
An Approach for Real-Time Applications
Engineering

A. Attoui
LIMOS-ISlMA, BP 125 63173 Aubiere Cedex - France
Tel: 04 73 4050 18, Fax: 04 73 405001, email:ammar@sp.isima.jr

Abstract
Methods for complex and reactive systems engineering must produce specifications which
must be behaviorally expressive and rigorous as weIl as intuitive and well structured
This paper presents an approach (supported by an environment caIled VALID) which
aIlows specification, and system models generation. Models are fuIly executable and
enablingfull code synthesis. Valid code generation is obtained by vertical refinement or
formal transformations which guarantee its correctness and validity.

Keywords
Speciflcation, Validation, Object-oriented, Reactive systems, Object-Oriented
systems, Formal transformation.

1 INTRODUCTION

Formal methods and techniques have been proposed in order to ease the specifications
design and verification. B, VDM ... [HABR93, VIGD91, DAVI91, VDM91], and the
STATECHARTS [HARE87] are some of the most important formal specification
formalisms and techniques. These formalisms are different in nature, but their efficiency
for detecting errors within specifications have been well proved. However, formal
specifications remain in the industry, for various reasons: necessary
proflciency in mathematics and logic, excessive formalism that hardens communication
between users.
For information, let us note that Statecharts are visual formalisms proposed by Harel
[RARE97] for the specification of structural parts and the behavior of the studied systems.
AStatechart specification is astate tree where leaves correspond to state diagrams
(associated to finite state automatons). It aIlows a hierarchical description of a system

©

The original version of this chapter was revised: The copyright line was incorrect. This has
been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35390-6_58

IFIP International Federation for Information Processing
L. M. Camarinha-Matos et al. (eds.), Intelligent Systems for Manufacturing

1998

http://dx.doi.org/10.1007/978-0-387-35390-6_58

370

behavior with states and events. These events are broadcasted and instantaneously
received: synchronous model.

As Petri nets, Statecharts have been expanded. Modecharts [Jaha88] are their most
interesting extensions. They are dedicated to critical time systems. Theoretical basis of
Modecharts is temporal logic. The basic principle is about extracting structured data
present in Modechart-type descriptions of a system, an execution graph for the system
usable for the validity verification of assertions that are explicitly described by the user
using temporal logic. This execution graph incIudes time intervals [Min, Max] on events.
In this model, the execution is assumed to be a sequence of partially ordered events. Thus,
and unlike transitional systems, Modecharts do not bring modeling of real parallelism
existing in the studied systems back to simple or pseudo-parallelism. This is indeed very
heavy whiIe reasoning about systems temporal properties.
As a concIusion, Statecharts and their extensions allow a hierarchical description of finite
automatons, based on a graphical representation that specifies the visible behavior of a
process. Statecharts are as easy to use as state-events diagrams. However, this language is
so rich that it must be used carefully, because formal semantic is incomplete when it
comes to describe limit cases. Besides, a lack of rigor can lead· to hard to read or
ambiguous diagrams. The synchronous model imposed by Statecharts, and all
synchronous languages, can also produce causal paradoxes (events or effects that prevent
their own cause from happening). Furthermore, Statecharts only offer possibilities to
describe interactions between processes. To make possible the description of constraints
or intrinsic properties of real-time systems, extensions like Modecharts, based on
temporallogic, have been introduced, w;th all the difficult;es ofuse;t ;nduces.

To overcome some difficulties linked to these methods and formalisms, especially
formal methods (necessary knowledge in mathematics and logic, excessive formalism that
makes communication between users more difficult, lacks in methods and tOOI5), we
propose a global approach for reactive and concurrent systems engineering. Its main
characteristics are the following:

formal specifications are based on rewriting logic theory;
the approach adopts object-oriented concepts;
formal specifications are established through a graphical browser that masks the
details of formalism, and allows VALID specifications to be fully executable and
enables full code synthesis;
verification ofthe behavior and the interactions in the studied system is possible with
a simple syntactical reduction with constraint programming language PROLOG III;
the studied system behavior simulation PROLOG III program is automatically issued
by the graphical browser;
automatic valid code generation of the application is obtained by formal
transformations.

2. FORMAL MODULES (Description of an active object)

Our model is based on a formalism that is cIosed to the MAUDE language one
[MESE90]. It takes into account the complexity of information processed within a

371

complex system, it includes a description of the various objects implicated, the actions
that these objects may undergo, the temporal constraints and the traceability of
information. The model is independent of the target language. It is based on the formal
modules concept.

A formal module is a quadruplet (L, a, R, S). L is the set of symbols for the
functions of the module. It allows the formal description of the static part of an object.
Symbols can be simple (Le. characters) or complex syntactical units. a is the set of
structural axioms necessary to the rewritings in a concurrent manner modulo the
axioms.

The doublet (L, a) is called the signature of the object. R is a set of rewriting rules. It
allows the formal description of the dynamical part of a system. A rule has the form [t 1
==> [t' 1 where t and t' are terms constructed from L. The notation [tl is used to
indicate that t represents an element ofthe class ofterms modulo the axioms. We will use
three structural axioms called ACI : associativity, commutativity and identity. A rule
indicates that the current state of the agent corresponding to the configuration t,
becomes a new state corresponding by the configuration t'.

2.1. The signature
For (L,a) we use a general formulation (figure I) wh ich is closed to the one proposed by
[MESE90]. This general form of signature integrates different operators. Op < _: _ / _> is
the constructor of agents. Op _ = _ allows to affect a value to an attribute. Op _, _ is the
syntactical constructor of attribute Iists. These Iists are used for the designation of the
attributes of an agent. Op _ _ is necessary for the construction of distributed
configurations. It makes it possible the specification of any configuration. A configuration
is composed of agents and messages. This operator has been declared modulo the ACI
axioms. Thus, the order with wh ich agents and messages are declared has no influence on
the reduction process used further.

I*Alphabet of the system*1
Type Agent, Attribute, Attributes, Msg, Configuration, Value, Agentld, Classld,

AttributeId;
/*Hierarchies and structural relations between the agents*/

Subtype Agentld, Classld, AttributeId < Value;
Subtype Attribute < Attributes;

Subtype Agent, Msg < Configuration;
l'Operators for constructing the words and the sentences of a formal module*1

Op < : I >: Agentld Value -> Object;
Op --: Aüributeld Value -> Attribute;

Op, : Attributes Ättributes -> Attributes (Assoe, Com, Id = Nul];
Op _ --: Configuration Configuration -> Configuration (Assoe, Com, Id =Nul].

Figure 1 The general signature of a formal module

The descriptiön of areal-time database application consists to instanciate the metatypes of
L (agent, Attributes, Msg, ...). This instanciation is made automatically by a graphical
editor from the graphical representation of an object (figure2).

372

S :

" " .1-+------,,.

Figure 2 Graphical representation of a VALID object

2.2.Invoicing orders real-time database application

Figure 3a shows a VALID object-model diagram for an invOlcmg orders real-time
database application with two main classes (Order and Product). A VALID object-model
diagram specify the application (system) classes and their structural relationships as weil
as any Object-Oriented approach (Booch method, OMT or UML, OOSE). Numbers in the
circles indicate multiplicity information (number instances of the class). If an asterisk is
used, it indicates that the corresponding class can have unlimited instances. The edge
between the two classes represents an association relationship (reference association). Ina
general way, and like others structured analysis approaches (Le. SAlRT,OMT, etc.), a
VALID object-model diagram is hierarchical and features higraph encapsulation, which
denotes a strong composite class aggregation. Directed edges represent relationships; an
undirected edge is the same as a two-way directed edge. Directionality dictates the ability
to reference instances: In figure 3a, a Product object cannot refer to the set of Order
objects that refer to it. An association may have a name or a role.
According to the studied system nature, an association relationships expresses a
structural physicallink which must be established between objects ofthe two implicated
classes. In an implementation stage, this link is supported by a network connection when
we deal with distributed systems and applications, embedded systems and industrial
process components supervision au.d control application, etc. In a general way, this kind
of link concems physical systems. For more classical monolithic software applications
where application domain entities are supported by classical data structures (C++ classes,
files, Relational databases tables, lists, etc.) an association relationship (reference) can be
materialized by a sampie pointer! or a set of pointers according to the association
multiplicity.

-iOy.Q
ac:(pMdirc.
inWJbd,CMOdtc:d)

Figure 3a Case 1 invoicing order VALID object-model diagram

Check Quantity Q ofP Cor 0

ValidationofOI
InsufficicntofO

Figure 3b ease 1 invoicing order VALID object communication diagram

373

Also, classes attributes are represented in VALID object-model diagram. For instance,
Quantity indicates the quantity of Product P in order o. The attribute state of
Order class can takes one of the three possible values : pending, invoiced,
cancelled. At this stage, we have to decide if some attributes of Order and
Product classes have to be made visible at this level (object or classes environment) or
not? The response to this question 'is required for data protection, class interface protocol
and future system architecture and control type (centralized or distributed) to be defmed
or constructed in the next step. Indeed, it is important to remember that an association or
an aggregation denotes a physical link between the system components. Hidden class
attributes are private and no direct access to them is possible. So we have to anticipate
some explicit messages to manipulate them. As much as possible, it is better to privilege
distributed architecture which ensure more protection, modularity, flexibility, reliability,
object distribution and reuse. For our example, we have decided that each class attributes
are hidden (private). Consequently, to invoice an order 0 which have reference to an
ordered product P, we have (object 0) to send a message (Cheek Quantity Q of P
for 0) to the Product object P and wait a response which must be (1) (Validation
of 0) ifthe ordered quantity is either less or equal to the quantity which is in stock, or (2)
(Insufficient of 0) in the other case. This decision will facilitates objects interaction
and coIlaboration. In a centralized and monolithic architecture, Quantity access are
supported by method invocation or operation call. So the above three messages will be
translated to a Product class method signature : Product: : Check (int quantity)
which return True or False as response values. In a distributed version, these messages
are included in the application protocol. It is important to note that this approach is weIl
suited to support active objects.

If Order and Product class object attributes are made visible, this aIlows solutions
where Order objects or any other user process can have direct access to Available
attribute of the referred Product object and tests or updates it as in the foIlowing C++
instruction :

(itsProduct->Avalaible >= quantity)itsProduct->
Avalaible =- quantity; (1)

As a consequent, data protection and consistency violation must occur. On the other
hand, this solution concems classical software application with common global memory
computer architecture. Designer must take into account and manage aIl concurrency and

374

shared data accesses. In an attempt to overcome this problem early in specification stage,
VALID allows visible attributes specification which is natural for many distributed and
industrial applications and systems. Eut access to these visible attributes is only done with
a set ofmessagesaccording to a Client-Server protocol. An Order object (elient) has to
request the value of Available attribute of Product object (Server). After, it can use
this value or updates it and returns the new value to Product Object. As it will shown
later in this paragraph, VALID generates automatically all necessary access messages for
any visible attribute. So, VALID sp·ecification formalism contributes to reduce the use of
instructions of (1) form in final system code. This approach is conform to Brinch-Hasen's
concept of a monitor as a method of structuring complex systems which allows suitable
proofrule.

2.3. Object communication and co-operation diagram
Because an object-model diagram describes classes and their structure, it appears to be
concerned with static aspects only. However, if the studied system is of a limited
complexity (like our example), this diagram can contain information that helps the
dynamic behavior description of fhe system. Otherwise, we have to associate to each
object-model diagram ofthe hierarchy a communication diagram (figure 3b).
Events and messages are used for interactions modeling between objects. A virtual
channel concept is used to carry out a message generated by an object, and is queued, to
be handed to the target server objects in its turn. The interface of each class indicates the
input messages as weIl as the output messages. Virtual channels are used by VALID
specification translators to implement object communication (interactions) with one of
the available means (UNIX sockets, Ined sockets, common variables, FIFO Queues,
Pipes, etc.) according to objects localization area and global system performances goal.
Notice that messages are used to denote usual events generation or messages as weIl as
object operation call. An object can invoke operations of im another object, causing it to
carry out an appropriate method with an appropriate message arguments. The message
Check Quantity Q of P for 0 can be translated into a message in a distributed
system, or into a simple method invoking in a centralized implementation.
External events are generated from environment objects(lnvocingSystem) : Invoicing
o is an external solicitation with invoke the invoicing object 0 . They are handled by their
target class objects (Le. Order object 0).
Internal events are collaboration and object synchronization protocol. For example, the
message Checking Quantity q of P for 0 is generated by an object of class
Order when it receives the message invoicing 0 to verify that the necessary quantity
Q can be satisfied before change it selfstate from "pending" to "invoiced".
In a general way, An object 0 can generate an event and send it to some other object P. If
the event is of message type, it can also contain any parameter Q. To refer to the target or
the server object, the client object can use the name directly if the server is one of its
components in a composite or regular aggregation, or if the server and the client are of the
same level and are components ofthe same composite or regular aggregation.
In any case, the reference denoted generically is:
<event name and information> «parameters» «server» «client».

375

Notice that the <client> information and the association between the two classes is used
by the transformation process (translator) in the design stage to determine the type ofthe
communication channel : private (simplex) and unidirectional if <client> is omitted,
full-duplex and bi-directional if it is present.

2.4. Object behavior (The rewriting rules)
Actions of messages on an object are described with rules. An object (server) can receive
messages from objects (clients) in the same level or in the upper levels of its hierarchy.
An object can send messages to objects in the same level or in the lower levels of its
hierarchy. A message can also be intercepted through a rule and routed to any level. A
rule signals the occurrence of a communication event in which n messages and m
objects are involved. All the objects participating in a rule are at the same level
(composite or regular aggregation). The general form ofa rule is given by figure 4.

/*Syntax*/
MlM2 .. Mp<AGl: Cl/ listeAtl> ... <AGi: Ci/listAti>

<Aj: Cj/ listAtj> ... <Ak: Ck/ listAtk> =[T]=>
<Aj: Cj/ listAtj> ... <Ak: Ck/ listAtk>

<AGrn: Crn/ listAtrn> ... <AGn: Cn/ listAtn>Mq ... Mr

Figure 4 Syntax and effects of a rewriting rule

Effects:
The messages MIM2 .. Mp are deleted after the execution ofthe rule.
The states ofthe agents Aj, ... , Ak are modified.
Agents Al, ... , Ai which appear only in the left part ofthe rule, are deleted.
New Agents AGm, ... ,AGn defined in the right part, are created.
New messages Mq, ... , Mr are created.
[T] is a temporal constraint on the rule transition (execution). It can take:

I: every (T, msg) : to each time interval T, send the message msg;
2: within (T, msg) : after the time T, send the message msg;
3: AT (T, msg) : at the time T, send the message msg;
4: before(T, msg) : before the time T is elapsed, send the message msg.

The originality of these operators is that they are easy to use in comparison with others
formalisms, and adequately support a structured specification style. More details on
rewriting logic and its applications can be found in [MESEG9I). When a rule is frred,
messages and actions in the right part do not take effect until a stable situation has been
reached. However, all rule triggers"are constantly attentive, and generated messages reach
their destinations in an atomic way (become available in their reachable configurations
which are supported by virtual channels in our approach). The frring of object rules is
a multi-thread execution: all satisfied rules are simultaneously activated.

Virtual channels must guarantee the atomicity of an event transport: eventiil are handed to
server objects and made visible in their private configuration. Moreov.er, we require all

376

parts of a rule to be fuIly executed before the rule becomes stable and can respond to other
events or messages. Rules can be periodic or aperiodic (Le periodic and aperiodic tasks).
Aperiodic rules are messages or events handler. Periodic rules are cyclic tasks with a fixed
activation period (Every constraint). If a message is used in many rules in the
same object, aIl these rules have simultaneously access to this message which is present in
the private configuration of the object. If a message is used in several objects, a copy of
the message is given to these objects and makes it available in their private configuration.
As a consequence, when the left part of a rule contains several messages, it is more
realistic to apply the "rendez-vous" concept (synchronous rule). In certain situations, the
rendez-vous mechanism is not realistic, so virtual channels must offer an other alternative
mechanism such as the queued dated events which become necessary to achieve the
system coherence and stability. [A TT097] gives more details on virtual channels
implementation.

2.5. Invoicing orders real-time database application behavior
Gur approach allows centralized and distributed control 0/ systems activities. In the
foIlowing section, we present a distributed control version of invoicing orders real-time
database application. The next section presents a centralized version. It is obvious that
concurrency is already inherent in an Object Oriented system because different object
instances can exist and can operate simultaneously. Moreover, our model is a multiple­
thread model, and different threads can execute simultaneously in different orthogonal
components of same object (Le. an object Order of identifier 01 and an other object order
of identifier 02 can execute simultaneously). It is obvious that this approach is not suited
to real-time database applications, where the number of classes instances is important. On
the other hand, it is weIl adapted to real-time systems modeling such as manufacturing
systems, real-time embedded systems, hardware computer systems, etc. However, we
present here the distributed version of invoicing orders real-time application, just to show
how our approach can take this problematic into account . Thc centralised version of this
application is more realistic. During a VALID specification session, the user must take
into account the following rule :

For each VALID object-model diagram (at any level), we have to decide between two
control and synchronization approach:

Distributed control: diagram components are autonomous and the coIlaboration
protocol highlighted by the communication diagram (control and data streams and
components interface) is sufficient to implement the system behavior. In this case,
components are active and reactive objects (Le. hardware chips, manufacturing
station or module, network node, etc.)and does not need any supervision and global
control. In normal conditions, each component instance (class instance) must be
active (Le. executed by aseparate thread for software systems).
Centralized control: some or aIl diagram components are passive objects or
resources (data representation and structures: classes, lists, tables, or physical
resources: sensors, paIlet, etc.). and necessitate external and global control to use and
manipulate their content.

2.5.1. Distributed control

377

It is important to remember that a virtual channel mechanism which supports the
configuration concept in VALID is used for interobject communication as weil as
complex internal objects interactions and behavior specification. It is different from the
broadcasting mechanism which is unrealistic for many systems. Figure 5a gives the
Orders cIass objects structure and behavior, and figure 5bgives the behavior of Product
cIass objects.

Figure 5a

11 ----
<O:cw.w......., •.

... O)(W
..n.cw..r"""*-d',.....,.O'

Orden

Orders cIass objects behavior and structure description

- "'- I Product

RI ; Pn:dutlI Awable! Ql'>t"Q>.->

Rl: "'O)<P: Produo<I A :QT<Q>-
<P:Produo<IA-'QT'_Q"'O);

Figure 5b Product cIass objects behavior and structure description

The rule RIofan Orders cIass object 0 is frred ifand only ifthe object 0 receives the
message (Invoicing 0) and itsState is in "pending". The result is the generation of
the two messages: (CheckQuantity Q of P for Q) and (Waiting check).
The second message or event is an internal service event (i.e. flag) only used to indicates
that the object 0 have to take into account asynchronization event and several alternative
responses for the message (Check Quantity Q of P for Q). This message stays
available in the private configuration of object 0 until it receives a response. However, in
this case, it is more realistic to associate to rules R2 and R3 a temporal constrain (timer or
dog watcher)in order to avoid object 0 to wait infmitely the Product object response:

R2 (Validation Q for 0) (Waiting for check)
<0: Order/ Product: P, quantity: Q, state="pending">
=[before(20, (TimeOut for 0)]=>
<0: Orderl Product: P, quantity: Q, state="invoiced">

The temporal constraint indicates that the rule has to be frred before 20 time units from
the moment one of the two messages of the left part becomes available, which is the case
for the message: (Waiting for check. If the message (Validation Q for
0) arrives in time the attribute state is set to "invoiced" and the two messages of
the left part ofthe rule R2 are deleted from the object configuration.

378

As a consequence of this, we have to create another rule to eliminate (i.e. updating the
corresponding flag in the design stage) the service message :

(TimeOut far 0) (Waiting far check)
<0: Order / Praduct: P, quantity: Q, state="pending"> ==>
<0: Order/ Praduct: P, quantity: Q, state="pending">

2.5.2. Centralized control
The previous version of invoicing orders real-time database application uses reactive and
co-operative objects. In an implementation stage, they can be supported by one machine
as weIl as by several interconnected machines. Figure 6 gives a centralized version of the
same application. This version is more realistic according to the application type. In this
case, rewriting rules must be associated to the global and abstract c1ass:
InvaicingSystem.

j: .. ; u:..., ...

Figure 6a Centralized invoicing orders real-time database application version -
c:.-w...;;"
r.,.to-llr"T-t, --

qr.4>,

......... qr;;
» __

Figure 6b Centralized invoicing orders real-time database application version

In this version Order and Praduct object are considered as InvaicingSystem objects
or resources. The rule RI is a synchronous rule. The execution (frring) ofthis rule is done
in an atomic way. Objects which appear in the left part must be processed within a critical
section (mutual exc1usion). Any translation of this kind of rules into a target language
must take this characteristic into account. FinaIly, figure 6bgives the centralized version
of OUT example.

3 CONCLUSION

The analysis of this study case with VALID has foIlowed the two main steeps of VALID
specification methodology:

379

System architecture description : Object-model diagram highlights the system
object classes (objects) and their structural relationships. In this steep, it was
important to decide which attributes ofthe two classes (Orders and Product) to
be made visible or not at the system level. For this attributes, VALID generates the
necessary rules to manipulate their contents and guaranty their consistency. The
Object communication and co-operation diagram highlights objects interfaces (data
or control input/output) and classes interconnections. Relationships, Input/output
and attributes are used by VALID translators to grantee valid code generation. Also,
static properties such as objects or data consistency and object class relationship
associations (references, etc.) can be easily handled by using specific rewriting
rules.
System behavior : Rules are event or messages handlers. It was important to chose
between centralized or control. Indeed, in classical applications, we
specify in a distributed manner and in the design steep we choose between
centralized or distributed implementation. The main program of an application
constitutes the objects control and supervision. VALID is a more general
specification environment which take into account classical and computer
applications as wheel as industrial and automated systems analysis and
specification. Prolog III model generated by VALID aHows the verification of the
application protocol or interactions properties: deadlock, application stability,
reliability and fault tolerance property according to external or internal exceptions
and errors arising, and any dynamic aspect inherent to system behavior. [ATT096,
A TT097] give some system dynamic simulation and temporal properties
verification examples. Simulation models (Prolog III pro gram) and final program
code generation in a target language (CC++, ADA, etc.) is obtained by vertical
refinement techniques [ATT097a] which has the advantage to generate valid
program from high level specifications. A correct pro gram generation is achieved
by transformations according to VALID pivot textual formalism and the target
language semantics.

4 REFERENCES

ATTOUI A. and SCHNEIDER M. (1996) "A Formal Approachfor the Specijication and
the Behavior Validation of Real-Time Systems Based on Rewriting Logic", Real­
Time Systems Journal, VollO, Njl, January.

ATTOUI A. (1997),"An Environment Based on Rewriting Logic for Parallel Systems
Formal Specijication and Prototyping", Journal ofSystems Architecture, Vo144.

ATTOUI A.,HASBANI A. (1997a), "Reactive Systems Developing by Formal
Specijications Transformation", 8th International Conference and Workshop on
Database and Expert Systems Applications, September 1-5,Toulouse.

JAHANIAN F. and STUART D.A. (1988), " A method for verifoing properties of
Modechart specijications", IEEE Real-Time Systems Symposium, Huntsville,
Alabama, December.

LIGHTFOOT D. (1991) "Formal Specification Using Z". The Macmillan Press.

380

HAB RIAL H. (1993), "Introduction A la specification", Editions Masson, Paris.
HAREL D. (1987), "Statecharts: a visual formalism for complex systems", Scienee of

Computer Programming, Vol. 8, Ni3, June.
HAREL D. and Gery Eeran (1997), "Executable Object Modeling with Statecharts" ,

Computer, Vol. 30, Nj7, July.
MESEGUER J. (1990)"A Logical Theory of Concurrent Objects". in Proeeedings

Coneur'90 Conferenee, Springer Verlag, Amsterdam, August.
VIGDER M. (1991), "Using VDM within Object Oriented Framework". in Proeeedings

VDM91 Formal Software Development Methods, Noordwijkerhout, the
Netherlands, 2J-25 Oet.

VIGDER M. (1991) "Using LOTOS in a Design Environment". in Proeeedings
FORTE'91, Sydney, 12-22, Nov.

	An Approach for Real-Time Applications Engineering

	1 INTRODUCTION
	2. FORMAL MODULES (Description of an active object)
	2.1. The signature
	2.2.Invoicing orders real-time database application
	2.3. Object communication and co-operation diagram
	2.4. Object behavior (The rewriting rules)
	2.5. Invoicing orders real-time database application behavior
	2.5.1. Distributed control
	2.5.2. Centralized control

	3 CONCLUSION
	4 REFERENCES

