
Composing Enterprise Models:The
Extended and The Virtual Enterprise

T. Janowski, G. Gimenez Lugo' and Zheng H.··
The United Nations University
International Institute for Software Technology
P.O. Box 3058, Macau. E-mail: tj@üst.unu.edu

Abstract
This paper is a contribution to the semantics of the emerging discipline of
enterprise engineering. We study the composition of models of individual
enterprises into the model which represents the behaviour of an extended or a
virtual enterprise. The former corresponds intuitively to the union of models: all
activities taking place within and between individual enterprises. The latter to
intersection: coordinated and shared activities which utilise the resources of all
participating enterprises. Modelling adopts a unifying business perspective upon a
firm (a discrete parts manufacturer), its structure (available resources) and
behaviour (activities which utilise resources). Model composition is based on
formal semantics. The result is a precise technical meaning for an extended and a
virtual enterprise, suitable for symbolic execution, reasoning and foremost for
understanding the difference between both concepts.

Keywords
Enterprise Modelling and Integration, Enterprise Engineering; Virtual Enterprise,

Extended Enterprise, Formal Semantics, Abstraction and Composition

1 INTRODUCTION
The context for this work is the well-known instability of the manufacturing
world. Enterprises must have enough flexibility to adapt quickly to chan ging
environment conditions, enough know-how to manufacture advanced products,

©

The original version of this chapter was revised: The copyright line was incorrect. This has
been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35390-6_58

IFIP International Federation for Information Processing
L. M. Camarinha-Matos et al. (eds.), Intelligent Systems for Manufacturing

1998

http://dx.doi.org/10.1007/978-0-387-35390-6_58

186

enough resources to compete on the global market. They must revisethe ways
they run their business and cooperate with each other, by sharing or outsourcing
costly or non-essential operations within an extendedlvirtual enterprise (Browne
1995) (Davidow and Malone 1992).

Since its introduction, the concept of an extendedlvirtual enterprise has
received a lot of interest in the manufacturing community. We believe that the
useful discussion about organisation, management (Pant and Hsu 1996) and
implementation issues (Hardwick at al. 1997) should be supplemented by the
more basic study about the meaning of this concept(s). We think such a study,
cast in the framework of formal semantics, is needed for inclusion of an
extendedlvirtual enterprise within the discipline of enterprise engineering, as weIl
as contribute to the development of this discipline (Bernus and Nemes 1995,
Vernadat 1996). This work is a step in this direction.

We shall take a unifying perspective upon a manufacturing firm described by
its structure (available 'resources) and behaviour (activities which utilise
resources). The resources art< products (stocks), places to store them (warehouse)
and ways to assemble them together (shopfloor) according to the bill of products.
The activities include buying, selling or transforming products, with
corresponding effects on the stocks, and expanding/reducing storing or
production capacities. The activities are put together within a business process
which is like a 'program' executing on the enterprise resources. Constructs for
buHding processes include sequential composition, conditionals and repetitions
(both employ properties over the state of resources), and alternatives which are
decided by the environment (the market which allows to buy/sell products). The
enterprise includes a set of processes executed concurrently, subject to external
restrictions upon buying and selling and internal restrictions upon resources;
competition for shared resources is resolved by priorities on processes. The model
is defined formally. Its semantics is explained but not formalised. Exceeding by
far the size of this article, formal semantics is subject of a companion paper
(Janowski et.al. 1998).

We study two ways to put such models together. The first is the 'union' of
models. This corresponds to an extended enterprise where we add together all
resources and processes, allowing for complementary external activities (buying
and selling) to take place as asynchronisation between enterprises. The effect is
an internal relocation of products between participating enterprises. We also
define an abstraction function from a coIlection of enterprises to a simple
enterprise, to hide such a relocation. Along with the union we define the product
of models. To. this end we allow processes inside the enterprise to refer to the
local as weIl as remote resources, owned by another enterprises (part of the
extended enterprise). The product is the set of such processes whichoperate upon
the resources of more than their own enterprise. We interpret this set as a virtual
enterprise. This virtual enterprise has no resources of its own (itis "virtual") but

187

is truly an abstraction of the activities which are shared and coordinated between
enterprises.

The enterprise model is introduced and explained in Section 2. Section 3 is
about composition of models, into the extended (Section 3.1) and virtual
enterprise (Section 3.2). Section 4 contains summary and conclusions.

2 MODELLING AN ENTERPRISE
We present a simple model for a discrete parts manufacturer. Modelling adopts a
unifying business perspective where many aspects of the firm are abstracted away
(Figure 1). Part of the presentation is formal, part are informal explanations. We
apply the notation of RAISE (Rigorous Approach to Industrial Software
Engineering) (RAISE 1992). Yet no prior knowledge of the formalism is needed
as modelling techniques are simple and fully explained.

l!.rocesses 00000
resources

sub-produCls

Figure 1 Modelling an enterprise, a unifying perspective

2.1 Products

Suppose there is a number of products we may be interested in. All such products
are values of the abstract type Produc t (a type is a collection of values together
with operations upon them). We are not interested in the detailed nature of
products but in some attributes that will be important for modelling of the
enterprise. The first relates to the storing requirements for items of the product,
assumed to be represented numerically: function store from products to natural
numbers. The second is a map (a partial function) from products to subproducts
and their quantities: how many items are needed to assemble a single item of the
producL This represents a bill of products.

type
Product

value
store: Product Nat,
bill: Product (Product r;P Nat)

188

Not all such maps can reasonably represent a bill of products. We disallow
products which are sub-products of themselves or subproducts which are not in
the bill. The required properties are given by the axiom below, in terms of the
predicate 'is subproduct'; dom represents domain of a map (a set of arguments)
and pre a pre-condition for a partial function.

value
issub: Product x Product Bool
issub(q,p) == q E dom bill(p) V

(::3 r:Product. rE dom bill /\ issub(r,p) /\ issub(q,r» pre pE dom bill
axiom V p, q : Product •
pE dom bill (-issub(p,p) /\ (issub(q,p) q Edom bill»

2.2 Resources

We selected to model three kinds of resources: stock represents the number of
items of each product available in the warehouse; space represents maximum
capacity of the warehouse, 'measured' by summing up function store for all
products and stocks (s toreall); production capacity is a map from products to
natural numbers, representing products which can be assembled on the shopfloor
and how many can be processed within an agreed time.

type
Space == Nat,
Stock == Product "ii? Nat,
Trans == Product Nat

value
storeall: Stock Nat
storeall(s) == sum ({s(p) * store(p) I p:Product. pE dom s})

We represent resources as arecord of the stock, space and production capacity:
the stock must not exceed the space or include products not in the bill, and
production must not apply to products not included, or their sub-products not
included, in the stocks. Arecord is like a Cartesian product with functions for
each field to extract and modify values. Resources is a sub-type of Res:

type
Res :: stock: Stock space: Space trans: Trans,
Resources == {I r:Res. iswf(r)l}

value
iswf: Res B 001

iswf(r) == dom stock(r) dom bill /\ storeall(stock(r» :::; space(r) /\
(Vp,q:Product • p E dom trans(r)

pE dom stock(r) /\ q E dom bill(p) q E dom stock(r»

189

2.3 Activities

Operating on the resources are functions for buying, selling and producing
products, and functions for expanding/reducing production and storing capacities.
We only consider functions for stocks.

value
buy, seIl, prod: Product X Nat X Resources Resources

Buying increments the stock, provided there is enough space. Selling decrements
the stock, provided there is enough items.

axiom forall p:Product, n:Nat, r:Resources •
stock(buy(p,n,r»(p) == stock(r)(p) + n

pre pE dom stock(r) /\ storeall(stock(r» + n * store(p) < space(r),
stock(sell(p,n,r»(p) == stock(r)(p) - n pre pE dom stock(r) /\ stock(r)(p) n

Production decrements stocks for all immediate subproducts and increments the
stock for the product. It depends on the availability of stock, space and
production capacity.

axiom forall p,q:Product, n:Nat, r:Resources •
stock(prod(p,n,r»(p) == stock(r)(p) + n pre pE dom trans(r) /\

n ::; trans(r)(p) /\ storeaIl(stock(r» + n * store(p) < space(r),
stock(prod(p,n,r»(q) == stock(r)(q) - n * bill(p)(q) pre q E dom bill(p) /\

stock(r)(q) n * bill(p)(q) /\ pE dom trans(r) /\
n ::; trans(r)(p) /\ storeall(stock(r» + n * store(p) < space(r)

2.4 Processes

Deciding which activities should be carried out and in which order is the task of a
process. A process is like a "program" which executes on the enterprise
resources. The process can test the state of resources, e.g. if the stock is greater
than given number, if the space can accommodate given number of items ... Or
involve a human decision, the outcome of which cannot be resolved based on the
resources alone. Tests can also apply propositional constants t t (true), f f (false)
and connectives and and or. The type of tests is a union type, which specifies
alternative ways to build tests.

type
Test == tt I ff I human I
not(Test) I and(Test, Test) I or(Test,Test) I
isempty(Product) I ismore(Product,Nat) I isspace(Product,Nat) I _

190

A process is one of resource-consuming activities: buying, selling or producing,
and expanding/reducing space or production capacities. A process can be halted,
a sequential or conditional execution of two processes (depending on the outcome
of a test), an alternative execution which lets the environment decide on the
execution of one of processes, or an execution which repeats a process as long as
given test remains true. Processes are defined below.

type
Proc == halt 1 space(Int) 1 trans(Int,Product) 1

buy(Nat,Product) 1 sell(Nat,Product) 1 prod(Nat,Product) 1
seq(Proc,Proc) 1 alt(Proc,Proc) 1 test(Test,Proc,Proc) Iloop(Test,Proc) 1_

2.5 Enterprise

The enterprise executes concurrently a set of processes, each given a unique
identifier. To resolve competion for shared resources we assign to every process a
natural number: the higher the number the higher the importance. The resources,
the set of processes and priorities together "define" the enterprise.

type
Pid,
Ent:: res: Resources

man: Pid iiP Nat
beh: Pid iiP Proc

This representation is subject to some restrictions on: the names of processes (all
must receive corresponding priorities) and products mentioned inside processes,
which all must have their stocks present. rng represents the range of a map and
prods returns the set of products inside the description of a process.

type
Enterprise = {le:Ent • iswf(e)1 }

value
iswf: Ent Bool
iswf(e) == dom man(e) = dom beh(e) /\

(V p:Proc • p E rng beh(e) => prods(p) dom stock(res(e»)

This provides a general 'structure' for abstract description of enterprises.
Concrete instances can be defined as values of this type. Consider a small
example. Suppose we have products p (i) where i is a natural number and
p (i) is the only sub-product of p (i + 1) with quantity i, for all i. Suppose we
have enterprises e (i), each holding stock for p (i) and p (i + 1), and able to
produce p (i + 1) only. Each e (i) consists of one process s (i) which tries to

191

repeatedly seIl one item of p (i + 1) . If the stock is empty, it tries to produce this
item from p (i) , if the stock for p (i) is too low, it tries to buy p (i) first.

value
s: Nat Proc,
p: Nat Product,
e: Nat Enterprise

axiom Vi:Nat •
p(i) E dom bill /\ bill(p(ü)) = [] /\ bill(p(i+l)) = [p(i) 1],
dom trans(res(e(i))) = {p(i+1)}, dom stock(res(e(i))) = {p(i),p(i+1)} ,
rng beh(e(i)) = {s(i)},
s(i) = let t = not(isempty(p(i+ 1))),

r = test(ismore(p(i),i),prod(1 ,p(i+ l)),buy(i,p(i)))
in 100p(tt,test(t,seIl(1 ,p(i+ l)),r)) end

3 MODEL COMPOSITION

We are now going to consider organisation of many enterprises cooperating or
competing (or both) with each other. We study and interpret two ways to put
enterprises together, by operations on their models (Figure 2): union and product.
The first adds up aIl production capacities and processes in both enterprises, the
second extracts those processes in both enterprises which utilise local as weIl as
remote (owned by another enterprise) resources. We interpret them to represent
an extended and a virtual enterprise respectively.

seU ..

0000·1
Enterprise 1 Enterprise 2

........ .. .-
.. _ .. "

Extended Enterprise

Figure 2 Model composition: the extended and the virtual enterprise.

192

3.1 The Extended Enterprise

The extended enterprise is an enterprise which consists of a set of enterprises (an
industry), their internal resources, processes and possibility for exchange of
products between them. The following function represents this exchange between
two enterprises disregarding the running of processes in each of them.

type
Id,
Industry = Id Enterprise

value
exchange: Id x Id x Product x Nat x Industry Industry
exchange(s,c,p,n,i) == i f [s sell(p,n,i(s)), c buy(p,n,i(c))] pre

{s,c} dom i /\ stock(res(i(s)))(p) n /\
p E dom stock(res(i(s))) n dom stock(res(i(c))) /\
storeall(stock(res(i(c)))) + n * store(p) :::;; space(res(i(c)))

On outside, an extended enterprise is like the usual enterprise in Section 2. There
is no need to actually model the extended enterprise separately, only to show how
to obtain it from the collection of enterprises. This is done by summing up all
resources, processes and priorities:

value
abstraction: Industry Enterprise
abstraction(i) as ee post

beh(ee) = mapunion({beh(e) I e:Enterprise • e E rng i}) /\
man(ee) = mapunion({man(e) I e:Enterprise • e E rng i}) /\
stock(res(ee)) = mapsum({stock(res(e)) I e:Enterprise. e E rng i}) /\
trans(res(ee)) = mapsum({trans(res(e)) I e:Enterprise • e E rng i}) /\
space(res(ee)) = numsum({space(res(e)) I e:Enterprise • e E rng i})

We also need to justify that this abstraction was not too generous in removing
internal details. The usual way is to show that there exists a correspondence
between operations on the abstracted model and on components of the concrete
model, so that they in some sense "simulate" each other. This is done by showing
that the diagrams below commute (Janowski and Acebedo 1996).

ind abstraction ext

lbuy/SeJl . buylseJ1l
. d' abstractwn , zn ext

193

3.2 The Virtual Enterprise

Section 3.1 showed that any collection of enterprises may be reduced into a
single enterprise. The 'inverse' in a sense doesn't hold: there is more capacity
inside the extended enterprise that we could possibly exploit in terms of
individual enterprises, e.g. to write a process which uses the resources of all of
them. This section opens up this possibility. We revisit definitions of tests and
processes to allow them to access local as weIl as remote resources (activities
refer to the enterprise id), and to allow for exchange of products.

type
Test' == tt 1 ff 1 human 1
not(Test') 1 and(Test',Test') 1 or(Test',Test') 1

isempty(Product,Id) 1 ismore(Product,Nat,Id) 1 ,

Proc' == halt 1

exchange(Nat,Product,Id,Id) 1

space(Int,Id) 1 trans(Int,Product,Id) 1

buy(Nat,Product,Id) 1 sell(Nat,Product,Id) 1 prod(Nat,Product,Id) 1

seq(proc',Proc') 1 alt(Proc',Proc') 1 test(Test',Proc',Proc') 1_

We refine the enterprise accordingly into Enterprise'. Unlike an extended
enterprise, a virtual enterprise is a set of processes only, which operate upon the
resources of not only its own but also other enterprises. Definition is below. We
also provide a function which extracts a virtual enterprise from given set of
enterprises, provided no process refers to the enterprise outside the set. eids
returns all enterprise identifiers present within a process description.

type
VirtualEnt = Proc'-set,
Industry' = Id ;w Enterprise'

value
virtual: Industry' VirtualEnt
virtual(i) ==

{ p 1 p:Proc' .:3 e:Id. e E dom i /\ pE rng beh(i(e» /\ eids(p) {e}}
pre (V'e,e': Id, p:Pid. e E dom i /\

pE dom beh(i(e» /\ e' E eids(beh(i(e»(p» =:} e' E dom i)

4 CONCLUSIONS
There is a growing demand for tools (Christiansen 1997), methods (Williams
1994), languages and standards (Clements 1997) to model, analyse, build and re­
build manufacturing enterprises as engineering artifacts. This, however, requires
formalisation of the basic concepts which underline the 'definition' of the
enterprise and its derivatives (extended/virtual enterprise).

194

We presented a simple model for the class of enterprises, building on the
concepts of products, resourees, activities upon resourees, proeesses which
govern execution of activities, leading to the enterprise itself: a set of processes,
with priorities, exeeuted eoneurrently on the shared resourees. We presented two
ways to compose such models, eorresponding to the 'union' and 'product', and
interpreted respectively as an extended and a virtual enterprise.

Although we presented the models formally, we only explained informally their
semanties. Formal semanties of the models presented here is subject of a
companion paper (Janowski et al. 1998). This can help to study ways of reasoning
(symbolically) about the enterprise, its evolutions and derivatives, and provide a
formal underpinning for building tools for symbolic prediction and optimisation
of business operations in manufacturing.

REFERENCES
Bernus P. and Nemes, L. (1995). Enterprise Integration - engineering tools for

designing enterprises, in P. Bernus and L. Nemes (eds) , Modelling and
rnethodologiesfor Enterprise Integration, IFIP, Chapman and Hall.

Browne, 1.(1995). The Extended Enterprise - Manufacturing and The Value
Chain, in L. M. Camarinha-Matos and H. Afsarmanesh (eds) , BASYS95,
Chapman and Hall.

Christiansen, T. (1997). Integrated tools in support of enterprise modelling and
analysis, Previous Workshop 5-Intl. Conj. on Enterprise Integration
Modelling Technology.

Clements, P. (1997). Standards support for the integration and interoperation of
the virtual enterprise, Previous WS 2-Intl. Conj. on Enterprise Integration
Modelling Technology.

Davidow, W. and Malone, M. (1992). The Virtual Corporation: Structuring and
Revitalizing the Corporation for the 21 st Century, Harper Collins, New York.

RAISE, The RAISE Language Group (1992). The RAISE Specijication Language,
Pren tice Hall.

Janowski, T. and Acebedo, C. (1996). Virtual Enterprise: On Refinement
Towards an ODP Architeeture, Technical Report 69, UNUlIIST.

Janowski, T., Zheng, H. and Gimenez Lugo, G. (1998), Market-Driven Symbolic
Execution of Models of Manufacturing Enterprises, Technical Report 137,
UNUIIIST.

Hardwick, M., Rando, T., Spooner, D. and Morris, K. (1997). Data Protocols for
the Industrial Virtual Enterprise, IEEE Journal of Internet Computing, 1.

Pant, S. and Hsu, C. (1996). Bussiness On The Web: Strategies and Eeonomics,
Fifth International WWW Conference, Paris, Franee.

Vernadat, F. (1996). Enterprise Modelling and Integration, Chapman and Hall.
Williams, T. (1994) The Purdue Enterprise referenee Architecture, Computers in

Industry 24(2): 141"158.

	Composing Enterprise Models:The Extended and The Virtual Enterprise

	1 INTRODUCTION
	2 MODELLING AN ENTERPRISE
	2.1 Products
	2.2 Resources
	2.3 Activities
	2.4 Processes
	2.5 Enterprise

	3 MODEL COMPOSITION
	3.1 The Extended Enterprise
	3.2 The Virtual Enterprise

	4 CONCLUSIONS
	REFERENCES

