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Abstract 
In this paper, testing of deterministic implementations of nondeterministic 
specification FSMs is considered. Given two nondeterministic FSMs, a black box 
deterministic FSM is known to be a correct implementation of at least one them. 
We want to derive a test that determines whether this black box is a correct 
implementation of the first NDFSM. No upper bound on the number of states of 
the black box is known. The necessary and sufficient conditions for test existence 
are found. A method for constructing a conditional test of a minimal length is 
proposed. Upper bounds of multiplicity, length and overaUlength close to minimal 
are obtained. 
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1 INTRODUCTION 

FSM based languages are widely used for protocol specification. Protocol 
conformance testing is often formalised as a problem of verifying the equivalence 
of a deterministic implementation to a given deterministic specification machine. 
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Since most existing protocols allow alternatives and options, a nondeterministic 
model of specifications seems to be a more versatile model for describing 
protocols [Petrenko, Yevtushenko, Bochmann]. An implementation machine in 
this paradigm is still deterministic. The implementation FSM conforms to a given 
nondeterministic specification FSM (NDFSM) if the implementation machine 
produces an output sequence that can also be produced by the specification 
machine in response to every input sequence. Unlike testing of deterministic 
FSMs, testing of NDFSMs has not been studied sufficiently well. 

Conformance testing of deterministic implementations against NDFSMs is 
considered in [Petrenko, Yevtushenko, Lebedev, Das]. An upper bound on the 
implementation's state number is assumed. In [Petrenko, Yevtushenko, 
Bochmann] tests distinguishing states of NDFSM were also studied. Based on 
these tests, a method for deriving test suites from a given NDFSM complete within 
the given number of states is proposed in that paper. 

In [Lukjanov], the following problem is considered. A black box DFSM is 
known to be a correct implementation of at least one of the two NDFSMs A and B. 
The experimenter wants to test a black box DFSM to determine whether or not the 
DFSM is a correct implementation of A. No upper bound on the number of states 
of the black box is given. The black box can be a correct implementation of one of 
them only, or it can correctly implement each of them at the same time. A test that 
determines whether a black box is a correct implementation of the NDFSM A is 
called a distinguishing test. In [Lukjanov], sufficient conditions for test existence 
and a test derivation method for some cases of specification machines are obtained. 

In this paper, we address the above problem and obtain necessary and sufficient 
conditions. A method for deriving a conditional test with a minimal length and 
multiplicity is proposed. Upper bounds on length, multiplicity and overall length 
are obtained. These bounds are close to minimal. 

2 PRELIMINARIES 

Definition 1. A nondeterministic finite state machine (NDFSM) is a quintuple 
A=(S,X, Y,F,so) where S, X, Y are finite and nonempty sets of states, input and 
output symbols, respectively, So is an initial state, F: XXy-.?tS'YI is a behaviour 
function. 

Let sp denote a set of states in which an NDFSM can move from state s upon 
input word pEX'. s(p,q) denotes the set of states, in which the NDFSM can move 
from s upon input word p EX' with output word q E y'. It (s,p) denotes a set of all 
output words, which the NDFSM can produce from the state s upon input p. It .. 
denotes the set of all input output words p,lt...{s(1 p) and is called the FSMs 
behaviour. A deterministic FSM R is a correct implementation of the NDFSM A if 
ItR~ It ... If Is(x,y)I:51 for all XEX, yE y, SES, the NDFSM is observable. If s(x,y)=0 
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for some XEX, yE Y, SES, the NDFSM is called partially defined, otherwise it is 
called completely defined. It is known that for each NDFSM an observable 
NDFSM with the same behaviour exists. Deterministic acceptors (Rabin Scott 
automata) in the alphabet XxY can be considered as a (partially defined) 
NDFSM with the input alphabet X, output alphabet Y and a set of final states. So 

notations extend on acceptors (Rabin Scott automata) in the alphabet XXY. L(Q) 
denotes the set of words which the automaton Q accepts. 

Let us consider the notion of a testing acceptor - a special case of a conditional 

test. An acyclic acceptor Q in the alphabet XXY is called a single testing acceptor if 
for every acceptor's nonfinal state S there exists only one x, such that sx,'" 0. The 
acceptor is called acyclic if s(p,q)=s implies p,q are the empty words. In [Petrenko, 
Yevtushenko, Bochmann], a final state of the testing acceptor is called a 'fail' state. 
A testing acceptor corresponds to an algorithm that conducts a single adaptive 
experiment with the black box as follows. 
1. Declare the initial state So as a current state. 
2. From the current state s submit an input signal x, such that SX, ",0 to the black 

box. 
3. Read the output signal y produced by the black box. 
4. If s(x" y) '" 0, then assume state s (x~ y) as a current state and go to Step 2 
S. If the current state is final, then return the result 'fail', else 'pass'. 

The number of inputs x, submitted during this test is called the length of the test. 
Since the acceptor is acyclic, testing is always finite and the result is defined. It is 

obvious that the result is 'pass' iff L(Q)nAR=0. 
Let Q, be a maximal single testing acceptor which is a subautomaton of Q. This 

means that a single testing acceptor Q; can be obtained from Q by 'erasing' some 
(or none) states and transitions and every Q' such that if Qj is a subautomaton of Q' 
and Q' is a subautomaton Q then Q' =Q,. Let {QI'".,QN} be the set of all such 
acceptors. This set is obviously finite. Define an arbitrary order on acceptors. 

The following test procedure corresponds to a testing acceptor Q. 
1. Order acceptors in a sequence QI'".,QN. 
2. i:= 1, L be an empty set. 
3. If there are pX,qy E L, y' E Y such that pX,qy' is a prefix of a word from L(Q,) 

but pX,qy is not then go to 6. 
4. Reset the black box to the initial state. 
S. Perform test Qj. If the result is 'fail', go to 9. 
6. i:= i + 1. 
7. if i :s; n go to 1. 
8. The result is 'pass'. Stop. 
9. The result is 'fail'. Stop. 

Step 3 is included to prevent redundant testing when the result of the test Q; with 
black box is obviously 'pass'. 

The maximal number of resets during testing is called the multiplicity of the test 
Q with the given black box. The maximal mUltiplicity of the test Q with an 
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arbitrary FSM is called the multiplicity of the test Q. The maximal length of test QI 

during testing is called the length of the test Q. The maximal length of the test with 
an arbitrary FSM is called the length of the test Q. The number of all inputs 
offered to the black box is called the overall length of the test. 

The order of acceptors QI, ... ,QN can affect the test multiplicity and length in a 
general case. 

It is obvious that the result is 'pass' iff L(Q)nAR=0. So more sophisticated 
algorithms for checking the intersection of L(Q) and the black box behaviour could 
be developed to reduce the overall length of a test. 

A testing acceptor Q is called a test distinguishing the NDFSM A from the 
NDFSM B if the result of the test Q with every correct implementation of A is 
'pass' and the result of the test with a black box which is a correct implementation 
of B but is not a correct implementation of A is 'fail'. Initialised, completely 
defined implementation and specification FSMs only are considered in this paper. 

The existence of a test distinguishing A from B does not imply the existence of a 
test distinguishing B from A. But if both tests exist we can test whether the given 
black box is a correct implementation of A, B or both of them. 

In the next section, we consider the problems of the existence and derivation of 
NDFSM distinguishing tests. 

3 TEST EXISTENCE 

It is known that a distinguishing test exists not for all NDFSMs. The following 
theorem gives necessary and sufficient conditions for the test's existence: 

Theorem 1. A test distinguishing an NDFSM A from B exists if and only if [As \ 
AA]nA JAf'ls ( is a finite set 

Here [W] denotes the closure of the set of words W under prefix (if pp'e W then 
pe [W] ). ]AnB[ is the largest completely defined NDFSM whose behaviour is 
included in A and B behaviours. The FSM ]AnB[ is the largest if the behaviour of 
any NDFSM C is included in the behaviours of A and B then NDFSM C behaviour 
is also included in the behaviour of ]AnB[. 

The conditions of Theorem 1 are constructive. Let us make some auxiliary 
constructions based on the state pair graph in order to prove the theorem. 
1. Build an acceptor (the graph of A and B state pairs) in the alphabet XXY with 

the state set s" xs' u Ul, transitions are defined as follows: 

(1', l), if l (x,y)=I' and l (x,y)=tS ; 

j, if l(x,y)= 0, butl(x,y):¢: 0. 
(l,l)(x,y) = { 

2. i:=O, Vo:=Ul. 
3. i:=i+ 1 and V/= Viol' 
4. For le s", le s', do: 
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if (l,l)e VI and (l,l)x !';; VI.I for a certain x, then do VI := VI u (l,l) and 
mark all transitions «l,l).x,y) of the constructed automaton, where ye Y. 

5. If VI :¢:0, go to 3. 
6. V:=VI. 
7. Delete for nonmarked transitions outgoing from all states from V, the 

obtained automaton with the final state/is denoted D(A,B). 
8. Delete all states from which/is not reachable. 
9. Delete all marked transitions outgoing from V. The resulting automaton with V 

as the set of final states is denoted KER(A,B). 
In step 1, the acceptor which accepts the opening of the set of word AB\ AA under 

prefix was constructed. The opening under prefix means the set of all words from 
AB\A.A whose own prefix can not be found in AB\A.A. On step 2-5 all r-distinguishable 
state pairs are included in V. As shown in [Petrenko, Evtushenko, Bochmann] SA 

and SB are r-distinguishable if and only if there exist no correct implementation of 
B which is a correct implementation of A. 

According to [Petrenko, Yevtushenko, Bochmann] and [Lukjanov], a testing 
acceptor D(A,B) with the initial state (l,l)e VI is a simple test distinguishing A and 
B. 

The set [AB\A.A]n~"B( in Theorem 1 is the set of prefixes of L(KER). Since final 
states of KER do not have cycles, [AB\A.A]n~"B( and L(KER) are either both finite 
or both infinite at the same time. This implies the following theorem that is 
equivalent to Theorem L 

Theorem 2. A distinguishing test for NDFSMs A and B exists if and only if 
L(KER) is a finite set, i.e. KER is acyclic. 

To prove the statement, we use the following proposition. 
Proposition 1. Let Lr;;;, AA and 4; Ac where A is an NDFSM, C is a DFSM and 

both FSMs are completely defined. Then L is included in the behaviour of a 
correct implementation of A. 

Proof of Theorem 1. Conditions are obviously sufficient. We prove that they are 
necessary. Assume that [AB \ AA]nA )A"B( is infinite and Q is a testing acceptor 
distinguishing A from B. Since the language is regular, there exist such words v, u, 
w in the alphabet X x Y such that vu * !';; A )A"B( but VU *w r;;;, AB \ AA' Due to 
Proposition 1, there exists a correct implementation DFSM C of ]AnB[, VU* !';; A c' 
The DFSM C is a correct implementation of both NDFSMs A and B. Perform the 
test Q with C. Let the length of the test Q with the DFSM C be equal to k. 

It is obvious that Ac\VU* (XxY)* u vukw r;;;, AB• 

Let H be an implementation DFSM of B which includes Ac\ vu* (XxY)* U 

vukw in its behaviour as H. Such an implementation exists according to Proposition 
1. H is not a correct implementation of A because vu *w !';; AB \ AA. Thus, results of 
the test Q on H and C are different. Therefore, Hand C have different outputs for 
at least one input word of length k. This contradicts the construction of Hand C. 
The theorem has been proven. 



106 

4 TEST GENERA nON 

The following lemma can be proven similarly to Theorem 1. 
Lemma 1. Let Q be a testing acceptor distinguishing A from B. Then every word 

from L(KER) is a prefix of a word from L(Q). 
D(A,B) with the initial state (l,l) from V is a minimal testing acceptor 

distinguishing A and B. Classes of correct implementations of states l, l do not 
intersect. From these facts and Lemma 1, the following theorem is obtained. 

Theorem 3. If a test distinguishing NDFSM A from B exists then D(A,B) is a 
distinguishing test of minimal length and multiplicity. 

Theorem 3 obviously defines a test generation procedure. Lemmea 1 implies that 
the length and multiplicity of the test D in the worst case do not depend on the 
assumed order of simple tests QI' ... ,QN" 

Several testing acceptors with various overall lengths of corresponding tests can 
be constructed. To find an algorithm for constructing tests of a minimal overall 
length we needs a more complex conditional test model than a testing acceptor. 
But the latter can yet be useful. 

By erasing outputs in the testing acceptor graph we also can obtain an 
unconditional test. 

It is obvious that the test length, multiplicity and overall length do not exceed 
nm, IXI"", nmlXIMI respectively, where nand m are state numbers of NDFSMs. 
These upper bounds have the same order as minimal. 
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