
On End-to-End Congestion
Avoidance for TCPIIP

Jim Martin
IBM Corporation
PO Box 12195
RTP, NC, USA 27709
919 254 4447
lim2 @ us.ibm.com

Arne Nilsson
North Carolina State University
Box 7914, Raleigh, NC 27695
Raleigh, NC 27695
919 515 5130
nilsson @ ncsu.edu

Abstract
A TCP/IP network utilizes several congestion control schemes: end-to-end
flow control and congestion avoidance, gateway congestion control, and
explicit closed-loop feedback (i.e., source quench). The evolution of TCPIIP
includes enhanced gateway congestion control algorithms (i.e., Random Early
Detect) and a variety of incremental improvements to TCP including selective
acknowledgement and possibly end-to-end congestion avoidance (i.e.,
TCPNegas). We focus on end-to-end congestion avoidance algorithms for
TCP, specifically those algorithms that use change in packet transit times as an
indicator of network congestion. TCPNegas is the most well known
algorithm based on this form of congestion control. We fmd that TCPNegas
does increase throughput primarily by avoiding time-outs. However its
assessment of congestion is prone to significant error which can lead to
increased queue levels at the bottleneck link. By studying TCPNegas and
other algorithms, our goal is to understand the issues associated with end-to­
end congestion avoidance schemes that monitor change in packet delays.

This paper is organized as follows. First we introduce end-to-end congestion
avoidance. Next, using simulation, we explore the various issues and
challenges associated with end-to-end congestion avoidance by demonstrating
and analyzing several end-to-end congestion avoidance algorithms. We
conclude with a discussion of key issues associated with end-to-end congestion
avoidance and identify future work.

Keywords
Congestion control, TCP, TCPNegas, congestion avoidance

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 1998
H. R. van As (ed.), High Performance Networking

10.1007/978-0-387-35388-3_42

http://dx.doi.org/10.1007/978-0-387-35388-3_42

536

INTRODUCTION

A congestion control scheme can be classified as either reactive or preventive
(the latter is also known as congestion avoidance). Additionally, some control
schemes require feedback while others do not. A reactive scheme inherently is
closed-loop while preventive schemes can be either open or closed-loop.
Open-loop control is inherently preventive, employing admittance control
and/or traffic policing to prevent congestion from occurring. Closed-loop
congestion avoidance, on the other hand, is designed to keep the network at the
point of maximum power (i.e., the point where the ratio of throughput versus
delay is highest).

The feedback in a closed-loop system is either implicit or explicit. Explicit
feedback involves an explicit send of feedback information. Explicit feedback
can be characterized by the location of the source of the feedback (i.e., referred
to as the level of control), by the mechanism that transfers the feedback to the
source and by the actual content of the feedback. Various forms of explicit
feedback exist in the Internet today such as TCP's end-to-end flow control [9],
source quench [11] and explicit RED [5,6,7].

Unlike explicit feedback, implicit feedback does not involve an explicit "send"
or transmission of feedback signals. The implicit feedback (based on time­
out or packet loss events) can be detected by either the sender or the receiver.
For example, TCP's slow-start and congestion avoidance algorithms rely on
packet loss as an implicit indication of network congestion [15]. When the
source of the implicit indication is the network, the scheme is typically
classified as a form of gateway congestion control. 1

It is also possible to implement congestion avoidance at the endpoints based
on implicit feedback such as changes in packet transit times. The most well
known example of this class of congestion control is TCPNegas [1,2,6].
However there have been other proposals: Wang and Crowcraft's Tri-S and
Dual algorithms [16, 17], Haas's Adaptive Admission Congestion Control
algorithm [8], and IBM's Adaptive Rate-based (ARB) protocol [12]. Of all
of these algorithms, ARB is the most widely deployed as it is the congestion
control scheme used in the latest release of SNA [14].

In this report, we study end-to-end congestion avoidance based on implicit
feedback for TCP/IP networks. In particular, we focus on the effectiveness of

1 TCP congestion avoidance based on a simple drop-tail router packet drop
policy is usually considered to be end-to-end control. If the router participates
more actively in congestion management, (e.g., RED or explicit congestion
indications), then the router augments the base TCP end-to-end congestion
avoidance algorithm with gateway congestion control.

537

three algorithms (TCPNegas, Dual and ARB) that use change in packet delay
as an indication of the level of network congestion. The goal is to identify and
explore the challenges associated with this form of congestion control. We
conclude this paper with a discussion of key issues associated with end-to-end
congestion avoidance and identify future work.

2 ANALYSIS OF END-TO-END CONGESTION A VOIDANCE

In this section, we study the congestion avoidance algorithms used by
TCPNegas, Dual and IBM's ARB protocol. We feel that a study of these
algorithms exposes the key issues. We are interested in two network
environments: first, an environment where the protocol under observation
competes only with similar connections; second, a best-effort IP network
where the scheme under investigation must compete with any IP traffic (i.e.,
from other TCP or UDP connections). To help focus on congestion
avoidance, we use TCPNegas as the base protocol and either exchange or
integrate pieces of the other schemes into TCPN egas. This approach allows
us to understand the tradeoffs of the different congestion detection schemes
without clouding the discussion due to other protocol differences. Our
simulation model is based on the ns simulation (v 1.4) which includes a
TCPNegas model [4].

Figure 1 illustrates the network topology used in the simulations. Roughly
halfofthe simulations use the simple LAN-WAN-LAN involving router's R2
and R3. In this case, the WAN is approximately T1 speed with a propagation
delay of 50ms. The other simulations use the multi-hop environment provided
by routers Rl, R2, R3 and R4. In this case, the bottleneck link is the T1 hop.
The WAN link is approximately T1 speed with a propagation delay of 50ms.
All packets are 1400 bytes. We use a combination of bulk traffic source
models (i.e., ftp traffic) and on/off bursty sources.

Sl S3 ,S9 S5 S7
1Om bps \ 45Mbps, 5ms I 1.5Mbps,50ms I 1 OMbps I

R 1 -----------------------R2 ---------------------------R3------------------- R 4
10mbps I 10 mbps I I 10mbps I

S2 S4 ,SlO S6 S8

Figure 1

TCP-Vegas

The aspect of TCPN egas that is of interest to us is the Congestion A voidance
Mechanism (CAM). CAM monitors throughput, comparing a measured
throughput with an expected throughput. The Throughput_Dif.f is the
difference between an Expected_ Throughput and an Actual_ Throughput. The
Expected_ Throughput is the current window divided by the BaseRTT, where
the latter is the minimum round trip time observed by the connection (which

538

should converge to the uncongested round trip time). As long as the
Expected_ Throughput is accurate, the Throughput_ Diff • BaseRTT (the Difj)
is an estimate for the amount of extra data that the connection has in transit.
Vegas attempts to estimate the amount of extra data and maintain the "right"
amount in the network. By keeping some amount of data queued in the
network, Vegas hopes to keep network utilization high.

: :

• ·-··-··----·--+-----···--·-··-··!---·--···-·····-·· . .

!: f ' r !

" ..
2
x tri TCP ex 'IIRutii:U

" .. --
Figure 2 Figure 3

Figure 2 illustrates three bulk transfer Vegas connections competing over the
Tl WAN hop illustrated in Figure I. All three connections flow from R2 to
R3. The top graph shows the queue level of R2's output queue. The solid line
plots the maximum queue level sampled every .I second time interval and the
dashed line plots the minimum queue level during each sample period. The
router queue depth is 50 packets ensuring that packet loss does not occur.

The three solid curves in the lower graph of Figure 2 plot the throughput
(measured in bytes per second each 1 second) of each connection. The
dashed-dotted line plots the utilization of the bottleneck link. Vegas clearly
utilizes the available bandwidth, however there is a fairness problem. The first
2 connections start at time 0 and converge to uneven shares of available
bandwidth. Once the third connection starts, it obtains a significantly larger
share of bandwidth than the other connections. The behavior is the same if we
add a random delay in the TCP sender in the range of [0,6msf Therefore,
the problem is not a phase effect. Initially, we thought the problem might be
caused by the "no change" state that Vegas tries to reach (i.e., in between the
alpha and beta thresholds). We set the thresholds equal (i.e., set both alpha

2 We modified the ns TCPNegas implementation such that timestamps are
recorded before the send delay. This injects "noise" in the Vegas congestion
assessment. The TCP sender is coded such that if it has multiple packets to
send (i.e., if an Ack causes the cwnd to increase), the random send delay
occurs once prior to the burst. After the delay expires, the sender is allowed to
send all packets in the burst instantaneously.

539

and beta to a value of 3) to eliminate occurrences of a "no change" CAM
decision. This led to similar results as in Figure 2.

There are actually two problems that explain the behavior observed in Figure
2. For static networks (i.e., a network that consists of constant Vegas senders
that reach some steady state), it is likely that the system will converge to an
unfair state. Once in this state, the increase/decrease algorithm is not sufficient
to move the system to a fair state. The second problem is that once the system
enters steady state, the existing connections have pushed the network such that
there is some amount of sustained queueing. Late starting connections can not
detect the congestion and instead will add to the existing congestion forcing
the existing connections to reduce their send rates. Therefore, in a congested
system that has reached steady state, late starting connections will obtain an
unfairly large share of available bandwidth.

A more dynamic network environment will reduce the probability of the
system entering a steady state. Figure 3 illustrates the same scenario as in
Figure 2 except that connections 2 and 3 are configured to use an on/off bursty
traffic source rather than an ftp source. The bursty sources have mean rates
on the order of 100000 bps. The lower curve shows that the two bursty
connections (the two light lines) obtain bandwidth from connection 1 (the dark
line) in a fair manner. The dashed-dotted line illustrates that Vegas is able to
utilize on the order of 90% of the available bandwidth. The upper plot of
Figure 3 shows the minimum queue level at the bottleneck link (the light
dashed line). The"+" marks represent the Vegas sampled queue level (i.e., the
Diff).

In the lightly loaded network illustrated by Figure 3, CAM responds to
congestion well although it does not track network congestion precisely. As
described earlier, Vegas detects congestion by looking for changes in
throughputs. The Actual_Throughput is based on the number of packets
transmitted during the past RTT and on the actual RTT sample. The original
Vegas proposal suggested that one packet each RTT be selected to probe for
congestion. The Vegas implementation based on NetBSD actually uses the
average RTT's for all packets (since Vegas times all packets) that were
acknowledged during a measurement interval [1]. The idea being to filter
noise associated with individual RTT samples.

In the best case, an end-to-end delay measurement algorithm tracks queueing
at the bottleneck link caused by the aggregate traffic from all sources. In the
worst case, the algorithm tracks queueing caused only by the connection itself.
The following analysis shows that Vegas does not accurately track neither
network level queueing nor queueing caused by the Vegas sender. In certain
situations, the algorithm's congestion assessment effectively becomes
meaningless as the Diffvalue converges to a fixed window value. The latter
case explains previous analysis results of Vegas that conclude that during
periods of heavy congestion, the scheme digresses to TCP/Reno behavior[2].

First, we show a simple example (a single Vegas connection with no
competition) where CAM accurately tracks the queue level at the bottleneck

540

link. Using the network shown in Figure 2 as an example, assume that a single
Vegas always has 1400 byte packets available to send. At the point where the
T1 link is fully utilized, the Vegas cwnd is 13.4 packets (i.e., a bandwidth­
delay product of 13.4 packets). The expected throughput is naturally 1.5Mbps
and the actual throughput should be the same. The next RTT, the cwnd will
be 14.4. The expected throughput will be just over 1612800 bps. Assuming
exactly 1 packet experienced a waiting time of a packet transmission time at
the T1 link, the rtt should be .1 + 1400*811.5Mbps or .1 075 seconds. The
Actual_throughput will therefore be 14.4 packets I .1075 seconds or roughly
1.5 Mbps. Multiplying the difference in throughput by the BaseRTT
corresponds to a Diffin packets of roughly 1400 bytes or 1 packet.

When Vegas competes with a low to moderate amount of traffic, the
following helps explain the behavior of the Dif! samples as illustrated by the
upper curve in Figure 3. The Dif! value in bytes can be written as:

Dif! = (WIBaseRtt- W'IRtt) * BaseRtt

where W is the current window, W' is the amount of data sent during the
measurement period, and Rtt is the current RTT sample. As long as the sender
has data to send, no packets are lost and the receiver ACKs each packet, W'
will be the current window, W. Therefore:

Dif! = W- W * BaseRtt I Rtt
Dif! = W(I- BaseRtt I Rtt)

Clearly, Dif! is 0 when BaseRtt = Rtt, and is positive when Rtt > BaseRtt.
Also note that the Rtt = BaseRtt + Qt where Qt reflects queueing delays.
The upper bound of(J-BaseRttiRtt) is 1 which means that the largest Dif!value
that can ever be observed is the current window size. The (I- BaseRtttiRtt)
term essentially grows linearly with increasing Rtt , however the W will also
decrease in response to a positive Diff. As the Rtt increases, the rate of
increase of the Dif! is dampened as W decreases. This explains the behavior
of the Dif! curve in Figure 4 As the queue builds, the term (I -BaseRtt/Rtt)
increases however the Dif! value might actually decrease as W decreases in
response to the congestion. The scheme is fair in the sense that a connection
with a high bandwidth will react more aggressively to increases in Rtt's.
However, as the following discussion will show, the scheme loses its
effectiveness when operating in periods of heavy congestion.

Vegas does not decrease the window if Dif! < = beta . The point where the
algorithm stops decreasing the window is:

Wmin (I - BaseRttiRtt) =beta where Wmin is the lowest window
value that is to be used.

Wmin = beta I (I - BaseRttiRtt)

For large Rtt's with respect to BaseRtt, the Wmin approaches beta. We will
see that in heavily congested networks (i.e., networks where there is a large
amount of sustained queueing), the Vegas algorithm effectively holds the
sender to a fairly constant window of beta packets (3 for our simulations). We

541

refer to this as the overload state. Given this, the throughput of Vegas (in
packets per second) in heavily congested networks can actually be predicted as
follows:

Vegas_throughput =beta I (BaseRtt +(Qavg * MSS * 8) /Cbl)

where Qavg is the average queue length sampled each RTT, the MSS is the
maximum segment size and the Cbl is the bottleneck link capacity.

Figure 4 illustrates the results of a simulation run based on the multi-hop
network shown in Figure l with 3 ftp TCPNegas connections (Sl, S2 and S3
all to R4) compete with 3 on/off bursty TCPNegas connections (S4,S9 and
SlO to R3). The bottleneck router can buffer up to 50 packets. The simulation
is intended to capture the behavior of a heavily congested network. The
minimum and maximum queue levels of the T1 link shown in the upper plot
(the dark nd the dotted line respectively) demonstrates that CAM is not able to
prevent sustained congestion from occurring. The "+" marks plot the Diff
samples from the first Vegas connection. The lower plot shows the three ftp
Vegas connection's throughputs (we do not show the throughputs of the bursty
connections, only the effective utilization). The throughput curves illustrate
the bias towards late starting connections (connection 1 gets a lower share of
available bandwidth once the system converges). If we start a fourth ftp
connection at time 20 seconds, it would obtain a much larger share of
bandwidth than any of the other connections.

The connections with accurate BaseRTT values (i.e., the two connections that
start at time 0 and 2 respectively in Figure 4) converge to a window of about 4
packets with a sustained throughput close to the predicted throughput of a
Vegas connection that has reached the overload state. Late starting
connections might not reach the overload state since they will be much more
tolerant of congestion (since the BaseRTT will include the sustained
congestion levels). If too many Vegas connections are in the overload state at
the same time, packet loss will occur and the behavior of each connection will
digress to TCP/Reno (i.e., oscillating window values). Figure 5 shows a more
extreme environment than that depicted in Figure 4. The router buffer capacity
is reduced to 20 packets and we add two additional ftp Vegas connections (that
start at time 0 and 2 seconds respectively). The packet loss rate is quite high,
about 6.2%. Each Vegas connection experiences time-outs (in the range of 2
to 15) contributing to cwnd oscillations. This demonstrates the tendency for
Vegas to digress to Reno behavior in high packet loss environments.

In the analysis presented so far, we have observed Vegas in an environment
where it competes only with other Vegas connections. It is also interesting to
see how Vegas behaves when competing against other TCP/Reno connections.
Figure 6 illustrates a simulation with one Vegas connection (the first
connection that starts at time 0) and two TCP/Reno connections that start at
time 5 and 70 seconds respectively. All connections are configured with ftp
traffic sources. The simulated network involves the T1 hop between R2 and
R3 as illustrated in Figure 1. The lower curve shows synchronized behavior
similar to that seen in Figure 2. The Vegas connection increases its
throughput until time 2 seconds when the second connection starts. The

542

second connection (i.e., the Reno connection) reaches its maximum window
(36 packets) causing additional sustained queueing that forces the Vegas
connection to a state of low throughput. The system remains locked in this
state until the second TCP/Reno connection forces packet loss after time 70.
Note that after time 70 the system reaches a new synchronized state. However,
since the queue levels stay consistently high, the Vegas connection is never
able to obtain its fair share.

a 20 -· -----·: ----·--: ' :-.. '
00

0 10 20 30 40 50

·'W <15== g ' : : : !
1 -. : : : : . . : : :

·-· --- -··: . -· ' . -
0 • . : '
0 10 20 30 40 50

Tme (seconds)

Figure 4

. . . '

40 -----+--+---+--!----! : : : :
C/} i ; j 1
o20 ',)-\ 11'7'1 ! . " •t .,, . . 'I'" . ' ·. f"

J r : : j : :
' : : : :

0 w 20 30 40

. .

0
0

Figure 5

Figure 7 illustrates a more realistic simulation than the previous. Based on the
network shown in Figure 1, a Vegas ftp connection from S1 to R4 starts at
time 0. Two on/off bursty Reno sources flow from S3 and S4 to R3 that
produce bursty cross traffic. The solid dark line in the lower curve illustrates
the Vegas throughput and the lighter lines represent the throughput of the two
on/off connections. The behavior is similar to the earlier Vegas case where
we concluded that CAM is effective at tracking and controlling congestion in a
mildy congested network. If we do the same simulation except use all Reno
connections, the performance of the ftp connection is similar to the Vegas run.
Both achieve roughly the same throughput, neither experience time-outs. One
significant difference, however is that the queue levels are more controlled in
the Vegas case than in the all Reno simulation.

Figure 8 illustrates how an ftp Vegas connection (the dark link in lower curve)
competes with two ftp Reno connections and 3 bursty Reno. The behavior is
as observed in the USC analysis where Reno steals bandwidth from Vegas in
head-to-head competition simply because Vegas is more sensitive to
congestion than Reno[l]. Confirming our earlier analysis, the Vegas
connection is essentially limited to the Wmin of 3 which, assuming an average
queue level of 35 packets (by inspection from Figure 8), should lead to a
throughput of 93,000 bps. Based on the Vegas throughput curve we see a
Vegas throughput of roughly 120,000 bps.

543

Figure 6 Figure 7

•• t 1.5

i 1 -; : ; ' :-. : : : . . -r-
0 . . .
0 5 10 15 20 25 JO

Tme(seeullll)

Figure 8 Figure 9

Dual

Dual offers a congestion detection scheme that monitors changes in measured
round trip times. It tracks the minimum observed RTI (RTTmin) and the
maximum observed RTI (RTTmax) over the lifetime of the connection. In
most network environments, over time these variables converge to the static
round trip delay due to propagation delays and to the variable delay
representing queueing delay respectively. Each time TCP performs its round
trip time calculation, the sampled RTT is compared with a delay threshold
defmed as:

Di = (1-a/pha)Dmin +alpha* Dmax.

544

Dual was designed to extend TCP's congestion avoidance and slow start
algorithms with the goal of reducing the oscillations caused by slow start and
congestion avoidance. The change to TCP to implement Dual is trivial. Slow
start and congestion avoidance remain unchanged except every other round
trip time, the following comparison is made:

/f(rtt > Di)
Cwnd -=min(cwnd,wnd)/8;

We have simulated a modified version of the Dual algorithm essentially
replacing Vegas's CAM with Dual's congestion detection scheme. More
specifically we modified Vegas as follows to implement Dual:

• Continue to time each packet and to aggressively retransmit packets.
However, the algorithm will not track changes in throughput and react to
decreases.

• The increase algorithm of TCP/Dual is essentially the same as that
used by Vegas. We continue to do exponential growth only every other
round trip time during slow start. However the decrease algorithms differ.
While Vegas decreases the window linearly if the congestion threshold is
exceeded, TCP/Dual decreases the window by 12.5% if a round trip time
exceeds the Di threshold.

• The Dual algorithm indicates that when a timeout occurs, we should
reset the Dmin and Dmax values. While this might be useful to handle
path switch situations, we chose not to implement this.

Figure 9 shows the behavior when three Dual connections compete (using the
Tl network from Figure 1). Due to sustained congestion, late starting
connections will have an incorrect threshold causing the connection to act
more aggressively than connections with accurate threshold values. By the
time the third connection starts, the connection is not able to differentiate
between propagation delay and queueing delay. If we do the same simulation,
however reduce the router buffer size to 1 0 packets, the throughput of the
three connections converges quickly, although several packets are dropped as
the system converges. The difference is that Dual's 12.5% rate reduction is
sufficient to clear a small amount of queueing (less than 10 packets). In the
case pictured in Figure 9, a 12.5% rate reduction is not sufficient to clear the
queue. The algorithm requires the queue levels to on average remain close to 0
so that late starting connections can obtain an accurate Dmin value.

Figure 10 shows three Dual connections (1 ftp, 2 bursty) using the multi-hop
network between routers R1 and R4 in Figure I. The top curve shows only the
minimum queue level sampled every .02 seconds. The results show that Dual
utilizes the bandwidth but has sustained congestion. To test the sensitivity of
the algorithm to noisy RTT samples, we configured a random send delay in
the range [0-2ms]. There was no difference in behavior. The reason is
straightforward: Dual's threshold is on the order the buffer range. At
16Mbps, a 2 ms delay in the RTT sample corresponds to roughly 3 packets. It
would take a much larger delay variation to be detected by Dual. In fact, it is

545

not until we increase the random send delay range to [0-.0lseconds] before
performance deteriorates as Dual reacts prematurely to the noisy samples.

Figure 11 shows I Dual connection (the dark line in the lower curve)
competing with 2 Reno connections (the two light lines that start at time 5 and
10 respectively). Clearly the Reno connections are more aggressive. The
system falls into a synchronized state such that the Reno connections utilize
the majority of bandwidth. The problem is that the Dual threshold needs to be
adjusted (i.e., increased) to compete fairly with Reno.

Actual Queue size
100 --··--····------·---·--··--··------ - ---- -------------------------------

.i_ ' I '.:_· , ' "·· ,: I :!: • / . li : , , 'i" /: / :I /1 , , - . 1140 --1---V' --r•J:.--.t--' '--l, .. , .. r-•-l·-v···-• ,,. -,- · o • · ill 1 '· r 11 d 11:_. • ,1 '· ' •I i 1 r., i I , 10 ;' 111 i I

so ! ' , ' . , ,
0 ,.J,·; \• i,\, f ; i I l! : nl· l _______ ·r--·---·T"' ----·-t·---·-----·

0 5 10 15 20 0 20 40 60 80 100
x 106 TCP CoMection Throughput X 10s TCP Cx

: : ,2 ;-·'"" ·-·- :-·- ·- ··:-· - ·-· ,

! . ·:·· , / ·, l i , 1:' . .. :: 1 ..• ·.·.-_ .. ___ -__ ::_ J··-' ·-·-····-·'_,;_-.-.. -...... ' .. ··.' •... ·_-· __ ,:_ :.· ...
Olc:o;o1 .. 1\····· ·····r:_ i:, ···-·-···-··· · ·;,:·····-- \, -- _ ,_ .. . - - - -

G .. _/ •\(" ., .•
; r .. .•

0 5 Time 15 20 0
0 20 40 60

rme Cseeondsl
80 100

Figure 10 Figure II

ARB

The Adaptive Rate-based protocol is an end-to-end congestion avoidance
scheme used in ffiM's Rapid Transport Protocol (RTP) [14]. ARB is a closed­
loop, preventive, rate-based congestion control scheme. ARB employs a
distributed algorithm that is implemented at the endpoints of an RTP
connection. Each endpoint consists of an ARB sender and an ARB receiver.
The ARB sender periodically queries the receiver by sending a rate request to
the ARB receiver who responds with a rate reply message. The time between
successive transmissions of rate request packets is defmed as a
measurement_interval. The measurement_interva/ is typically on the order of
a round trip time although to minimize processing overhead, RTP products
typically have a minimum measurement _interval on the order of .I second.

The ARB receiver monitors changes in the delay experienced by sequential
rate request packets. It maintains its own version of the time between
successive rate request packet arrivals (the receivers_measurement_interval)
and compares to the sender's measurement_interval (which are contained in
the rate request packets). A positive difference corresponds to additional delay
experienced by the probe packet. Likewise, a negative delay corresponds to
less waiting time experienced by the probe as compared with the previous
probe packet. ARB assumes that trends in the delay change values (i.e., a

546

running total of delay change samples) are reflective of the current level of
congestion in the one-way path between the sender and the receiver. For
example, if the total_ delay is 0, then packets that arrive at the receiver have
not experienced congestion. If the total_ delay is 50 mseconds, then each
packet would have experienced 50 mseconds of queueing delay.

The receiver translates the total_ delay into an estimate of the amount of
queueing at the bottleneck link. In an SNA network, the receiver learns the
slowest link speed in the path via the RTP connection setup protocol (known
as the max_bandwidth). The queueing_estimate is simply the total_delay
divided by the max_bandwidth (this gives a total queueing in bytes, RTP
converts this into a number of 1000 byte packets). The fundamental control
decision behind ARB is made by the receiver based on a threshold of allowed
queueing. The sender is allowed to increase its rate as long as the
queueing_ estimate is less than 1 packet. If the queueing_ estimate is between 1
and 10 packets, the sender is instructed to restrain (i.e., not to change its
sending rate). If the queueing_estimate is between 10 and 40 packets, the
sender is instructed to reduce its send rate. Finally, if the queueing_ estimate
exceeds 40 packets, ARB assumes that this is noise and tells the sender to
restrain. The sender adjusts its send rate based on information received in the
rate reply message. Refer to [12] for a detailed description of the ARB
algorithm.

In the remainder of this section, we present and study a congestion avoidance
scheme that extends TCP with the essence of ARB. We are most interested in
the ARB's congestion detection scheme and in the receiver's control decision
logic. We leave the study of rate control for future work. The key design
points of TCP/Arb include the following:

• Keep all aspects of TCP/Reno and TCPNegas except remove CAM
(i.e., we still want Vegas to time all packets and to remain more aggressive
than Reno with retransmission). Therefore slow start and congestion
avoidance are preserved.

• The sender periodically forwards a probe packet (using TCP options)
that contains a measurement request signal along with the
senders_ measurement _interval (which is simply the amount of time since
the sender last issues a measurement request packet).

• The receiver responds to measurement request packets from the sender
by calculating the receivers_measurement_interval and obtains a delay
value (by subtracting the receivers and senders measurement intervals).
The receiver maintains the commulative delay in a variable called
total_ delay. The receiver also monitors the observed throughput
(throughput= byte_countlreceivers_measurement_interval) and maintains
the highest throughput observed (max_bandwidth). The receiver
estimates the level of queueing (queueing_estimate = total_delay I
max_bandwidth). The receiver inserts a rate_command message in the
Ack (again using TCP options). The command (RATEINCREASE,
RA TEDECREASE or RESTRAIN) is based on the receiver's
queueing_ estimate with respect to the ARB thresholds. Therefore, if the

547

receiver's queueing_estimate is less than or equal to I packet, the receiver
issues a RATEINCREASE. If the queueing_estimate is between I and IO
packets, the receiver issues a RESTRAIN. An RTP receiver will instruct
the sender to RATEDECREASE when the queueing_delay exceeds IO
packets.

• When the sender receives a rate_command of RATEINCREASE, the
sender increases as normal (i.e., by incrementing the cwnd as required
during either slow start or congestion avoidance). The exception is
during slow start, the sender increases the send rate exponentially every
other round trip time (as done in Vegas). If the sender receives a
RA TEDECREASE command, the sender reduces its cwnd by 50%. If the
sender is in slow start when it receives a RA TEDECREASE command, it
moves to congestion avoidance by setting the ssthresh to 2 (TCPNegas
also does this).

• Probe packets are not issued during periods of recovery. Therefore,
during periods of heavy packet loss, the scheme digresses to base TCP.

Figure I2 illustrates 2 TCP/Arb connections competing for bandwidth using
the Tl hop between routers R2 and R3 illustrated in Figure I. The upper curve
plots the maximum queue level (dark dashed line), the minimum queue level
(light dashed line) and the second connection's queueing_estimate (the "+"
marks). Notice the the connection underestimates the queueing level. The
lower curve of the figure illustrates that the second connection (the light line
that starts at 2 seconds) obtains the majority of the bandwidth. Because the
second connection underestimates queueing, it obtains a larger share of
available bandwidth.

There are two factors that contribute to connection two's queueing_estimate
error. First, the connection begins during a period of sustained congestion.
The minimum sustained congestion experienced by the second connection is
on the order of 3 packets. The connection can not detect the queue buildup
which contributes the majority of the queueing_ estimate error.

The second factor that contributes to the error is due to an inaccurate
max_bandwidth estimate. The original ARB converts the total_delay to an
estimate of the amount of data queued in the path based on .. the
max_bandwidth. Ideally, the max_bandwidth is reflective of the bottleneck
link speed. The TCP/Arb receiver monitors observed throughput roughly each
round trip time in an attempt to estimate the max_bandwidth. Several factors
combine to make the connection tend to underestimate the max bandwidth.
Clearly, the max_bandwidth is affected by the connection's actual sending
rate. If the sender can not fill the one-way pipe (e.g., if the maximum window
size is too low or if the source does not have enough data to keep the sender
busy) the max_bandwidth will be low. Additionally, if the sender is paced by
the congestion control then the max_ bandwidth will tend to measure the
connection's available bandwidth. However, due to the "ack clumping"
phenomenon, TCP is actually quite bursty. For example, assume that a TCP
connection has achieved a sustained throughput of Yz the bottleneck link speed.

548

The connection can actually be modeled as an on/off source, bursting at some
high rate (determined by the ack return rate) for a certain duration (depending
on the cwnd) and then "off' as the bottleneck link is used by other connections
[13]. Once the burst is large enough to fill the one-way pipe, the connection
will be able to get an accurate max_bandwidth estimate. Due to slow start's
blind exponential growth, the typical connection (as long as it is not window
constrained) will be able to get a fairly accurate estimate of the
max bandwidth.3

Figure 13 illustrates the max_bandwidth for the two connections shown in
figure 12. The one-way pipe size is about 7 packets and if filled by the first
connection in just over 1 second. At about time 3.3 seconds, Figure 13
indicates the queue level increases by 7 packets for a total congestion level of
roughly 10 packets. However, connection 2 only detects an additional 2
packets of queueing. It actually observes the correct increase in total_ delay.
However, as can be seen in Figure 14, the max_bandwidth at this time is still
low which leads to more error (in addition to the error caused by the sustained
congestion). Once in steady state (after time 6 seconds), there are roughly 6-7
packets of sustained queueing. The second connection's queueing_ estimate
observes 2-3. Most of the error is caused by the sustained queueing, however
an additional 1 packet error results from the second connection's
max_bandwidth being off by roughly 25%.

Figure 14 shows 1 ftp TCP/Arb connection (the dark line) competing with 2
bursty TCP/ Arb connections over the single hop T1 network shown in Figure
1. Comparing Figure 14 to the equivalent Vegas simulation run (Figure 3), the
throughput of the TCP/ Arb and Vegas ftp connections are is virtually
identical. The difference lies in the queue levels as TCP/ Arb controls the
queue levels more effectively than Vegas.

Figures 15 illustrates how TCP/Arb behaves when competing with TCP/Reno
connections. Figure 15 shows 1 ftp TCP-Arb connection (the dark line)
compete with 2 ftp TCP/Reno connections. Given that TCP pushes the
network well beyond ARB's threshold level, competing TCP connections
generally "beat down" TCP/Arb connections. Because TCP/Arb accurately
tracks queueing, it obtains only a fraction of available bandwidth. It is
possible to tune the ARB region thresholds such that TCP/Arb connections
compete with Reno connections. The problem is that the proper thresholds
depend primarily on the queueing behavior at the bottleneck link which clearly
can not be statically predicted.

3 A further improvement is to use packet pair and have the receiver monitor the
difference between arrival times of successive packets [I 0].

: : :

40 ··---·--···t ..
! 1 . 1
0 20 --··-·-·hj-···:·t-.. ··-··t·-.. ···-.. t·-·--·

0!>!.1
0 2 4 8 10

2x10'

2 4 6 10
Tme(-.ds)

0
0

Figure 12

Bcittleneck lilt CMue Siz!

10
Tme(-.ds)

Figure 14

3 CONCLUSIONS

lO

lO

'0 c
0

" "
"

549

105 meaSU'ed

1.5 ---· +·-·-----·-! [r---:--1---
: r ! .

·--- t .. ··-·x ----·---·-:-- ·-------------------
I

i I ! . '

0.5 ... --t ..

01/
0 2 4 6 10

T me Cseeoodsl

Figure 13

0 20 40 60 ., 100

xlr
2 .· ·· -'

0
0

Figure 15

Ill 100

Based on the discussion and analysis presented in this report, we conclude
with the following observations

550

• Congestion avoidance works properly only if the network does not
suffer from sustained congestion. It is unclear how prevalent sustained
congestion actually is in the Internet. However, we would like to
believe that such conditions are the exception rather than the norm

• The scheme should track bottleneck queue behavior as accurately
as possible. Changes in delay are the purest indicator of queue
behavior. Converting a commulative delay into an estimate of queueing
at the bottleneck link adds error into the control decisions as it must be
based on an estimate of the bottleneck link speed.

• Path switches in the Internet are fairly common. Clearly, an
algorithm such as TCPNegas that records the minimum round trip time
measurement as a baseline can lead to disasterous results. One solution
might be to deduce a path switch (via a burst of packet loss) and to
reset the baseline round trip time measurement. However, clearly, path
switches are problematic for end-to-end control schemes.

• Although not we did not show the simulations, we find that a one­
way congestion estimate is superior to a scheme that measures
congestion in both directions. For example if the return path in a
TCPNegas connection has significantly more delay (due to
congestion, different propagation delay or different link speeds), it will
not fully utilize available bandwidth in the forward direction. A scheme
like TCP/Arb that measures delay in a one-way direction eliminates the
error.

• We have not shown the corresponding analysis, however we fmd
that noise in the delay samples can cause sometimes significant error in
the control decisions. Therefore the congestion samples must be
filtered in some manner, or more likely, the threshold (i.e., the point at
which the controller decides to react to congestion) must be adaptive to
support changing conditions. Crucial issues involved with finding the
optimal threshold point include:

• The scheme must learn the noise floor. The goal is to find the
minimum threshold such that the queue levels are contained.
Clearly this conflicts with the goal of high link utilizations.

• When competing against TCP (or other greedy protocols), a
congestion avoidance scheme needs to learn th'e upper bound for the
threshold.

• More frequent feedback indications can be used to converge
more quickly to the optimal threshold level.

In this paper we have shown that in certain environments and conditions, an
end-to-end congestion avoidance algorithm based on packet transit delay
measurements can be beneficial by avoiding packet loss and stabilizing
response times. We have also identified several factors that can cause these
algorithms to not work correctly. Unfortunately, today's best effort Internet
can not guarantee that these factors such as path switches or sustained
congestion will not occur.

551

4 REFERENCES

1. J. Ahn, P. Danzig, Z. Liu, L. Yan, "Evaluation ofTCP Vegas: Emulation
and Experiment", ACM SIGCOMM95.

2. 0. Ait-Hellal, E. Allman, "Analysis ofTCP-Vegas and TCP-Reno", ICC,
June 1997.

3. L. Brakmo, S. O'Malley, L. Peterson, "TCP Vegas: New Techniques for
Congestion Detection and Avoidance", ACM SIGCOMM94, 1994.

4. K. Fall, S. Floyd, S. McCanne, network simulation ns, "http://www­
mash.cs.berkeley.edu/ns/ns.html, 1996.

5. S. Floyd, "TCP and Explicit Congestion Notification", ACM Computer
Communications Review, October 1994.

6. S. Floyd, K. Ramakrshnan, "A Proposal to add Explicit Congestion
Notification (ECN) to Ipv6 and to TCP", Internet Draft, Nov 1997, <draft­
kksjf-ecn-OO.txt>.

7. S. Floyd, V. Jacobson, "Random Early Detection Gateways for
Congestion Avoidance", IEEE/ACM Transactions on Networking, August
1993.

8. Z. Haas, "Adaptive Admission Control", ACM SIGCOMM9l1, 1991.
9. V. Jacobson, "Congestion Avoidance and Control", ACM SIGCOMM88,

1988.
10. S. Keshav, "Packet-Pair Flow Control",

http:/ /www.cs.cornell.edu/skeshav/doc/94/2-17 .ps.
11. A. Mankin, K. Ramakrishnan, "Gateway Congestion Control Survey" ,

RFC 1254, 1991.
12. J. Martin, A. Nilsson, "Congestion Control in HPR", IEEE

GLOBECOM97.
13. J. Martin, et. Al., "A Comparison of TCP/Reno and RTP Transport

Protocols", IBM Technical Report TR-29.2337.
14. J. Nilausen, "APPN Networks", Wiley 1994.
15. R. Stevens, TCP/IP Illustrated, Volume 1, Addison-Wesley, 1994.
16. Z. Wang, J. Crowcroft, "A New Congestion Control Scheme: Slow-start

and Search (Tri-S), ACM Computer Communication Review, V21 #1,
January 1991.

17. Z. Wang, J. Crowcroft, "Eliminating Periodic Packet Losses in the 4.3-
Tahoe BSD TCP Congestion Control Algorithm", ACM Computer
Communication Review, April 1992.

5 BIOGRAPHY

Jim Martin has been a software developer for IBM for the last 7 years. He is
currently a PhD student at North Carolina State University. His research has
focused on congestion control. Specifically, he is researching transport
protocols with respect to congestion control for the Internet.

	On End-to-End CongestionAvoidance for TCPIIP
	1 INTRODUCTION
	2 ANALYSIS OF END-TO-END CONGESTION A VOIDANCE
	3 CONCLUSIONS
	4 REFERENCES
	5 BIOGRAPHY

