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Abstract 
A TCP/IP network utilizes several congestion control schemes: end-to-end 
flow control and congestion avoidance, gateway congestion control, and 
explicit closed-loop feedback (i.e., source quench). The evolution of TCPIIP 
includes enhanced gateway congestion control algorithms (i.e., Random Early 
Detect) and a variety of incremental improvements to TCP including selective 
acknowledgement and possibly end-to-end congestion avoidance (i.e., 
TCPNegas). We focus on end-to-end congestion avoidance algorithms for 
TCP, specifically those algorithms that use change in packet transit times as an 
indicator of network congestion. TCPNegas is the most well known 
algorithm based on this form of congestion control. We fmd that TCPNegas 
does increase throughput primarily by avoiding time-outs. However its 
assessment of congestion is prone to significant error which can lead to 
increased queue levels at the bottleneck link. By studying TCPNegas and 
other algorithms, our goal is to understand the issues associated with end-to­
end congestion avoidance schemes that monitor change in packet delays. 

This paper is organized as follows. First we introduce end-to-end congestion 
avoidance. Next, using simulation, we explore the various issues and 
challenges associated with end-to-end congestion avoidance by demonstrating 
and analyzing several end-to-end congestion avoidance algorithms. We 
conclude with a discussion of key issues associated with end-to-end congestion 
avoidance and identify future work. 
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INTRODUCTION 

A congestion control scheme can be classified as either reactive or preventive 
(the latter is also known as congestion avoidance). Additionally, some control 
schemes require feedback while others do not. A reactive scheme inherently is 
closed-loop while preventive schemes can be either open or closed-loop. 
Open-loop control is inherently preventive, employing admittance control 
and/or traffic policing to prevent congestion from occurring. Closed-loop 
congestion avoidance, on the other hand, is designed to keep the network at the 
point of maximum power (i.e., the point where the ratio of throughput versus 
delay is highest). 

The feedback in a closed-loop system is either implicit or explicit. Explicit 
feedback involves an explicit send of feedback information. Explicit feedback 
can be characterized by the location of the source of the feedback (i.e., referred 
to as the level of control), by the mechanism that transfers the feedback to the 
source and by the actual content of the feedback. Various forms of explicit 
feedback exist in the Internet today such as TCP's end-to-end flow control [9], 
source quench [11] and explicit RED [5,6,7]. 

Unlike explicit feedback, implicit feedback does not involve an explicit "send" 
or transmission of feedback signals. The implicit feedback (based on time­
out or packet loss events) can be detected by either the sender or the receiver. 
For example, TCP's slow-start and congestion avoidance algorithms rely on 
packet loss as an implicit indication of network congestion [15]. When the 
source of the implicit indication is the network, the scheme is typically 
classified as a form of gateway congestion control. 1 

It is also possible to implement congestion avoidance at the endpoints based 
on implicit feedback such as changes in packet transit times. The most well 
known example of this class of congestion control is TCPNegas [1,2,6]. 
However there have been other proposals: Wang and Crowcraft's Tri-S and 
Dual algorithms [16, 17], Haas's Adaptive Admission Congestion Control 
algorithm [8], and IBM's Adaptive Rate-based (ARB) protocol [12]. Of all 
of these algorithms, ARB is the most widely deployed as it is the congestion 
control scheme used in the latest release of SNA [14]. 

In this report, we study end-to-end congestion avoidance based on implicit 
feedback for TCP/IP networks. In particular, we focus on the effectiveness of 

1 TCP congestion avoidance based on a simple drop-tail router packet drop 
policy is usually considered to be end-to-end control. If the router participates 
more actively in congestion management, (e.g., RED or explicit congestion 
indications), then the router augments the base TCP end-to-end congestion 
avoidance algorithm with gateway congestion control. 
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three algorithms (TCPNegas, Dual and ARB) that use change in packet delay 
as an indication of the level of network congestion. The goal is to identify and 
explore the challenges associated with this form of congestion control. We 
conclude this paper with a discussion of key issues associated with end-to-end 
congestion avoidance and identify future work. 

2 ANALYSIS OF END-TO-END CONGESTION A VOIDANCE 

In this section, we study the congestion avoidance algorithms used by 
TCPNegas, Dual and IBM's ARB protocol. We feel that a study of these 
algorithms exposes the key issues. We are interested in two network 
environments: first, an environment where the protocol under observation 
competes only with similar connections; second, a best-effort IP network 
where the scheme under investigation must compete with any IP traffic (i.e., 
from other TCP or UDP connections). To help focus on congestion 
avoidance, we use TCPNegas as the base protocol and either exchange or 
integrate pieces of the other schemes into TCPN egas. This approach allows 
us to understand the tradeoffs of the different congestion detection schemes 
without clouding the discussion due to other protocol differences. Our 
simulation model is based on the ns simulation (v 1.4) which includes a 
TCPNegas model [4]. 

Figure 1 illustrates the network topology used in the simulations. Roughly 
halfofthe simulations use the simple LAN-WAN-LAN involving router's R2 
and R3. In this case, the WAN is approximately T1 speed with a propagation 
delay of 50ms. The other simulations use the multi-hop environment provided 
by routers Rl, R2, R3 and R4. In this case, the bottleneck link is the T1 hop. 
The WAN link is approximately T1 speed with a propagation delay of 50ms. 
All packets are 1400 bytes. We use a combination of bulk traffic source 
models (i.e., ftp traffic) and on/off bursty sources. 

Sl S3 ,S9 S5 S7 
1Om bps \ 45Mbps, 5ms I 1.5Mbps,50ms I 1 OMbps I 

R 1 -----------------------R2 ---------------------------R3------------------- R 4 
10mbps I 10 mbps I I 10mbps I 

S2 S4 ,SlO S6 S8 

Figure 1 

TCP-Vegas 

The aspect of TCPN egas that is of interest to us is the Congestion A voidance 
Mechanism (CAM). CAM monitors throughput, comparing a measured 
throughput with an expected throughput. The Throughput_Dif.f is the 
difference between an Expected_ Throughput and an Actual_ Throughput. The 
Expected_ Throughput is the current window divided by the BaseRTT, where 
the latter is the minimum round trip time observed by the connection (which 
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should converge to the uncongested round trip time). As long as the 
Expected_ Throughput is accurate, the Throughput_ Diff • BaseRTT (the Difj) 
is an estimate for the amount of extra data that the connection has in transit. 
Vegas attempts to estimate the amount of extra data and maintain the "right" 
amount in the network. By keeping some amount of data queued in the 
network, Vegas hopes to keep network utilization high. 
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Figure 2 illustrates three bulk transfer Vegas connections competing over the 
Tl WAN hop illustrated in Figure I. All three connections flow from R2 to 
R3. The top graph shows the queue level of R2's output queue. The solid line 
plots the maximum queue level sampled every .I second time interval and the 
dashed line plots the minimum queue level during each sample period. The 
router queue depth is 50 packets ensuring that packet loss does not occur. 

The three solid curves in the lower graph of Figure 2 plot the throughput 
(measured in bytes per second each 1 second) of each connection. The 
dashed-dotted line plots the utilization of the bottleneck link. Vegas clearly 
utilizes the available bandwidth, however there is a fairness problem. The first 
2 connections start at time 0 and converge to uneven shares of available 
bandwidth. Once the third connection starts, it obtains a significantly larger 
share of bandwidth than the other connections. The behavior is the same if we 
add a random delay in the TCP sender in the range of [0,6msf Therefore, 
the problem is not a phase effect. Initially, we thought the problem might be 
caused by the "no change" state that Vegas tries to reach (i.e., in between the 
alpha and beta thresholds). We set the thresholds equal (i.e., set both alpha 

2 We modified the ns TCPNegas implementation such that timestamps are 
recorded before the send delay. This injects "noise" in the Vegas congestion 
assessment. The TCP sender is coded such that if it has multiple packets to 
send (i.e., if an Ack causes the cwnd to increase), the random send delay 
occurs once prior to the burst. After the delay expires, the sender is allowed to 
send all packets in the burst instantaneously. 
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and beta to a value of 3) to eliminate occurrences of a "no change" CAM 
decision. This led to similar results as in Figure 2. 

There are actually two problems that explain the behavior observed in Figure 
2. For static networks (i.e., a network that consists of constant Vegas senders 
that reach some steady state), it is likely that the system will converge to an 
unfair state. Once in this state, the increase/decrease algorithm is not sufficient 
to move the system to a fair state. The second problem is that once the system 
enters steady state, the existing connections have pushed the network such that 
there is some amount of sustained queueing. Late starting connections can not 
detect the congestion and instead will add to the existing congestion forcing 
the existing connections to reduce their send rates. Therefore, in a congested 
system that has reached steady state, late starting connections will obtain an 
unfairly large share of available bandwidth. 

A more dynamic network environment will reduce the probability of the 
system entering a steady state. Figure 3 illustrates the same scenario as in 
Figure 2 except that connections 2 and 3 are configured to use an on/off bursty 
traffic source rather than an ftp source. The bursty sources have mean rates 
on the order of 100000 bps. The lower curve shows that the two bursty 
connections (the two light lines) obtain bandwidth from connection 1 (the dark 
line) in a fair manner. The dashed-dotted line illustrates that Vegas is able to 
utilize on the order of 90% of the available bandwidth. The upper plot of 
Figure 3 shows the minimum queue level at the bottleneck link (the light 
dashed line). The"+" marks represent the Vegas sampled queue level (i.e., the 
Diff). 

In the lightly loaded network illustrated by Figure 3, CAM responds to 
congestion well although it does not track network congestion precisely. As 
described earlier, Vegas detects congestion by looking for changes in 
throughputs. The Actual_Throughput is based on the number of packets 
transmitted during the past RTT and on the actual RTT sample. The original 
Vegas proposal suggested that one packet each RTT be selected to probe for 
congestion. The Vegas implementation based on NetBSD actually uses the 
average RTT's for all packets (since Vegas times all packets) that were 
acknowledged during a measurement interval [1]. The idea being to filter 
noise associated with individual RTT samples. 

In the best case, an end-to-end delay measurement algorithm tracks queueing 
at the bottleneck link caused by the aggregate traffic from all sources. In the 
worst case, the algorithm tracks queueing caused only by the connection itself. 
The following analysis shows that Vegas does not accurately track neither 
network level queueing nor queueing caused by the Vegas sender. In certain 
situations, the algorithm's congestion assessment effectively becomes 
meaningless as the Diffvalue converges to a fixed window value. The latter 
case explains previous analysis results of Vegas that conclude that during 
periods of heavy congestion, the scheme digresses to TCP/Reno behavior[2]. 

First, we show a simple example (a single Vegas connection with no 
competition) where CAM accurately tracks the queue level at the bottleneck 
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link. Using the network shown in Figure 2 as an example, assume that a single 
Vegas always has 1400 byte packets available to send. At the point where the 
T1 link is fully utilized, the Vegas cwnd is 13.4 packets (i.e., a bandwidth­
delay product of 13.4 packets). The expected throughput is naturally 1.5Mbps 
and the actual throughput should be the same. The next RTT, the cwnd will 
be 14.4. The expected throughput will be just over 1612800 bps. Assuming 
exactly 1 packet experienced a waiting time of a packet transmission time at 
the T1 link, the rtt should be .1 + 1400*811.5Mbps or .1 075 seconds. The 
Actual_throughput will therefore be 14.4 packets I .1075 seconds or roughly 
1.5 Mbps. Multiplying the difference in throughput by the BaseRTT 
corresponds to a Diffin packets of roughly 1400 bytes or 1 packet. 

When Vegas competes with a low to moderate amount of traffic, the 
following helps explain the behavior of the Dif! samples as illustrated by the 
upper curve in Figure 3. The Dif! value in bytes can be written as: 

Dif! = (WIBaseRtt- W'IRtt) * BaseRtt 

where W is the current window, W' is the amount of data sent during the 
measurement period, and Rtt is the current RTT sample. As long as the sender 
has data to send, no packets are lost and the receiver ACKs each packet, W' 
will be the current window, W. Therefore: 

Dif! = W- W * BaseRtt I Rtt 
Dif! = W(I- BaseRtt I Rtt) 

Clearly, Dif! is 0 when BaseRtt = Rtt, and is positive when Rtt > BaseRtt. 
Also note that the Rtt = BaseRtt + Qt where Qt reflects queueing delays. 
The upper bound of(J-BaseRttiRtt) is 1 which means that the largest Dif!value 
that can ever be observed is the current window size. The (I- BaseRtttiRtt) 
term essentially grows linearly with increasing Rtt , however the W will also 
decrease in response to a positive Diff. As the Rtt increases, the rate of 
increase of the Dif! is dampened as W decreases. This explains the behavior 
of the Dif! curve in Figure 4 As the queue builds, the term (I -BaseRtt/Rtt) 
increases however the Dif! value might actually decrease as W decreases in 
response to the congestion. The scheme is fair in the sense that a connection 
with a high bandwidth will react more aggressively to increases in Rtt's. 
However, as the following discussion will show, the scheme loses its 
effectiveness when operating in periods of heavy congestion. 

Vegas does not decrease the window if Dif! < = beta . The point where the 
algorithm stops decreasing the window is: 

Wmin (I - BaseRttiRtt) =beta where Wmin is the lowest window 
value that is to be used. 

Wmin = beta I (I - BaseRttiRtt) 

For large Rtt's with respect to BaseRtt, the Wmin approaches beta. We will 
see that in heavily congested networks (i.e., networks where there is a large 
amount of sustained queueing), the Vegas algorithm effectively holds the 
sender to a fairly constant window of beta packets (3 for our simulations). We 
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refer to this as the overload state. Given this, the throughput of Vegas (in 
packets per second) in heavily congested networks can actually be predicted as 
follows: 

Vegas_throughput =beta I (BaseRtt +(Qavg * MSS * 8) /Cbl) 

where Qavg is the average queue length sampled each RTT, the MSS is the 
maximum segment size and the Cbl is the bottleneck link capacity. 

Figure 4 illustrates the results of a simulation run based on the multi-hop 
network shown in Figure l with 3 ftp TCPNegas connections (Sl, S2 and S3 
all to R4) compete with 3 on/off bursty TCPNegas connections (S4,S9 and 
SlO to R3). The bottleneck router can buffer up to 50 packets. The simulation 
is intended to capture the behavior of a heavily congested network. The 
minimum and maximum queue levels of the T1 link shown in the upper plot 
(the dark nd the dotted line respectively) demonstrates that CAM is not able to 
prevent sustained congestion from occurring. The "+" marks plot the Diff 
samples from the first Vegas connection. The lower plot shows the three ftp 
Vegas connection's throughputs (we do not show the throughputs of the bursty 
connections, only the effective utilization). The throughput curves illustrate 
the bias towards late starting connections (connection 1 gets a lower share of 
available bandwidth once the system converges). If we start a fourth ftp 
connection at time 20 seconds, it would obtain a much larger share of 
bandwidth than any of the other connections. 

The connections with accurate BaseRTT values (i.e., the two connections that 
start at time 0 and 2 respectively in Figure 4) converge to a window of about 4 
packets with a sustained throughput close to the predicted throughput of a 
Vegas connection that has reached the overload state. Late starting 
connections might not reach the overload state since they will be much more 
tolerant of congestion (since the BaseRTT will include the sustained 
congestion levels). If too many Vegas connections are in the overload state at 
the same time, packet loss will occur and the behavior of each connection will 
digress to TCP/Reno (i.e., oscillating window values). Figure 5 shows a more 
extreme environment than that depicted in Figure 4. The router buffer capacity 
is reduced to 20 packets and we add two additional ftp Vegas connections (that 
start at time 0 and 2 seconds respectively). The packet loss rate is quite high, 
about 6.2%. Each Vegas connection experiences time-outs (in the range of 2 
to 15) contributing to cwnd oscillations. This demonstrates the tendency for 
Vegas to digress to Reno behavior in high packet loss environments. 

In the analysis presented so far, we have observed Vegas in an environment 
where it competes only with other Vegas connections. It is also interesting to 
see how Vegas behaves when competing against other TCP/Reno connections. 
Figure 6 illustrates a simulation with one Vegas connection (the first 
connection that starts at time 0) and two TCP/Reno connections that start at 
time 5 and 70 seconds respectively. All connections are configured with ftp 
traffic sources. The simulated network involves the T1 hop between R2 and 
R3 as illustrated in Figure 1. The lower curve shows synchronized behavior 
similar to that seen in Figure 2. The Vegas connection increases its 
throughput until time 2 seconds when the second connection starts. The 
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second connection (i.e., the Reno connection) reaches its maximum window 
(36 packets) causing additional sustained queueing that forces the Vegas 
connection to a state of low throughput. The system remains locked in this 
state until the second TCP/Reno connection forces packet loss after time 70. 
Note that after time 70 the system reaches a new synchronized state. However, 
since the queue levels stay consistently high, the Vegas connection is never 
able to obtain its fair share. 
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Figure 7 illustrates a more realistic simulation than the previous. Based on the 
network shown in Figure 1, a Vegas ftp connection from S1 to R4 starts at 
time 0. Two on/off bursty Reno sources flow from S3 and S4 to R3 that 
produce bursty cross traffic. The solid dark line in the lower curve illustrates 
the Vegas throughput and the lighter lines represent the throughput of the two 
on/off connections. The behavior is similar to the earlier Vegas case where 
we concluded that CAM is effective at tracking and controlling congestion in a 
mildy congested network. If we do the same simulation except use all Reno 
connections, the performance of the ftp connection is similar to the Vegas run. 
Both achieve roughly the same throughput, neither experience time-outs. One 
significant difference, however is that the queue levels are more controlled in 
the Vegas case than in the all Reno simulation. 

Figure 8 illustrates how an ftp Vegas connection (the dark link in lower curve) 
competes with two ftp Reno connections and 3 bursty Reno. The behavior is 
as observed in the USC analysis where Reno steals bandwidth from Vegas in 
head-to-head competition simply because Vegas is more sensitive to 
congestion than Reno[l]. Confirming our earlier analysis, the Vegas 
connection is essentially limited to the Wmin of 3 which, assuming an average 
queue level of 35 packets (by inspection from Figure 8), should lead to a 
throughput of 93,000 bps. Based on the Vegas throughput curve we see a 
Vegas throughput of roughly 120,000 bps. 
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Dual 

Dual offers a congestion detection scheme that monitors changes in measured 
round trip times. It tracks the minimum observed RTI (RTTmin) and the 
maximum observed RTI (RTTmax) over the lifetime of the connection. In 
most network environments, over time these variables converge to the static 
round trip delay due to propagation delays and to the variable delay 
representing queueing delay respectively. Each time TCP performs its round 
trip time calculation, the sampled RTT is compared with a delay threshold 
defmed as: 

Di = (1-a/pha)Dmin +alpha* Dmax. 
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Dual was designed to extend TCP's congestion avoidance and slow start 
algorithms with the goal of reducing the oscillations caused by slow start and 
congestion avoidance. The change to TCP to implement Dual is trivial. Slow 
start and congestion avoidance remain unchanged except every other round 
trip time, the following comparison is made: 

/f(rtt > Di) 
Cwnd -=min(cwnd,wnd)/8; 

We have simulated a modified version of the Dual algorithm essentially 
replacing Vegas's CAM with Dual's congestion detection scheme. More 
specifically we modified Vegas as follows to implement Dual: 

• Continue to time each packet and to aggressively retransmit packets. 
However, the algorithm will not track changes in throughput and react to 
decreases. 

• The increase algorithm of TCP/Dual is essentially the same as that 
used by Vegas. We continue to do exponential growth only every other 
round trip time during slow start. However the decrease algorithms differ. 
While Vegas decreases the window linearly if the congestion threshold is 
exceeded, TCP/Dual decreases the window by 12.5% if a round trip time 
exceeds the Di threshold. 

• The Dual algorithm indicates that when a timeout occurs, we should 
reset the Dmin and Dmax values. While this might be useful to handle 
path switch situations, we chose not to implement this. 

Figure 9 shows the behavior when three Dual connections compete (using the 
Tl network from Figure 1 ). Due to sustained congestion, late starting 
connections will have an incorrect threshold causing the connection to act 
more aggressively than connections with accurate threshold values. By the 
time the third connection starts, the connection is not able to differentiate 
between propagation delay and queueing delay. If we do the same simulation, 
however reduce the router buffer size to 1 0 packets, the throughput of the 
three connections converges quickly, although several packets are dropped as 
the system converges. The difference is that Dual's 12.5% rate reduction is 
sufficient to clear a small amount of queueing (less than 10 packets). In the 
case pictured in Figure 9, a 12.5% rate reduction is not sufficient to clear the 
queue. The algorithm requires the queue levels to on average remain close to 0 
so that late starting connections can obtain an accurate Dmin value. 

Figure 10 shows three Dual connections (1 ftp, 2 bursty) using the multi-hop 
network between routers R1 and R4 in Figure I. The top curve shows only the 
minimum queue level sampled every .02 seconds. The results show that Dual 
utilizes the bandwidth but has sustained congestion. To test the sensitivity of 
the algorithm to noisy RTT samples, we configured a random send delay in 
the range [0-2ms]. There was no difference in behavior. The reason is 
straightforward: Dual's threshold is on the order the buffer range. At 
16Mbps, a 2 ms delay in the RTT sample corresponds to roughly 3 packets. It 
would take a much larger delay variation to be detected by Dual. In fact, it is 
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not until we increase the random send delay range to [0-.0lseconds] before 
performance deteriorates as Dual reacts prematurely to the noisy samples. 

Figure 11 shows I Dual connection (the dark line in the lower curve) 
competing with 2 Reno connections (the two light lines that start at time 5 and 
10 respectively). Clearly the Reno connections are more aggressive. The 
system falls into a synchronized state such that the Reno connections utilize 
the majority of bandwidth. The problem is that the Dual threshold needs to be 
adjusted (i.e., increased) to compete fairly with Reno. 
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ARB 

The Adaptive Rate-based protocol is an end-to-end congestion avoidance 
scheme used in ffiM's Rapid Transport Protocol (RTP) [14]. ARB is a closed­
loop, preventive, rate-based congestion control scheme. ARB employs a 
distributed algorithm that is implemented at the endpoints of an RTP 
connection. Each endpoint consists of an ARB sender and an ARB receiver. 
The ARB sender periodically queries the receiver by sending a rate request to 
the ARB receiver who responds with a rate reply message. The time between 
successive transmissions of rate request packets is defmed as a 
measurement_interval. The measurement_interva/ is typically on the order of 
a round trip time although to minimize processing overhead, RTP products 
typically have a minimum measurement _interval on the order of .I second. 

The ARB receiver monitors changes in the delay experienced by sequential 
rate request packets. It maintains its own version of the time between 
successive rate request packet arrivals (the receivers_measurement_interval) 
and compares to the sender's measurement_interval (which are contained in 
the rate request packets). A positive difference corresponds to additional delay 
experienced by the probe packet. Likewise, a negative delay corresponds to 
less waiting time experienced by the probe as compared with the previous 
probe packet. ARB assumes that trends in the delay change values (i.e., a 
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running total of delay change samples) are reflective of the current level of 
congestion in the one-way path between the sender and the receiver. For 
example, if the total_ delay is 0, then packets that arrive at the receiver have 
not experienced congestion. If the total_ delay is 50 mseconds, then each 
packet would have experienced 50 mseconds of queueing delay. 

The receiver translates the total_ delay into an estimate of the amount of 
queueing at the bottleneck link. In an SNA network, the receiver learns the 
slowest link speed in the path via the RTP connection setup protocol (known 
as the max_bandwidth). The queueing_estimate is simply the total_delay 
divided by the max_bandwidth (this gives a total queueing in bytes, RTP 
converts this into a number of 1000 byte packets). The fundamental control 
decision behind ARB is made by the receiver based on a threshold of allowed 
queueing. The sender is allowed to increase its rate as long as the 
queueing_ estimate is less than 1 packet. If the queueing_ estimate is between 1 
and 10 packets, the sender is instructed to restrain (i.e., not to change its 
sending rate). If the queueing_estimate is between 10 and 40 packets, the 
sender is instructed to reduce its send rate. Finally, if the queueing_ estimate 
exceeds 40 packets, ARB assumes that this is noise and tells the sender to 
restrain. The sender adjusts its send rate based on information received in the 
rate reply message. Refer to [12] for a detailed description of the ARB 
algorithm. 

In the remainder of this section, we present and study a congestion avoidance 
scheme that extends TCP with the essence of ARB. We are most interested in 
the ARB's congestion detection scheme and in the receiver's control decision 
logic. We leave the study of rate control for future work. The key design 
points of TCP/Arb include the following: 

• Keep all aspects of TCP/Reno and TCPNegas except remove CAM 
(i.e., we still want Vegas to time all packets and to remain more aggressive 
than Reno with retransmission). Therefore slow start and congestion 
avoidance are preserved. 

• The sender periodically forwards a probe packet (using TCP options) 
that contains a measurement request signal along with the 
senders_ measurement _interval (which is simply the amount of time since 
the sender last issues a measurement request packet). 

• The receiver responds to measurement request packets from the sender 
by calculating the receivers_measurement_interval and obtains a delay 
value (by subtracting the receivers and senders measurement intervals). 
The receiver maintains the commulative delay in a variable called 
total_ delay. The receiver also monitors the observed throughput 
(throughput= byte_countlreceivers_measurement_interval) and maintains 
the highest throughput observed (max_bandwidth). The receiver 
estimates the level of queueing (queueing_estimate = total_delay I 
max_bandwidth). The receiver inserts a rate_command message in the 
Ack (again using TCP options). The command (RATEINCREASE, 
RA TEDECREASE or RESTRAIN) is based on the receiver's 
queueing_ estimate with respect to the ARB thresholds. Therefore, if the 
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receiver's queueing_estimate is less than or equal to I packet, the receiver 
issues a RATEINCREASE. If the queueing_estimate is between I and IO 
packets, the receiver issues a RESTRAIN. An RTP receiver will instruct 
the sender to RATEDECREASE when the queueing_delay exceeds IO 
packets. 

• When the sender receives a rate_command of RATEINCREASE, the 
sender increases as normal (i.e., by incrementing the cwnd as required 
during either slow start or congestion avoidance). The exception is 
during slow start, the sender increases the send rate exponentially every 
other round trip time (as done in Vegas). If the sender receives a 
RA TEDECREASE command, the sender reduces its cwnd by 50%. If the 
sender is in slow start when it receives a RA TEDECREASE command, it 
moves to congestion avoidance by setting the ssthresh to 2 (TCPNegas 
also does this). 

• Probe packets are not issued during periods of recovery. Therefore, 
during periods of heavy packet loss, the scheme digresses to base TCP. 

Figure I2 illustrates 2 TCP/Arb connections competing for bandwidth using 
the Tl hop between routers R2 and R3 illustrated in Figure I. The upper curve 
plots the maximum queue level (dark dashed line), the minimum queue level 
(light dashed line) and the second connection's queueing_estimate (the "+" 
marks). Notice the the connection underestimates the queueing level. The 
lower curve of the figure illustrates that the second connection (the light line 
that starts at 2 seconds) obtains the majority of the bandwidth. Because the 
second connection underestimates queueing, it obtains a larger share of 
available bandwidth. 

There are two factors that contribute to connection two's queueing_estimate 
error. First, the connection begins during a period of sustained congestion. 
The minimum sustained congestion experienced by the second connection is 
on the order of 3 packets. The connection can not detect the queue buildup 
which contributes the majority of the queueing_ estimate error. 

The second factor that contributes to the error is due to an inaccurate 
max_bandwidth estimate. The original ARB converts the total_delay to an 
estimate of the amount of data queued in the path based on .. the 
max_bandwidth. Ideally, the max_bandwidth is reflective of the bottleneck 
link speed. The TCP/Arb receiver monitors observed throughput roughly each 
round trip time in an attempt to estimate the max_bandwidth. Several factors 
combine to make the connection tend to underestimate the max bandwidth. 
Clearly, the max_bandwidth is affected by the connection's actual sending 
rate. If the sender can not fill the one-way pipe (e.g., if the maximum window 
size is too low or if the source does not have enough data to keep the sender 
busy) the max_bandwidth will be low. Additionally, if the sender is paced by 
the congestion control then the max_ bandwidth will tend to measure the 
connection's available bandwidth. However, due to the "ack clumping" 
phenomenon, TCP is actually quite bursty. For example, assume that a TCP 
connection has achieved a sustained throughput of Yz the bottleneck link speed. 
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The connection can actually be modeled as an on/off source, bursting at some 
high rate (determined by the ack return rate) for a certain duration (depending 
on the cwnd) and then "off' as the bottleneck link is used by other connections 
[13]. Once the burst is large enough to fill the one-way pipe, the connection 
will be able to get an accurate max_bandwidth estimate. Due to slow start's 
blind exponential growth, the typical connection (as long as it is not window 
constrained) will be able to get a fairly accurate estimate of the 
max bandwidth.3 

Figure 13 illustrates the max_bandwidth for the two connections shown in 
figure 12. The one-way pipe size is about 7 packets and if filled by the first 
connection in just over 1 second. At about time 3.3 seconds, Figure 13 
indicates the queue level increases by 7 packets for a total congestion level of 
roughly 10 packets. However, connection 2 only detects an additional 2 
packets of queueing. It actually observes the correct increase in total_ delay. 
However, as can be seen in Figure 14, the max_bandwidth at this time is still 
low which leads to more error (in addition to the error caused by the sustained 
congestion). Once in steady state (after time 6 seconds), there are roughly 6-7 
packets of sustained queueing. The second connection's queueing_ estimate 
observes 2-3. Most of the error is caused by the sustained queueing, however 
an additional 1 packet error results from the second connection's 
max_bandwidth being off by roughly 25%. 

Figure 14 shows 1 ftp TCP/Arb connection (the dark line) competing with 2 
bursty TCP/ Arb connections over the single hop T1 network shown in Figure 
1. Comparing Figure 14 to the equivalent Vegas simulation run (Figure 3), the 
throughput of the TCP/ Arb and Vegas ftp connections are is virtually 
identical. The difference lies in the queue levels as TCP/ Arb controls the 
queue levels more effectively than Vegas. 

Figures 15 illustrates how TCP/Arb behaves when competing with TCP/Reno 
connections. Figure 15 shows 1 ftp TCP-Arb connection (the dark line) 
compete with 2 ftp TCP/Reno connections. Given that TCP pushes the 
network well beyond ARB's threshold level, competing TCP connections 
generally "beat down" TCP/Arb connections. Because TCP/Arb accurately 
tracks queueing, it obtains only a fraction of available bandwidth. It is 
possible to tune the ARB region thresholds such that TCP/Arb connections 
compete with Reno connections. The problem is that the proper thresholds 
depend primarily on the queueing behavior at the bottleneck link which clearly 
can not be statically predicted. 

3 A further improvement is to use packet pair and have the receiver monitor the 
difference between arrival times of successive packets [I 0]. 



: : : 

40 ··---·--···t .. 
! 1 . 1 
0 20 --··-·-·hj-···:·t-.. ··-··t·-.. ···-.. t·-·--· 

0 ....!>!.1 
0 2 4 8 10 

2x10' 

2 4 6 10 
Tme(-.ds) 

0 
0 

Figure 12 

Bcittleneck lilt CMue Siz! 

10 
Tme(-.ds) 

Figure 14 

3 CONCLUSIONS 

lO 

lO 

'0 c 
0 

" " 
" 

549 

105 meaSU'ed 

1.5 ---· ............ +·-·-----·-! [r---:--1---
: r ! . 

·--- .... t .. ··-·x ----·---·-:-- ·-------------------
I 

i I ! . ' 

0.5 ... --t .. 

01/ 
0 2 4 6 10 

T me Cseeoodsl 

Figure 13 

0 20 40 60 ., 100 

xlr 
2 .· ·· -' 

0 
0 

Figure 15 

Ill 100 

Based on the discussion and analysis presented in this report, we conclude 
with the following observations 
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• Congestion avoidance works properly only if the network does not 
suffer from sustained congestion. It is unclear how prevalent sustained 
congestion actually is in the Internet. However, we would like to 
believe that such conditions are the exception rather than the norm 

• The scheme should track bottleneck queue behavior as accurately 
as possible. Changes in delay are the purest indicator of queue 
behavior. Converting a commulative delay into an estimate of queueing 
at the bottleneck link adds error into the control decisions as it must be 
based on an estimate of the bottleneck link speed. 

• Path switches in the Internet are fairly common. Clearly, an 
algorithm such as TCPNegas that records the minimum round trip time 
measurement as a baseline can lead to disasterous results. One solution 
might be to deduce a path switch (via a burst of packet loss) and to 
reset the baseline round trip time measurement. However, clearly, path 
switches are problematic for end-to-end control schemes. 

• Although not we did not show the simulations, we find that a one­
way congestion estimate is superior to a scheme that measures 
congestion in both directions. For example if the return path in a 
TCPNegas connection has significantly more delay (due to 
congestion, different propagation delay or different link speeds), it will 
not fully utilize available bandwidth in the forward direction. A scheme 
like TCP/Arb that measures delay in a one-way direction eliminates the 
error. 

• We have not shown the corresponding analysis, however we fmd 
that noise in the delay samples can cause sometimes significant error in 
the control decisions. Therefore the congestion samples must be 
filtered in some manner, or more likely, the threshold (i.e., the point at 
which the controller decides to react to congestion) must be adaptive to 
support changing conditions. Crucial issues involved with finding the 
optimal threshold point include: 

• The scheme must learn the noise floor. The goal is to find the 
minimum threshold such that the queue levels are contained. 
Clearly this conflicts with the goal of high link utilizations. 

• When competing against TCP (or other greedy protocols), a 
congestion avoidance scheme needs to learn th'e upper bound for the 
threshold. 

• More frequent feedback indications can be used to converge 
more quickly to the optimal threshold level. 

In this paper we have shown that in certain environments and conditions, an 
end-to-end congestion avoidance algorithm based on packet transit delay 
measurements can be beneficial by avoiding packet loss and stabilizing 
response times. We have also identified several factors that can cause these 
algorithms to not work correctly. Unfortunately, today's best effort Internet 
can not guarantee that these factors such as path switches or sustained 
congestion will not occur. 
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