
Distinguishing tests for
nondeterministic finite state machines

S. Yu. Boroday
Institute of Applied Mathematics and Mechanics,
National Academy of Sciences of Ukraine,
74, R.Luxemburg street, Donetsk, 340114, Ukraine
Tel: (038) 622510144
E-mail: math@iamm.ac.donetsk.ua

Abstract
In this paper, testing of deterministic implementations of nondeterministic
specification FSMs is considered. Given two nondeterministic FSMs, a black box
deterministic FSM is known to be a correct implementation of at least one them.
We want to derive a test that determines whether this black box is a correct
implementation of the first NDFSM. No upper bound on the number of states of
the black box is known. The necessary and sufficient conditions for test existence
are found. A method for constructing a conditional test of a minimal length is
proposed. Upper bounds of multiplicity, length and overaUlength close to minimal
are obtained.

Keywords
Finite state machine, nondeterministic finite state machine, distinguishing test,
conformance testing.

1 INTRODUCTION

FSM based languages are widely used for protocol specification. Protocol
conformance testing is often formalised as a problem of verifying the equivalence
of a deterministic implementation to a given deterministic specification machine.

A. Petrenko et al. (eds.), Testing of Communicating Systems
© Springer Science+Business Media New York 1998

102

Since most existing protocols allow alternatives and options, a nondeterministic
model of specifications seems to be a more versatile model for describing
protocols [Petrenko, Yevtushenko, Bochmann]. An implementation machine in
this paradigm is still deterministic. The implementation FSM conforms to a given
nondeterministic specification FSM (NDFSM) if the implementation machine
produces an output sequence that can also be produced by the specification
machine in response to every input sequence. Unlike testing of deterministic
FSMs, testing of NDFSMs has not been studied sufficiently well.

Conformance testing of deterministic implementations against NDFSMs is
considered in [Petrenko, Yevtushenko, Lebedev, Das]. An upper bound on the
implementation's state number is assumed. In [Petrenko, Yevtushenko,
Bochmann] tests distinguishing states of NDFSM were also studied. Based on
these tests, a method for deriving test suites from a given NDFSM complete within
the given number of states is proposed in that paper.

In [Lukjanov], the following problem is considered. A black box DFSM is
known to be a correct implementation of at least one of the two NDFSMs A and B.
The experimenter wants to test a black box DFSM to determine whether or not the
DFSM is a correct implementation of A. No upper bound on the number of states
of the black box is given. The black box can be a correct implementation of one of
them only, or it can correctly implement each of them at the same time. A test that
determines whether a black box is a correct implementation of the NDFSM A is
called a distinguishing test. In [Lukjanov], sufficient conditions for test existence
and a test derivation method for some cases of specification machines are obtained.

In this paper, we address the above problem and obtain necessary and sufficient
conditions. A method for deriving a conditional test with a minimal length and
multiplicity is proposed. Upper bounds on length, multiplicity and overall length
are obtained. These bounds are close to minimal.

2 PRELIMINARIES

Definition 1. A nondeterministic finite state machine (NDFSM) is a quintuple
A=(S,X, Y,F,so) where S, X, Y are finite and nonempty sets of states, input and
output symbols, respectively, So is an initial state, F: XXy-.?tS'YI is a behaviour
function.

Let sp denote a set of states in which an NDFSM can move from state s upon
input word pEX'. s(p,q) denotes the set of states, in which the NDFSM can move
from s upon input word p EX' with output word q E y'. It (s,p) denotes a set of all
output words, which the NDFSM can produce from the state s upon input p. It ..
denotes the set of all input output words p,lt...{s(1 p) and is called the FSMs
behaviour. A deterministic FSM R is a correct implementation of the NDFSM A if
ItR~ It ... If Is(x,y)I:51 for all XEX, yE y, SES, the NDFSM is observable. If s(x,y)=0

103

for some XEX, yE Y, SES, the NDFSM is called partially defined, otherwise it is
called completely defined. It is known that for each NDFSM an observable
NDFSM with the same behaviour exists. Deterministic acceptors (Rabin Scott
automata) in the alphabet XxY can be considered as a (partially defined)
NDFSM with the input alphabet X, output alphabet Y and a set of final states. So

notations extend on acceptors (Rabin Scott automata) in the alphabet XXY. L(Q)
denotes the set of words which the automaton Q accepts.

Let us consider the notion of a testing acceptor - a special case of a conditional

test. An acyclic acceptor Q in the alphabet XXY is called a single testing acceptor if
for every acceptor's nonfinal state S there exists only one x, such that sx,'" 0. The
acceptor is called acyclic if s(p,q)=s implies p,q are the empty words. In [Petrenko,
Yevtushenko, Bochmann], a final state of the testing acceptor is called a 'fail' state.
A testing acceptor corresponds to an algorithm that conducts a single adaptive
experiment with the black box as follows.
1. Declare the initial state So as a current state.
2. From the current state s submit an input signal x, such that SX, ",0 to the black

box.
3. Read the output signal y produced by the black box.
4. If s(x" y) '" 0, then assume state s (x~ y) as a current state and go to Step 2
S. If the current state is final, then return the result 'fail', else 'pass'.

The number of inputs x, submitted during this test is called the length of the test.
Since the acceptor is acyclic, testing is always finite and the result is defined. It is

obvious that the result is 'pass' iff L(Q)nAR=0.
Let Q, be a maximal single testing acceptor which is a subautomaton of Q. This

means that a single testing acceptor Q; can be obtained from Q by 'erasing' some
(or none) states and transitions and every Q' such that if Qj is a subautomaton of Q'
and Q' is a subautomaton Q then Q' =Q,. Let {QI'".,QN} be the set of all such
acceptors. This set is obviously finite. Define an arbitrary order on acceptors.

The following test procedure corresponds to a testing acceptor Q.
1. Order acceptors in a sequence QI'".,QN.
2. i:= 1, L be an empty set.
3. If there are pX,qy E L, y' E Y such that pX,qy' is a prefix of a word from L(Q,)

but pX,qy is not then go to 6.
4. Reset the black box to the initial state.
S. Perform test Qj. If the result is 'fail', go to 9.
6. i:= i + 1.
7. if i :s; n go to 1.
8. The result is 'pass'. Stop.
9. The result is 'fail'. Stop.

Step 3 is included to prevent redundant testing when the result of the test Q; with
black box is obviously 'pass'.

The maximal number of resets during testing is called the multiplicity of the test
Q with the given black box. The maximal mUltiplicity of the test Q with an

104

arbitrary FSM is called the multiplicity of the test Q. The maximal length of test QI

during testing is called the length of the test Q. The maximal length of the test with
an arbitrary FSM is called the length of the test Q. The number of all inputs
offered to the black box is called the overall length of the test.

The order of acceptors QI, ... ,QN can affect the test multiplicity and length in a
general case.

It is obvious that the result is 'pass' iff L(Q)nAR=0. So more sophisticated
algorithms for checking the intersection of L(Q) and the black box behaviour could
be developed to reduce the overall length of a test.

A testing acceptor Q is called a test distinguishing the NDFSM A from the
NDFSM B if the result of the test Q with every correct implementation of A is
'pass' and the result of the test with a black box which is a correct implementation
of B but is not a correct implementation of A is 'fail'. Initialised, completely
defined implementation and specification FSMs only are considered in this paper.

The existence of a test distinguishing A from B does not imply the existence of a
test distinguishing B from A. But if both tests exist we can test whether the given
black box is a correct implementation of A, B or both of them.

In the next section, we consider the problems of the existence and derivation of
NDFSM distinguishing tests.

3 TEST EXISTENCE

It is known that a distinguishing test exists not for all NDFSMs. The following
theorem gives necessary and sufficient conditions for the test's existence:

Theorem 1. A test distinguishing an NDFSM A from B exists if and only if [As \
AA]nA JAf'ls (is a finite set

Here [W] denotes the closure of the set of words W under prefix (if pp'e W then
pe [W]).]AnB[is the largest completely defined NDFSM whose behaviour is
included in A and B behaviours. The FSM]AnB[is the largest if the behaviour of
any NDFSM C is included in the behaviours of A and B then NDFSM C behaviour
is also included in the behaviour of]AnB[.

The conditions of Theorem 1 are constructive. Let us make some auxiliary
constructions based on the state pair graph in order to prove the theorem.
1. Build an acceptor (the graph of A and B state pairs) in the alphabet XXY with

the state set s" xs' u Ul, transitions are defined as follows:

(1', l), if l (x,y)=I' and l (x,y)=tS ;

j, if l(x,y)= 0, butl(x,y):¢: 0.
(l,l)(x,y) = {

2. i:=O, Vo:=Ul.
3. i:=i+ 1 and V/= Viol'
4. For le s", le s', do:

105

if (l,l)e VI and (l,l)x !';; VI.I for a certain x, then do VI := VI u (l,l) and
mark all transitions «l,l).x,y) of the constructed automaton, where ye Y.

5. If VI :¢:0, go to 3.
6. V:=VI.
7. Delete for nonmarked transitions outgoing from all states from V, the

obtained automaton with the final state/is denoted D(A,B).
8. Delete all states from which/is not reachable.
9. Delete all marked transitions outgoing from V. The resulting automaton with V

as the set of final states is denoted KER(A,B).
In step 1, the acceptor which accepts the opening of the set of word AB\ AA under

prefix was constructed. The opening under prefix means the set of all words from
AB\A.A whose own prefix can not be found in AB\A.A. On step 2-5 all r-distinguishable
state pairs are included in V. As shown in [Petrenko, Evtushenko, Bochmann] SA

and SB are r-distinguishable if and only if there exist no correct implementation of
B which is a correct implementation of A.

According to [Petrenko, Yevtushenko, Bochmann] and [Lukjanov], a testing
acceptor D(A,B) with the initial state (l,l)e VI is a simple test distinguishing A and
B.

The set [AB\A.A]n~"B(in Theorem 1 is the set of prefixes of L(KER). Since final
states of KER do not have cycles, [AB\A.A]n~"B(and L(KER) are either both finite
or both infinite at the same time. This implies the following theorem that is
equivalent to Theorem L

Theorem 2. A distinguishing test for NDFSMs A and B exists if and only if
L(KER) is a finite set, i.e. KER is acyclic.

To prove the statement, we use the following proposition.
Proposition 1. Let Lr;;;, AA and 4; Ac where A is an NDFSM, C is a DFSM and

both FSMs are completely defined. Then L is included in the behaviour of a
correct implementation of A.

Proof of Theorem 1. Conditions are obviously sufficient. We prove that they are
necessary. Assume that [AB \ AA]nA)A"B(is infinite and Q is a testing acceptor
distinguishing A from B. Since the language is regular, there exist such words v, u,
w in the alphabet X x Y such that vu * !';; A)A"B(but VU *w r;;;, AB \ AA' Due to
Proposition 1, there exists a correct implementation DFSM C of]AnB[, VU* !';; A c'
The DFSM C is a correct implementation of both NDFSMs A and B. Perform the
test Q with C. Let the length of the test Q with the DFSM C be equal to k.

It is obvious that Ac\VU* (XxY)* u vukw r;;;, AB•

Let H be an implementation DFSM of B which includes Ac\ vu* (XxY)* U

vukw in its behaviour as H. Such an implementation exists according to Proposition
1. H is not a correct implementation of A because vu *w !';; AB \ AA. Thus, results of
the test Q on H and C are different. Therefore, Hand C have different outputs for
at least one input word of length k. This contradicts the construction of Hand C.
The theorem has been proven.

106

4 TEST GENERA nON

The following lemma can be proven similarly to Theorem 1.
Lemma 1. Let Q be a testing acceptor distinguishing A from B. Then every word

from L(KER) is a prefix of a word from L(Q).
D(A,B) with the initial state (l,l) from V is a minimal testing acceptor

distinguishing A and B. Classes of correct implementations of states l, l do not
intersect. From these facts and Lemma 1, the following theorem is obtained.

Theorem 3. If a test distinguishing NDFSM A from B exists then D(A,B) is a
distinguishing test of minimal length and multiplicity.

Theorem 3 obviously defines a test generation procedure. Lemmea 1 implies that
the length and multiplicity of the test D in the worst case do not depend on the
assumed order of simple tests QI' ... ,QN"

Several testing acceptors with various overall lengths of corresponding tests can
be constructed. To find an algorithm for constructing tests of a minimal overall
length we needs a more complex conditional test model than a testing acceptor.
But the latter can yet be useful.

By erasing outputs in the testing acceptor graph we also can obtain an
unconditional test.

It is obvious that the test length, multiplicity and overall length do not exceed
nm, IXI"", nmlXIMI respectively, where nand m are state numbers of NDFSMs.
These upper bounds have the same order as minimal.

5 ACKNOWLEDGEMENTS

The author thanks Alexandre Petrenko and Igor Grunsky for discussions and
helpful suggestions. The author would like also to thank them and anonymous
reviewers for comments that helped improve the presentation of the paper.

6 REFERENCES

Boroday, S. Yu. (1995) Experiments in classes of NDFSM implementations.
Proceeding of II Ukrainian conference on automatic control 'Automatika 95',
Lvov, p 101.

Lukjanov B. D. (1995) On distinguishing and checking experiments with
nondeterministic automata, Kibernetika i systemny analiz, 5. Plenum
Publishing Corporation. New York. pp. 56-66.

Petrenko, A., Yevtushenko, N., Lebedev, A., Das, A. (1993) Nondeterministic
state machines for protocol testing. IFIP Transactions Protocol Test Systems

107

VI (the Proceedings of IFIP TC6 Sixth international Workshop on Protocol
Test Systems 1993) North-Holland, 1994, pp.193-208.

Petrenko, A., Yevtushenko, N., Bochmann G. (1996) Testing deterministic
implementations from nondeterministic FSM specifications. IFIP Testing of
Communicating Systems (the Proceedings of IFIP TC6 9th International
Workshop on Protocol Test Systems 1996) Chapman & Hall, 1996, ppI25-140.

Starke, P.H. (1972) Abstract automata. North-Holland/American Elsevier, 419p.

7 BIOGRAPHY

Boroday Sergey is an engineer of the Institute of Applied Mathematics and
Mechanics (Donetsk, Ukraine), the National Academy of Sciences of Ukraine. He
received his Ph.D. degree in Math from the Saratov State University (Russia) in
1997. His main research interests are in automata theory and software, hardware
and protocol testing.

