Agent-based Manufacturing :
a database point of view

C. HANACHI

University of Toulouse 1

Place Anatole France 31042, France.
Direct phone number: (33) 5 61 63 35 60
Fax numbers: (33) 5 61 63 37 98

Email address: hanachi@univ-tisel fr

Abstract

This paper examines three advanced services provided by Database technology that
can support agent-based manufacturing systems: temporal modelling, activity
representation and meta-modelling. We will explain how the combination of these
three services, based on well-defined models, enables the description of dynamic
behaviour useful to cooperate with the environment, manage contracts and exploit
efficiency data describing other manufacturing sites. We will illustrate this paper
with the description of an information agent devoted to manufacturing sites
cooperation. '

Keywords
Active and Temporal databases, Meta-Modelling, Information Agent.

1 INTRODUCTION

Agent technology can be used in two different ways in the context of manufacturing
systems: it can be used inside a system to achieve a precise function like
scheduling, planning, or at a higher level to guarantee the cooperation between
several manufacturing sites. Obviously, these two kinds of applications are not
exclusive.

The original version of this chapter was revised: The copyright line was incorrect. This has
been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35390-6_58
L. M. Camarinha-Matos et al. (eds.), Inzelligent Systems for Manufacturing

© IFIP International Federation for Information Processing 1998

http://dx.doi.org/10.1007/978-0-387-35390-6_58

110

This paper will explain how Database technology can be used to support Agent-
based Manufacturing. We will illustrate the paper in the context of cooperation
between several manufacturing sites even if the concepts involved are general
enough to be widely used.First let us precise why Manufacturing Agents should be
based on Database technology:

e Pre-existing manufacturing systems are already organised around a technical
database that manages information provided by CAE, CAD, Planning,
Scheduling and Coordination.

o DBMSs guarantee good properties in a multi-user environment: data coherence,
data interchanges between various applications, data availability, efficiency,
reliability, concurrent accesses, integrity constraints checking.

e New concepts, techniques and tools mostly inspired by Al, are today available
and can be coupled with Databases to provide high level services like
cooperative answering to users, collaborative work support, heterogeneous and
distributed Databases federating.

To our knowledge, most of the research aiming at developing Agent features on

top of databases has concentrated on the use of Active Databases and most of the
time it was applied to information retrieval. (Berndtsson 1996) studies how active
rule paradigm may be used to support Cooperative Problem Solving and more
precisely addresses the following issues: 1) Task Sharing by proposing a method to
generate active rules from high-level protocol specifications, 2) Result sharing
based on notification sending between producers and consumers of results,
3)Distributed and Federated aspects by stating that a Corba-like distributed
computer infrastructure is required and that active rule paradigm must be extended to
take into account global events. (Kinny 1995) makes a comparison between active
Databases and Agent Systems with respect to purpose, structure, functionality and
implementation. More precisely, It compares the two paradigms for expressing the
Belief-Desire-Intention Agent Architecture.
This work differs from the works mentioned above in two ways. It first differs
from a conceptual point of view, since our solution combines three complementary
paradigms : Active rules, Temporal model and meta-model. This combination offers
a lot of new services. Secondly, our objectives are also different as we aim at
applying this work to the context of manufacturing systems where for example
time management is obviously required.

This paper is organised as follows. The second section presents the architecture of
an information agent devoted to the cooperation between different sites : the
different components and how they interact with one another. Section 3 gives a
meta-data model that supports the information agent reasoning. Section 4 deals
with the data evolution modelling. We use the temporal data model of (Navathe
1987) to describe the contracts and the partners behaviour through time, and we also

111

precise how to use it during a contract life-cycle. Section 6 describes the
information agent activity (control, coordination) with active rules.

2 ARCHITECTURE OF THE INFORMATION AGENT

To ease the cooperation between several manufacturing sites in the current context
of the information age (network, web, ...), each company must advertise its
capabilities, manage supply and demand, and share information with the partners.
(Afsarmanesh 1997) has shown the importance of information in Virtual
Organisations and the necessity to federate it. In this paper, we explain how to
« agentify » databases in order to support the cooperation between manufacturing
sites by providing cooperative information, and also by managing some activities

included in a contract life-cycle.
Temporal events

Local
Database

Product specifications,
Planning, past and current data \ Import Data
about contracts, metadata, Information - —
Export Data
Manager
Contract > extelrnal
Interface world
Task announcement,
shapshot, bid, award,
view. User query, answer.
Interface

Internal
Technical
Database

Query, answer, user
notification, contracts
information, explanations.

Figure 1. Information Agent architecture for Manufacturing sites cooperation.

Let us present the main features of an architecture facilitating such a cooperation
and underline the essential role of Database technology to support such an
architecture. This architecture is built around an information agent with the
following features :

e it acts as an interface between a given company and the external world. It
communicates with other companies information agents, provides advertising
information to customers, and imports information from the environment to
improve the knowledge the system has of the external world and about itself.

112

it manages contracts (supply and demand) according to a precise protocol
depending on the tasks and partners,

its reasoning is based on a local database recording global and synthetic
information about the company (its capabilities, its planning, ...) and
information about the other companies of the market (capabilities, histories and
states of the current and past contracts).

it cooperates with the staff to inform them about important events (new
contracts, deadlines, ...), to give them explanations, and to transform their needs
into tasks announcement to be sent to suppliers.

To guarantee these functions, the information agent is organised around three

functional components :

a contract interface, which manages contracts both from a supplier and a
customer point of view,

a information manager, which records and provides information about
companies and contracts. The information manager must be active : notify

a user interface, which allows internal staff to communicate with the
system in order to follow the contract during its life cycle and to get informed
about important events.

The local database contains four types of data :

information about the manufacturing system at a high abstract level : demand,
shop capabilities (functions, limits, ...), quantitative goals, provisional plans
upon large time horizons. This information is mainly extracted from the factory
internal technical database. The stable data are stored in the local database in an
appropriate format (snapshot, for efficiency reasons) while a view is created on
the more variable data. For security reasons, it is important, at this level, not to
export strategic information which could be used by competitive companies;
Information about external environment : references on other
companies(addresses, capabilities, histories, ...). This information may be
imported by the system itself. Obviously, an update notification mechanism on
remote information change is necessary to guarantee information freshness;
Information about the current contracts as supplier and customer; and finally,
meta-information describing the behaviour of each partner through time, the
structure of each alliance and its evolution through time, and information on the
contracts evolution.

From a database point of view, the effective implementation of this architecture

raises several problems :

Data interoperability between the different sites : the information that is
exchanged between the different nodes must be understandable by each one and
we must preserve the autonomy of each site. There are lots of solutions for that

113

(Common Internode Language, Mapping, STEP Files, ...) and different possible
architectures (federation, multi-database, interoperable databases). Here, we will
not focus on this interesting subject which has been well treated elsewhere : for
example (Gardarin 1997) presents the IRO-DB project which is an object-
oriented federated database and it explains how to integrate IRO-DB to the web.
See also (Afsarmanesh 1997) for a discussion and solutions about data exchange
in the context of virtual organisations.

Time is also an essential aspect as a lot of information about contracts and the
market are related to date and duration (deadline, delay, ...). We need to control
the evolution of the current contracts during their life-cycle and record their
history in order to improve the quality of the future contracts and master the
relationships with partners and competitors. At another level, the market also
evolves since new products, new customers and suppliers may arrive and the
role of a given company can change through time (a company may be some
times partner and other times competitor)... More precisely, we have to
manipulate past, current and pro-active information concerning contracts and
companies. The management of time will be assigned to the information
manager. We will use, for that, the Temporal Relational Model (TRM for short)
of (Navathe 1987) which integrates a Temporal Query Language (Temporal-
SQL).

Information freshness and reactivity : The local database must be
updated automatically when important changes occur in the internal or remote.
database. The staff must also get informed rapidly of new events (contract
announcement, deadline, arrival of bids, ...). This event-driven behaviour can be
implemented by active rules which are integrated in Active Databases.
Meta-reasoning and reflexive reasoning : to select the partners and
manage its relationship with them, to explain its reasoning, and to estimate its
own competence the information agent needs meta-reasoning and for that global
and meta-information about itself and the environment. We provide in next
section a meta-data model to ease this reasoning.

3. A META-DATA MODEL TO SUPPORT THE MANUFACTURING-
AGENT REASONING

We call it meta-model because it gives a global and time-oriented view of the
structure and of the whole system behaviour. This meta-model records and
structures information about :

Different manufacturing sites : their role and behaviour in the current and past
projects(as manager as well as contractor), the financial and social relationships
between them (coalition, shares, owner, concurrent, ...), and their competencies
and resources.

114

o Guidelines to choose a protocol according to the partner. The protocol used with
a given company may change with time and according to the opportunities
offered.

e The evolution and structure of each project (tasks).

e The alliances and their evolution.

All this information is recorded with their history (see section 4.) so that each
partner behaviour is clear. Consequently, the information agent is able to 1) select
partners 2) reject companies 3) choose the good protocol with each one 4) explain
its past and current behaviour to internal staff.

Capabilities Resources

(1,n) | is shared by

(1n)

(0,n) owns

uctural_and Financial_Link

belongs to

Manufacturing Sites

0.n)
Behaviour Guidelines

Actual Behaviour

Contract State

(In |8

Protocols Projects Tasks

Figure 2.
Meta-Model supporting the information agent.

4. TIME MODELLING WITH TIME RELATIONAL MODEL (TRM)

To improve the temporal capacity of our system, we need temporal abstraction and
high level language which, when integrated in active rules (see section 5), help to
express system behaviour.

115

Temporal DBMSs have come to maturity in the context of Relational model as
stated by the two following facts : the publication of a consensus glossary on
temporal database concepts (Jensen 1994) and the definition of the TSQL2 language
(Snodgrass 1995). At the opposite, in the Object-Oriented context there is no
current consensus : researches and developments are still being active. (Fauvet
1997) provides a brief and current survey on Temporal-Object DBMSs such as
OODAPLEX, OOTempSQL, OSAM/T, TOOSQL, TEMPOS.

For our purpose, and given the previous remarks, we will use the TRM relational
model of (Navathe 1987) combined with TSQL.

TRM allows both ordinary relations (static relations) and time-varying relations
(TVR). A TVR is a relation (that has, as any relation, a time invariant key, TIK) to
which two time-stamp attributes are added, Tgart and Tepd. For a given value of

TIK, there may be several tuples whose time-stamp attributes define the time
interval during which the value is continuously valid. (TIK, Tg) and (TIK, Tg) are
both candidate keys and the time intervals [Tg, Te] must not overlap, since an
attribute has a single value at any moment. Time-stamp attributes do not refer to
the physical time (the date, when an attribute value is inserted or updated in the
DB), but to logical time (i.e. the date provided by the user when the attribute value
is valid in the real world). Thus both proactive and retroactive values may be
represented in the DB. Dates are defined with any granularity (year, month, date,
hour, minute, second).

TSQL is an extension of the SQL language dealing with the temporal aspects of
queries. It allows the usual operations on dates and time intervals. Time-points are
treated as degenerated time-intervals, and may be compared with the following
operators : « before », «precedes», «after» , «follows» (just after),
« adjacent » (precedes or follows), « overlap », « during » and « equivalent »,
In a query, the « WHEN » clause specifies the temporal relationships of the
participating tuples, and is evaluated by examining the relative chronological
ordering of tuples time-stamp. « INTERVAL » refers to the time-interval of a
tuple, « DURATION » to the length of this interval, « T_start » and « T_end »
to its bound. We will not present this language exhaustively, but only illustrate its
capabilities by two examples based on the following relational schema, describing
customers and their contracts according to the contract net protocol.

ConTract (CTname, CompanyName, BidExpirationDate, TaskExpirationDate,
Task_specification, Eligibility_specification, Bid_specification...)

ConTractState (CTname, State : (Received, Possible, Bidding, Ignored, Rejected,
Awarded, Working, Finished), Tg, Te).

Companies (CompanyName, state : (partner, competitor, ...), Tg, Te) /*the role of a
company may evolve : sometimes partner, other times competitor*/

Query 1 : Possibly good customers : Company having awarded more
than X contracts during the last three years ?

116

Select C1.CompanyName, count(*)

from ConTract Cl1, ConTractState C2

where C1.CTname=C2.CTname and State=« Awarded »
group by Cl.CompanyName

having count(*) > X

TIME_SLICE year [Now-3years, Now]

The time-slice clause states to what period of time the research is applied, with the
required time-granularity.

Query 2 : History of contract CN97 since its bid expiration date ?
Select C2.State, C2.INTERVAL

from ConTract C1, ConTractState C2

where C1.CTname=« CN97 » and C1.CTname=C2.CTname

when Cl.bidexpirationdate < C2.Tg

Query 3 : Doubtful Customers : Which company became competitor
more than 3 times in any time interval of a month during last year ?
select Companyrname

from Companies

where Companies.state = « competitor »

moving window 1 month

having count(*) >3

TIME_SLICE year [Now-1, Now]

The moving window clause enables to consider all time-intervals having a given
length. For each time-interval having the length specified by the moving window
clause, a group is formed of tuples which fall within this interval, and the having clause
apply to these groups.

5. EVENT-DRIVEN BEHAVIOUR MODELLING WITH ACTIVE
RULES

The dynamic control of a contract during its life-cycle will be implemented with the
concept of Active Database where a rule based language is added on top of a
conventional database. This rule-based language allows one to express behaviour
and reactions to events occurred to the objects stored in the database or the
environment (temporal event, signals from other softwares, ...). It can have varied
applications among which (Widom 1996) : application invocation or user
notification whenever a relevant situation appears; automatic checking of integrity
constraints; automatic computing of derived data when base data are updated; etc.

All these functions are guaranteed without user intervention. This mechanism is
interesting when one bears in mind that with conventional DBMSes, the user has
to query the database periodically to know if an interesting event has occurred !

117

For that purpose, the rules have an Event-Condition-Action(ECA) form, of the
following type : When <E> if <C> then <A> which may be interpreted as
When the signal <E> occurs, if condition <C> is true then action <A> must be
performed.

As previously said, the events may be related to Database operations (updating,
deleting, creation), temporal events (duration analysis, time-out, frequency analyse),
or signals from other applications. The condition part describes a situation that
must be satisfied by the DB. It is expressed with a query addressed to the database.
In our case, we will use a Temporal Data Model TSQL which is described in the
previous section. The action part is a program which may contain : user
notification, other tools invocation, database manipulation, ... Besides, a lot of
Active Database Systems are currently available. They have been implemented on
top of conventional DBMS (Starburst, Postgress, Hipac, Ode, 02, Samos,
...). For a review see (Widom 1996)).

Here are some examples of active rules which should ease the management of the
contracts :

Rule 1 : Controlling the customers (Impossible contracts)
When anew contract CT is announced /* it is a database event captured after a SQL
insert order*/
If the originator is doubtful /*can be computed by a temporal SQL query which
analyses the behaviour of this customer during a significant period : see query 3 in
section 4%/
then update the tuple corresponding to the announcement of CT : Time_End to Now
(table ConTractState, see §4)
insert a new tuple stipulating that CT is «ignored » and Time_start =Now
inform the originator /*external program*/
inform the staff concerned with CT/*external program®*/

Rule 2 : Possible Contracts (Rule 1 is supposed to have a higher
priority than Rule 2).
When anew contract CT is announced /* it is a database event captured after a SQL
insert order*/
If the Eligibility Specification are included in the Capacity of the company (SQL
query)
then update the tuple corresponding to the announcement of CT: Time_End=now
insert a new tuple stipulating that CT is right now « possible »
Time_Start= now

Rule 3 : Extending Contracts Deadlines
When to day = deadline of bids submission of a contract CT /* it is a temporal event
which generates a database query*/
If only 30% of the suppliers sent a bid/* it is a sql query*/
then inform the staff responsible of the contract CT /*external program*/
update the deadline of task CT /*SQL query*/
notify the suppliers /*external program®*/

118

6. CONCLUSION

This paper has examined advanced concepts from Database technology to support
the design and development of Agent-Based Manufacturing. The main research
contribution of this paper is to combine three complementary paradigms (meta-
modelling, temporal models and active rules) which jointly provide advantages to
describe the dynamic and temporal behaviour of the agent. From the numerous
examples we have given, we can conclude that these concepts are expressive
enough to be considered seriously for the development of manufacturing
agents. Besides, we believe this solution is easily implementable either from
scratch (a simple DBMS) or by using a pre-existing active and/or temporal
database.

7. REFERENCES

Afsarmanesh, H., and Camarinha-Matos, L. M. (1997) Federated Information
Management for Cooperative Virtual Organizations, in Proceedings of 8th
international Conference on Database and Expert Systems Applications (ed. A.
Hameurlain & A. Min Tjoa , LNCS 1308), Toulouse.

Berndtsson, M and Chakravarthy, S. and Lings, B. (1996) Cooperative Problem
Solving: A new direction for Active Databases, International Symposium on
Cooperative Databases for Advanced Applications, Japan.

Fauvet, M.C. and Canavaggio, J.F. and Scholl, P. C. (1997) Modeling Histories
in Object DBMS, in Proceedings of 8th international Conference on Database
and Expert Systems Applications (ed. A. Hameurlain & A. Min Tjoa , LNCS
1308), Toulouse.

Gardarin G. (1997) Multimedia Federated Databases on Intranets : Web-Enabling
IRO-DB », in Proceedings of 8th international Conference on Database and
Expert Systems Applications (ed. A. Hameurlain & A. Min Tjoa , LNCS
1308), Toulouse.

Jensen, C.S. and Clifford, J. and Elmasri, R. and Gadia, S. and Hayes, P. and
Jajodia, S. (editors) (1994) A consensus glossary of temporal database
concepts. ACM SIGMOD Record, 23 (1).

Kinny, D. and Georgeff, M. and Bailey J. and Kemp B. D., Ramamohanarao K.
(1995) Active Databases and Agent Systems-A Comparison, Proceedings of the
second Rules in Database SystemsWorkshop, Athens.

Navathe, S. B. and Ahmed, R. (1987) TSQL- A language interface for histiry
Databases », in proceedings of IFIP conference on Temporal Aspects in
Information Systems, Sophia Antipolis.

Snodgrass, R.T., editor (1995) The TSQL2 temporal query language. Kluwer
Academic Publishers.

Widom, J. and Ceri S. (1996) Active Database systems, .Morgan Kaufmann
Publishers.

	Agent-based Manufacturing :a database point of view
	1 INTRODUCTION
	2 ARCHITECTURE OF THE INFORMATION AGENT
	3. A META-DATA MODEL TO SUPPORT THE MANUFACTURINGAGENTREASONING
	4. TIME MODELLING WITH TIME RELATIONAL MODEL (TRM)
	5. EVENT-DRIVEN BEHAVIOUR MODELLING WITH ACTIVERULES
	6. CONCLUSION
	7. REFERENCES

