
R(i,i) = c; R(j,j) = c; 
R(i,j) = -s; R(j,i) = s; 
H = R * H; 

which is described in (Gander, 1997). 
We have presented the method for a "one-patch" surface. But the same method 

method works just as well when comparing "multi-patch" surfaces. 
In the case of a Bezier or a B-spline polynomial description we could alternatively 

apply the algorithm above directly to the two sets of the m x n Bezier-points (or 
De Boor points respectively) belonging to the two surfaces and fit them against each 
other. Doing so we would likely get even then also a useful result. Of course we 
wouldn't achieve the theoretically best result in the sense of minimizing the measure 
D. This we can only achieve by changing to the proposed orthogonal base. 

From a practical point of view, of course it would also be useful to minimize the 
distance of the two surface with respect to a "Chebychev-criterion" i.e. minimizing 
their maximal difference in shape (regarding all possible u, v surface coordinates). But 
because we are dealing with parametric polynomials, where we have a vector instead 
of a scalar function, the explicit expression (8) which considers the three different 
coordinate-directions x, y, z individually, unfortunately works only for the 2-norm. 

3.5. EXAMPLES 

3.5.1. First example 
We consider the surface x given by the following three matrices: 

A= 

B= 

( 

20.00 65.55 0 76.08 
65.55 0 -45194.21 89475.40 

o -34694.54 375248.86 -654859.47 
o 69389.08 -638425.22 1088769.50 
o -34694.54 308199.37 -523119.13 

( 

30.00 118.78 
-273.19 0 

o -4313.97 
o 8627.93 
o -4313.97 

o 9.46 
-5619.51 11125.49 
46658.96 -81426.13 

-79382.68 135379.11 
38321.94 -65045.36 

68 

-76.08 ) 
-44281.19 
314305.16 

-519733.37 
249614.29 

-9.46 ) -5505.98 
39081.14 

-64624.37 
31037.39 



( 

40.00 
105.21 

C= 0 
o 
o 

267.57 
o 

10414.84 
-20829.68 

10414.84 

o 
13566.70 

-112644.70 
191646.73 

-92517.34 

-22.84 
- 26859.32 13292.62 22.84 ) 

196580.08 -94350.21 
-326834.08 156017.02 

157033.38 -74930.88 

Surface x is represented in Figure 4 using the commands 

450 

400 

350 

300 

250 

200 

150 

100 

50 

0 
200 

100 

-300 -200 

Figure 4. Surface x 

[X,Y,Z] = evalpoints(A,B,C,O.05) 
mesh(X,Y,Z) 

where evalpoints is defined as 

function [X,Y,Z] = evalpoints(A,B,C,delta) 

300 

% EVALPOINTS(A,B,C,delta) evaluates for parameter values 
% u,v in the range O:delta:1 the surface coordinates 
% X(u,v), Y(u,v), Z(u,v) that are defined as quadratic 
% forms in the monomial basis i.e. X(u,v) = U*A*V', 
% Y(u,v) = U*B*V' and Z(u,v)= U*C*V' where 
% U = [1 u ... u-(n-i)] and V = [1, v, ... , v-(m-i)]. 

en, m] = size(A); 
disk = O:delta:1; 
X= []; Y= []; Z= [] ; 
i=O; 
for u = disk 

i=i+1; 
j=O; 
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for v = disk 
j=j+1 ; 
U=[] ; 
for k = 0:1:n-1 

U=[U 
end 
V=[] ; 
for k = 0:1:m-1 

V=[V 
end 
X(j ,i)= U*A*V'; 
Y(j,i)= U*B*V'; 
Z(j ,i)= U*C*V'; 

end 
end 

The second surface x' is obtained by slightly modifying the geometry of surface 
x. 

( 

14.64 82.48 8.17 11.25 -27.88 ) 
67.69 41.12 -45599.89 90232.25 -44691.13 

Al = 54.33 -35102.16 376766.79 -656919.19 315196.27 
-94.96 70074.02 -640445.19 1091043.92 -520521.84 

46.24 -35060.86 309170.71 -524055.07 249856.09 

( 

30.06 82.76 62.26 -13.31 -15.52) 
-318.31 391.45 -6265.88 11458.94 -5548.97 

Bl = 155.04 -5269.93 48209.97 -82303.03 39263.89 
-189.24 9597.59 -80850.86 136143.29 -64756.29 

83.75 -4717.12 38869.78 -65247.23 31018.27 

( 

36.01 299.19 -75.52 56.40 -10.76) 
163.26 -305.86 14116.39 -27134.67 13314.67 

Cl = -140.68 11276.88 -114341.68 197596.04 -94561.39 
128.19 -21677.98 193520.48 -328303.55 156561.11 

-34.77 10682.92 -93251.32 157817.07 -75324.40 

Using [D R T] = distance(A,B,C,Al,Bl,Cl) to compute the shape distance we 
obtain 

D = 1.4615 

R = 

T = 

1.0000 
-0.0073 

0.0059 

2.0909 

0.0072 
1.0000 
0.0053 

-0.0060 
-0.0053 

1.0000 
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2.1280 
-2.3780 

Because we did not modify the position/orientation we get nearly the identity matrix 
R and a small translation vector. 

3.5.2. Second example 
We consider the same surfaces as in Example 1. But now the second surface is modified 
in its position/orientation. The coefficients of this second surface are: 

( 

84.89 -225.20 89.90 -55.72 
-313.00 431.87 -646.10 159.53 

Al = 175.22 -1053.91 1689.54 -634.18 
-169.97 965.06 -1637.39 878.26 

56.19 -307.99 572.68 -449.29 

9.39 ) 85.64 
-9.25 

-265.45 
234.52 

( 

9.88 -64.37 30.77 -12.00 -18.26 ) 
35.15 112.66 -45944.39 90704.60 -44889.54 

B1 = 86.97 -35479.89 379130.18 -660532.19 316856.12 
-113.34 70601.41 -644256.40 1097173.65 -523444.36 

44.62 -35267.12 310960.78 -527072.28 251341.42 

( 

23.32 -219.79 -24.83 -15.38 2669) 
182.63 -221.97 14372.87 -27966.17 13794:57 

C1 = -92.27 11276.90 -116657.13 202626.82 -97130.84 
139.74 -22066.42 197707.10 -336012.30 160167.65 
-72.20 11035.18 -95374.33 161219.57 -76755.43 

The surface x' is plotted by the commands 

[X1,Y1,Zl] = evalpoints(A1,B1,C1,0.05) 
mesh(X1, Y1, Zl) 

and shown in Figure 5. If we now compute again the shape distance using [D R T] 
distance(A,B,C,A1,B1,C1), we obtain 

D = 1.4609 

R = 
-0.2967 0.8967 -0.3284 

0.5104 -0.1417 -0.8482 
-0.8071 -0.4193 -0.4157 

T = 
40.7155 

9.7456 
116.2242 

To decompose R as a product of three rotation matrices (18) we use the command 
theta = rotangle (R) and get 

theta = 2.3518 0.9392 
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Figure 5. Surface x' 

We obtain the best-fit position where the mean square distance takes its minimum. 
We realize that the shape distance is again the same as before. (The small difference is 
due to the rounding of the data matrices. In order to make the results more legible and 
reproducible for the reader, we used the rounded numbers of the coefficients printed 
in this paper). 

In order to check the result, we transform the point set used to plot surface x' 
and draw the transformed surface: 

[X2,Y2,Z2] = transf(X1,Y1,Z1,R,T) 
mesh(X2,Y2,Z2) 

We make use of the function transf: 

function [X1,Y1,Z1] = transf(X,Y,Z,R,t) 
% TRANSF computes an affine transformation of the point 
% set defined by the matrices X,Y,Z. 
% [X1,Y1,Z1] = transf(X,Y,Z,R,t) produces a new point set 
% such that 
% [X1(i,j);Y1(i,j);Z1(i,j)] = R*[X(i,j);Y(i,j);Z(i,j)] + t 
% holds for all indices i and j. 

En, m] = size(X); 
H = R*reshape([X,Y,Z],[m*n,3])' + t*ones(1,m*n); 
X1 = reshape(H(l,:),n,m); 
Y1 = reshape(H(2,:),n,m); 
Z1 = reshape(H(3,:),n,m); 

The plot we obtain can be seen in Figure 6. The surface looks like a good approx­
imation to x. 

72 



450 

400 

350 

300 

250 

200 

150 

100 

50 

o 
200 

Figure 6. Back-transformed Surface 

References 

300 

Gander, W.: 1990, 'Algorithms for the Polar Decomposition', SIAM J. on Sci. and 
Stat. Comp., Vol. 11, No.6, pp. 1102-1115 

Gander, W.: 1997, 'Least Square Fit of Point Clouds', in: W. Gander and J. Hfebicek, 
ed.: Solving Problems in Scientific Computing Using Maple and Matlab, ch. 23, 
pp. 339-349. Springer, Berlin etc., 3rd edition. 

Gander, Walter, Golub, Gene H. and Strebel, Rolf: 1994, 'Least-Squares Fitting of 
Circles and Ellipses', BIT, Vol. 34, pp. 558-578. 

Golub, Gene H. and Van Loan, Charles F.: 1996, 'Matrix Computations'. 3rd ed. 
Baltimore Johns Hopkins University Press, 

Hanson, R. and Norris, M.: 1981, 'Analysis of Measurements Based on the Singular 
Value Decomposition', SIAM J. on Sci. and Stat. Comp., Vol. 2, No.3, pp. 

Sourlier, D.: 1995, 'Case Study 3: Exact Measurement of a Sculptured Surface (Air­
craft Wing', in: John A Bosch ed., Coordinate Measuring Machines and Systems, 
in: W. Knapp: Chapter 12 , Marcel Dekker, pp. 327 - 332 

Sourlier D.: 1995, 'Three Dimensional Feature Independent Best-fit in Coordinate 
Metrology', PhD thesis, No. 11319, Eidgeniissische Technische Hochschule 
Ziirich 

Address for Offprints: Prof. Walter Gander, Wissenschaftliches Rechnen, ETH Zen­
trum, CH-8092 Ziirich, Switzerland 

73 


	Best-Fit of Sculptured Surfaces
	1. Introduction and Notations
	2. Least Squares Fit of sculptured surface
	3. A Shape Distance Measure for Sculptured Surfaces
	3.1. NORM OF A SURFACE
	3.2. MEAN SQUARE DISTANCE OF SURFACES
	3.3. ORTHOGONAL BASIS FUNCTIONS
	3.4. SHAPE DISTANCE ALGORITHM
	3.5. EXAMPLES

	References




