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Abstract: Dimensional measurements based upon point sampling contain theoretically infinite 
uncertainties in the intervals between sample locations. In practice, the uncertainty is 
bounded due to material and process constraints which produce an effective minimum 
spatial frequency for surface errors. In this paper we develop a relation for measurement 
uncertainty due to workpiece form error using the ratio between the spatial frequency of 
workpiece errors and the sampling period. Several applications of this calculation are 
briefly discussed. 

1. INTRODUCTION 

Commonly, sculptured surfaces are measured with the assumption that [1, 2] 
manufacturing errors are uniform over the surface. However, tool wear, machine inaccuracies, 
vibration, cutting forces, and velocity errors all contribute non-uniformly to surface errors. 
Just as these errors influence design function, non-uniform manufacturing errors also affect 
measurement uncertainty or the dispersion that reasonably can be attributed to the measurand. 

Sculptured surfaces typically are measured with coordinate metrology methods that 
collect representative points from a surface of interest on the workpiece. These points are used 
to estimate substitute geometry which is often used to determine conformance of the sample 
piece to the design intent. As with any measurement, it is desirable for the user of this 
information to know the uncertainty associated with measurement quantities. Methods for 
determining the uncertainty associated with individual point measurements are well known 
and commonly used in practice today [3]. However, when a set of points are combined to 
assess a surface problems arise. When only a small group of points are used to evaluate a 
continuous surface, workpiece errors between sampling locations can result in large 
discrepancies between the calculated, substitute surfaces and the true surface. This paper 
develops an upper bound for the uncertainty that results from the interaction of workpiece 
errors and the spatial frequency of the sampling pattern. This result can be applied to make an 
estimate of the total uncertainty related to a specific measurement process. 

It has long been recognized that insufficient samples are being taken in practice to 
account for the effect of workpiece form errors [4]. Form errors are particularly important 
when evaluating tolerances based upon bounded zones such as form and profile [5-9]. The 
uncertainty due to workpiece errors between sample points is theoretically infinite, although 
practically bounded by material and process constraints. For the purpose of metrology, we 
are most interested in the magnitude of the errors present on a workpiece. The Nyquist ratio 
gives a guideline for the frequencies of errors which can be detected by a given sampling 
interval, but does not provide guidance on how to sample in order to detect the full amplitude 
of the error signals. 

Weckenmann et AI. [10], note that a good sampling procedure should permit the user to 
know the measurement uncertainty associated with the process. In most cases, such an 
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uncertainty estimate is impossible to develop without making assumptions on the shape and 
distribution of workpiece form errors. 
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Figure J. Maximum Measuring Error with Even Sampling Ratio 

Recently, we have been working on using measurement of surface normals as well as 
position to help predict the behavior of surfaces between sample points. The surface normal 
data allows us to develop a cubic interpolating curve between pairs of sample points. This 
interpolant is capable of detecting N waves with N+ 1 samples, a considerable improvement 
over position only data. We use the interpolated error curve across a section iteratively to 
select sample points until a set of measurement requirements are satisfied. This algorithm 
permits a measurement application to detect automatically all form errors up to a known 
frequency with a known uncertainty attributable to the sampling method [11 ,12]. It is 
difficult to compare the attributes of various sampling plans in metrology applications without 
determining the effect that workpiece shape errors can contribute to the measurement 
uncertainty. 
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Table 1. List of Symbols 

Error Wavelength 
Sample Spacing 
Workpiece Size 
Sample Size 
Set of Points 
Frequency 
Phase Angle 
Sampling Ratio 

2. PROBLEM FORMULATION 

Shape errors of sculptured surfaces are generally divided into 3 different types, based 
upon the wavelength of the error. In order of decreasing wavelength, the types are named 
form, waviness, and surface roughness. Form errors represent the longest error wavelengths 
with, typically, as many as 100 full waves on a surface. Waviness errors are repeated 
structures on a part surface, with up to 1000 complete waves on a part. Surface roughness 
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errors are the very smallest structures on a surface; typically surface roughness would be 
considered as features with wavelengths smaller than 1 mm. Generally, coordinate 
measurement techniques cannot detect surface roughness errors due to the mechanical 
filtering properties of the measuring instrument. 

We wish to find the uncertainty due to workpiece shape errors as a function of the ratio 
between the sampling interval and the wavelength of the workpiece errors. It is assumed that 
the workpiece errors are non-random. We will first examine the simple case of a constant 
frequency, sinusoidal error shape and then extend our results to more complex shapes. 

Consider a workpiece with a sinusoidal error imposed upon it of wavelength L that is 
sampled uniformly at points spaced apart. The region of interest on the workpiece is s units 
long, and it is assumed the wavelength of errors present is less than the workpiece size. The 
number of samples collected is. 

N= INT 

Then, we have the set of measurements (M). 

M = {e, ... , 
Where e is the initial phase relationship between the sampling pattern and the error signal. 

If the error amplitude is A, the fractional sampling error is: 
The set M that maximizes the fractional sampling error contains the largest measurement 

error due to workpiece error that is possible for a given sampling ratio. This value is the 

E A - (Maximum{M} - Minimum{M}) 

A 

maximum uncertainty due to workpiece shape error. 
A closed form solution for the workpiece uncertainty is not possible, but we can find an 

exact solution for the special case of even sampling ratios. Consider an error signal 
represented by a cosine wave with 2n sample points uniformly distributed across it. Symmetry 
causes the sample points to be equidistant from the maximum and minimum points of the 
error curve. The maximum measuring error occurs when the maximum value measured is 

and the minimum measured value is (Figure 1). 
Therefore, the fractional uncertainty due to workpiece errors can be shown to be: 

for even sampling ratios. 
Interpolating between even values of the sampling ratio, we can develop a chart showing 

the relationship between the sampling ratio and the uncertainty due to workpiece shape errors 
(Figure 2). The uncertainty is equal to 100 % of the shape error at the Nyquist rate of 2 
samples per form error wave and decreases rapidly with increasing sample ratio. 

This result can be shown to be a bounding function for combinations of trigonometric 
functions as well. Consider the combination of2 sine waves of arbitrary phase: 

AIsinool(e+UI) + A2sinoo2(f)+u2) 

There are 2 basic cases that need to be considered in this situation. 

001 » 002 or; 
001 I::! 002 

In the case of widely separated frequencies, the 2 signals are largely independent and 
easily can be treated independently. When 2 signals are closely matched in frequency they 
produce a beat signal at a frequency equal to the difference between the 2 input frequencies. 
The spatial size of the beat peaks and valleys are proportional to the signal input frequency. 
Therefore, our uncertainty model will be applicable to the base input frequencies of the 
signals. 
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3. DISCUSSION 
Figure 2 dramatically illustrates the influence workpiece shape errors can have upon the 

accuracy of dimensional measurements. To limit workpiece uncertainty to less than 5% of the 
magnitude of the shape errors, it is necessary to sample at 10 times the spatial frequency of 
those errors. Since typical feature evaluations in coordinate metrology involve the collection 
of very small numbers of sample points, it is clear that current practice is detecting accurately 
only the longest error wavelengths present on the workpiece. 

This estimate of workpiece uncertainty is conservative since it does not account for 
process knowledge that could be used to sample consistently near the areas where the largest 
errors can be expected to occur. For example, a flat surface whose dominant error mode is the 
result of gravity bending generally will show the largest errors in the region around the center 
of the part. A well planned measurement will sample in this region and greatly reduce the 
influence of workpiece shape error upon the measuring uncertainty. 
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Figure 2. Fractional Error due to workpiece form error as a function of sampling ratio 

The result presented here could be applied to improve measurement reliability in two 
ways. Firstly, the uncertainty chart could be used with process knowledge of the typical error 
frequencies that need to be controlled to determine an acceptable sample spacing during the 
measurement process planning stage. Another potential application would be to post process 
individual measurement results by means of a Fourier transform to determine the detectable 
error frequencies present upon the part. This information then could be combined with the 
sampling interval to calculate the uncertainty of the specific measurement. The result would 
be an uncertainty estimate supplied to the operator of the measurement system that 
is based upon the actual shape errors detected on each specific part. Measurements that 
resulted in an unacceptable high uncertainty could be repeated with a denser sampling pattern 
to ensure a reliable assessment of the part condition. 

4. CONCLUSIONS 
We have shown an upper limit for the uncertainty due to workpiece shape errors based upon 
the ratio between the error wavelengths and the sampling interval. This result can be applied 
to help select the sampling plan during the measurement process planning stage or as a post 
measurement calculation of uncertainty. 
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