
Conformance testing
methodology of Internet
protocols
Internet application-layer
protocol testing - the Hypertext
Transfer Protocol

Roland Geese
Conformance Center, Ericsson Ltd.
H-1037 Budapest, Labore u. 1., Hungary,
Tel: +36 1 4377618, Fax: +36 1 437 7219,
e-mail: roland.gecse@lt.eth.ericsson.se

Abstract
This paper examines the applicability of OSI conformance test methodology to
Internet protocols. It summarizes the differences between them and introduces
the Internet Reference Model along with a new abstract test method, which
was designed for the practical purposes of conformance testing of TCP lIP pro­
tocols. Some interesting test cases, that were chosen from HTTP, demonstrate
the facilities of the model and give impression of testing Internet protocols.

Keywords
conformance test, Internet, HTTP

1 INTRODUCTION

Up to now, in the Internet community, conformance testing was an unknown
concept. However, the need for recommendation conforming TCP lIP imple­
mentations grows as the application of Internet protocols in business telecom­
munication systems is becoming reality. It is probable that more and more
vendors are going to provide Internet products, whose reliability and interop­
erability with other products have to be assured.

Although conformance testing methodology (X.29Q-X.296, 1994-95) was.
originally intended for OSI based systems, there are ongoing discussions about
its applicability to the TCP lIP protocol stack. Numerous articles and con­
ference contributions justify that these questions present a current topic.

A. Petrenko et al. (eds.), Testing of Communicating Systems
© Springer Science+Business Media New York 1998

36

(Bil, 1997) founds theoretical base of relay system testing, which is then used,
among others, for the testing of Simple Mail Transfer Protocol (Bi2, 1997)
and IP router. (Kato1, 1997) and (Kato2, 1997) focus on detailed analysis
of Transmission Control Protocol's flow control algorithms that are expected
to be used on measuring and fixing the majority of implementation problems
listed in (Paxton, 1998). On the other hand, (Malek, 1998) deals with inter­
operability test suite derivation that may be used for the purpose of Internet
testing.

The following issues, beside others, will be argued in this paper. Sections
2-5 give an overview of the Internet protocol structure, introduce the Internet
Reference Model and suggest a new abstract test method. Also, similarities
and differences in layering, data flow and configuration are fetched in com­
parison to the OSI Basic Reference Model (BRM) (X.2DD, 1994). After the
presentation of a possible test realization (section 6) and a short overview of
the Hypertext Transfer Protocol (section 7), section 8 gives some practical
testing examples from the field of client, server and proxy testing.

2 COMPARING INTERNET AND OSI ARCHITECTURE

The OSI BRM has 7 layers, each of which with a well-defined task. OSI
protocol stacks are designed to fit to this model. The protocol entities (PEs)
of a particular protocol suite are associated to the appropriate layers. Peer-to­
peer communication between two PEs of the same layer takes place in abstract
protocol data units (PDUs) while physical communication with upper and
lower layers' PEs is only possible via service primitives (SPs).

Unfortunately, Internet was not planned to have such a detailed abstract
model. The structure of TCP lIP, which represents the actual state of Inter­
net has evolved gradually from the beginnings (Carpenter, 1996). Internet
has only four layers: link, network, transport and application. Although the
general functions of these layers are not as well-defined as OSl's, they pro­
vide almost the same functionality. Disregarding that reliable service appears
first only in the transport layer, network and transport layers map to their
OSI counterparts. Internet link layer maps, in general, to OSI physical and
data-link layers. Since the application layer holds all remaining functionality
(OSI layers 5-7), applications may gain enormous complexity. Internet pro­
tocols do not have standardized SPs, thus in contrast to open systems, the
communication between neighboring layers is implementation specific. This,
besides the loosely specified layer characteristics, results that layer boundaries
are flexible. Another feature that must be kept in mind when talking about
Internet is the whole TCP lIP protocol stack should be considered as a sin­
gle unit together with a set of alternative protocols. The transport layer, for
example consists of two protocols: the transmission control protocol (TCP),
which is a connection-mode service and the user datagram protocol (UDP)

37

that provides a connectionless service. In a particular communication process,
at most one of these services is used.

From the configuration point of view a real open system can act as end
system, relay system or both simultaneously. Internet systems have also this
kind of configurations with noting that relay systems are called also interme­
diaries. Intermediaries are further subdivided according to working aspects to
proxy, gateway and tunnel systems which will be discussed later.

3 CONFORMANCE TESTING OF INTERNET PROTOCOLS

From the conformance testing perspective it is worth to distinguish between
hardware and software implementations. Hardware implementations (eg. IP
router, Web-TV equipments) neither implement the whole TCP JIP protocol
stack, nor provide interface to protocol layers. Accordingly, they could be
examined only by an external test system. Software implementations (eg.
FTP client, httpd programs) on the other hand have numerous advantages
over hardware systems. Besides the existing test methods (X.290-X.296, 1994-
95; Bi1, 1997), they imply the possibility of designing more effective new
test methods. For the understanding of this methods, a particular TCP JIP
implementation should be examined.

4.4BSD-Lite's Netj3 networking code (Wright, 1995) can be considered as
a reference implementation of the Internet protocol suite* .

The structure of the Netj3 networking code is presented in figure 1. Applica­
tion level protocols (FTP, Telnet, RIP) are distinguished from the underlying
TCP JIP stack. They are running as processes in the device's user space while
underlying layers protocols used to be implemented as a single unit in the
operating system space.

The internal structure of this unit consists of three layers: application pro­
gramming interface (API) or socket layer, protocol layer and interface layer.
The public functions of this unit can be reached at the kernel entry points
using system calls (SCs) which represent the operating systems' service prim­
itives.

API, in addition to separating the application layer, provides a protocol
independent interface to the entities of the underlying protocol layer . It offers a
set of different networking features of the kernel that can be reached uniformly
via SCs.

The protocol layer holds the Internet transport (UDP, TCP) and network
(IP, ICMP, IGMP) layer protocols (Stevens, 1994). The protocol layer does
not provide SCs to application layer entities.

The interface layer consists of various device drivers implementing link layer

"Besides TCP lIP, it also supports Xerox Network Systems (XNS), OSI communication
protocol families and the Unix domain protocols that are provided for interprocess commu­
nication (IPC).

38

protocols (eg. Ethernet) and procedures that are used for address conversion
between the protocol layer and itself. The code for different pseudo devices
(loop back interface, BSD packet filter (BPF)) can also be found there. Inter­
face layer functions are accessible through SCs. The packet filtering functions
are further applicable for control and observation.

Now, having a global picture of the overall structure of TCP /IP, the Internet
Reference Model will be introduced.

4 THE INTERNET REFERENCE MODEL

It can be stated that all of today's software TCP /IP implementations are
based upon the architecture of Net/3. By considering this a model will be
introduced that is suitable for conformance testing and incorporates the listed
features of software implementations.

Application

API

Transport
t------

Network

Link

t user
~ space

system
space

process

t system calls t
socket layer

protocol layer
(TCP/IP, OSI, XNS,

Unix families)

interface layer
(Ethernet, loopback,

BPF, etc.)

7: applicatiqn
6: presentabon
5: session

4: transport

3: network

2: data link

1: physical

Figure 1 The Internet Reference Model (left), general organization of Net/3
networking code (right)

In the Internet Reference Model (IRM), the functions of SPs are replaced
by SCs of API*. These SCs allow applications to send PDUs directly to each
layers protocol entity. The API itself should be considered as a switch that
connects applications to the selected underlying service via SCs. The functions
of the API are provided at kernel entry points (rhombus). The semicircles
present the possible destination protocol layers to which SCs provide access.
The dashed line expresses that API itself is not a protocol.

Although the IRM has some minor differences from OSI BRM, which are
coming from design aspects, the applicability of existing conformance test
methodology is straightforward.

*In this context, API is used as a general term, which in a particular implementation (eg.
Net/3) stands for both socket API and BPF. That is, because the socket API does not
provide access to the interface layer.

39

5 ABSTRACT TEST METHODS

Considering the open structure of software implementations, the new Joint
Test method (JT) will be defined, which can be uniformly applied to testing
of all protocols of IRM.

JT can be applied both in Single Party Testing (SPyT) and in Multi
Party Testing (MPyT) context. When used in SPyT, it resembles to the
local (X.290-X.296, 1994-95) test method. Whereas the MPyT variant has
similarities to the local transverse test method in (Bi1, 1997).

JT is shown in figure 2, and uses the graphical notation of (Baumgarten,
1994).

. - _ ..

UT~ :····0·····

lTCP

m PDUS LT • - - -- IUT

tscs

Uderlying service provider

Figure 2 The joint test method.

JT has the following characteristics:

• Test system and system under test (SUT) are on the same system.
• There is an optional Upper Tester (UT), and one Lower Tester (LT) in

SPyT; no UT, an arbitrary number (usually 2) of LTs and a Lower Tester
Control Function (LTCF) in MPyT. UT, LT(s) and LTCF are application
layer processes.

• The Points of Control and Observation (PCOs) are at the LT and UT.
• Test coordination is done using Unix IPC.
• Test events are exchanged in PDUs using SCs of API. The control and

observation is provided by means of API.

The most significant difference to the ancestor test methods, which is very
advantageous in practical testing of software TCP lIP implementations, is
that LT(s), UT and coordination procedures are placed in the application
layer regardless of the layer which is occupied by IUT. Another good feature
is that JT can be applied to both end systems (SPyT) and relay systems
(MPyT), thus intermediaries can be tested out of their environment.

40

,--_:~~_:r_ r -- -- ---------...L-_M_~-.,-;_:_r--, + --

MP
file

.... -

ExTeL
file

e ••• . .
produces - -... controls

uses ..--.. communicates:

Test ports

Figure 3 SCS structure.

6 TEST REALIZATION

Log

Having an implementation to be tested and an abstract test suite (ATS) ,
the means of testing should be provided. It consists of the implementation of
tester functionalities, the derivation of ATS into executable test suite (ETS)
and the production of test documents.

System Certification System (SCS) is a set of tools provided by Ericsson
that can be used in a wide variety of testing: functional testing (white-box
technique), conformance and interoperability testing (black-box) and perfor­
mance testing (white/black-box). SCS is based on the following principles:

• Protocol independence. This means that different protocols can be tested
on the same manner.

• Multiple simultaneous protocols. Not only one but many protocols can be
accessed from the same test.

• Distribution. One test may be distributed (over the Internet), making it
possible for each part of the test most closely related to one interface to
reside in the box containing that physical interface.

• Platform independence. SCS is independent of the platform in which the
SUT executes in. It can execute the same tests both against the physically
real SUT and the SUT only simulated in a workstation (bypassing the
lowest protocol layers).

One of the main ideas in SCS is that it is an interpreting execution platform.

41

This means that a TTCN test suite (an MP file) given as input to the Transla­
tor is first converted into an intermediate language, ExTeL (Executable Test
Language), which then can be directly executed (interpreted) by the ExTeL
Test Component Executor, TCE (see also figure 3 above). With this method
there is only one phase from a TTCN test suite to the final executable format
which makes it· different compared to the compiling methods, where ail extra
compilation and linking phase has to be performed.

Another important feature in SCS is the Test Port concept. With this solu­
tion it is possible to develop the core functionality separately without affecting
the existing test ports and vice versa.

There exist also two built-in POU encoder/decoders: BER (Basic Encoding
Rules) and a raw binary encoder/decoder.

TTCN Manager is the front end in SCS. It has the control over execution
and monitoring. The log files for different test components can be observed
in real time.

7 THE HYPERTEXT TRANSFER PROTOCOL

The Hypertext Transfer Protocol (HTTP) (Fielding, 1997) is an application­
level protocol for distributed hypermedia information retrieval systems. It is
used by World-Wide Web global information initiative since 1990.

HTTP is a generic, stateless, client-server protocol that can be used in wide
variety of services by extending through extension of its request methods.

The first versiori of HTTP - HTTP /0.9 was a simple raw data transfer
protocol. HTTP /1.0, as defined by RFC 1945 improved the protocol with
many features (MIME-like messages and headers etc.). However, it does not
provide enough facilities for handling the effects of hierarchical proxies and
virtual hosts. The actual version, HTTP/1.1 offers sophisticated methods for
content negotiation, cache control etc.

HTTP has three kinds of communicating parties: client or user agent, ori­
gin server and intermediary. There are three common forms. of intermediary:
proxy, gateway and tunnel.

A proxy is special communication party which, unlike the others, has no
OSI equivalent. It can act as both client and server. It may service client
requests internally or by passing them on, with possible translation, to other
.proxies or servers. A gateway receives requests as it were the origin server, and
forwards them with possible translation. The client may not be aware that
it is communicating with a gateway. A tunnel acts as a blind relay between
connections, and is not considered a party of the HTTP communication.

Each party of the communication which is not acting as a tunnel may
employ an internal cache for handling requests. The effect of a cache is that
the request-response chain is shortened.

In the simplest case communication takes place via a single connection

42

between user agent and origin server. However, more than one connection may
be required when intermediaries are present in the request-response chain.

A significant difference between HTTP/1.1 and earlier versions is that per­
sistent connections are the default behavior. Persistent connection means that
the connection is not closed after the initial request-response pair. In this case
the client can issue further requests. The advantages of persistent connections
are: less communication overhead (fewer connections must be set up and re­
leased), and thus increased speed. The drawbacks contain: longer duration of
connections (origin servers wait for clients to send further requests) and, possi­
bly, conflicts of asynchronous close events (either party of the communication
may choose to close the connection any time).

8 TESTING HTTP

8.1 Test documents

The main point of HTTP is information retrieval. World-Wide Web informa­
tion consists of resources that have to be placed OIl origin servers and are
addressed with Uniform Resource Identifiers (URIs). In order to test HTTP
communicating parties, these resources should be provided to the IUT. The
resources supplied to them are the following:

• An origin server should have a test Data Base (DB) containing resources
that are available for presentation and a set of Configuration files (C) de­
termining its internal operation *.

• A proxy is very similar to the server. It has no local DB, but it usually has
and internal cache.

• A user agent has only C, but it also may contain an internal cache.

In addition to putting IUT into a test context (DB and C), the test compo­
nents also should be familiar with that context. Because of the fact that DB
and C play some role of UT, they will be considered so. Thus, their contents
must be set up before the test campaign is launched (from test purposes,
Protocol Implementation Conformance Statement (PICS), Protocol Imple­
mentation Extra Information for Testing (PIXIT».

If OSI conformance testing methodology should be applied to any protocol
of the TCP /IP stack, the Request For Comments should be accompanied by
these test documents.

Selected PICS questions and test purposes will be demonstrated below.

·eg.: how many instances of the server should be createdj where is the DB located inside the
file systemj possible mappings that should be applied to various URLsj which documents
have to be considered secure and require authentication

43

8.2 Test configurations

As server, proxy and client have different functions, different test configu­
rations should be defined for testing each of them. Since all common kinds
of implementations (except Web-TV -like equipments) are software programs,
the best choice is the application of JT. Let's examine the demonstrated con­
figurations deeper!

Figure 4 Test configuration for client (left) and server (right) testing.

Figure 4 shows the configuration for testing a user agent. This arrangement
consists of an UT and a LT. Their PCOs are denoted with filled circles.
The role of UT is played by a user who makes the IUT to issue requests
for a certain document. The LT acts as the origin server, it examines and
answers the received requests from its DB, according to its C. Test results are
determined by the UT and LT together. LT examines whether the client has
retrieved the right resource while UT investigates if IUT has presented the
resource as well. Test coordination is also done internally.

The configuration for origin server tests can be seen on figure 4. The differ­
ence from the client's test configuration is that UT is absent. It has only one
PCO at LT. The communication is initiated and the results are examined by
LT. Physically, DB belongs to the IUT, however LT also makes use of it.

The configuration for proxy testing (figure 5) is based on the MPyT variant
of JT. It has two LTs; LTC plays the client role, while LTS simulates the
server.

The test realization happens using SCS. The LTs are implemented as test
ports of SCS. In MPyT case, concurrent TTCN is applied. Test coordination
between the test components is made using Unix IPC.

44

IP

loopback

Figure 5 Test configurations for proxy testing.

8.3 Testing client behavior

The behavior of a client or user agent (UA) is, in general, controlled by hu­
man using intuitive on-line graphical interface. However HTTP requests that
are necessary to retrieve desired resources are generated by the user agent
independently of its user.

Let's take a look at a common example: a user browsing the Web, selects an
anchor of an HTML page. Doing that, he/she makes the UA issue an HTTP
request to the target URL's origin server acquiring an HTML document. After
successful downloading, the client parses the document and finds numerous
references to inline images and a hyper link to a style-sheet resource containing
essential definitions affecting the layout of the document. The UA should
retrieve the required data without any kind of user interaction. Nowadays,
HTML pages show many pictures so clients often issue a couple of requests
for getting all the contents of a page.

According to the (Fielding, 1997) a client may pipeline its requests. This
means it may issue multiple requests without waiting for each of the server's
responses. The client, furthermore, should be prepared for expected failure of
its attempt ego when it communicates with an HTTP /1.0 server that neither
supports persistent connections nor pipelining, it should cope with such vari­
ations. According to this clause, a suggested test purpose follows along with
its PIeS selection reference.

PIeS1.1
Is the IUT (HTTP/1.1 conforming client) able to use pipelining? 0 YES

TP1.1
To check if the IUT (client) will not pipeline immediately after connecting
to the origin server if its last pipeline attempt has failed.

45

s_tcp_socket ? receive GET (ROOT, HTTP_l_l, server)

s_tcp_socket ! send s200_0k (ROOT_DOC)
s_tcp_socket ? receive (resO : = request. request_line. uri) GET (· HTTP_l_l, server)
s_tcp_socket ? receive GET (· HTTP_l_l. server)

s_tcp_socket ? receive GET (· HTTP_l_l, server)
s_tc:p_socket ! send s200_0k (IUT)

s_tcp_socket ! close
START T_SERVER

s_tcp_socket ? receive GET (· HTTP_l_l, server)

RESET T_SERVER
? TIMEOUT T SERVER (P)

Figure 6 Test case for testing client behavior.

The UT makes the IUT request for a given resource (PIXIT) then the
IUT issues the request. The LTS receives the request and sends a 200 'OK'
response accompanied with the requested document and does not close the
connection, since it waits for the IUT to send further requests. After receiv­
ing the response, the IUT parses the document and finds three hyperlinks to
inline images. Now, the IUT has exactly three additional requests to issue in
order to get the page contents. The LTS waits for the IUT to pipeline these
three consecutive requests. After that, the LTS sends the response to the first
request along with the connection close message and closes the connection.
The IUT should keep track of the status of its requests, and according to the
specification it should request for the two unreceived resources automatically.
However, its pipeline attempt has failed, so it has to get these resources after
one another. If that is the case, the IUT passed the test purpose, otherwise it
does not conform to the recommendation (Fielding, 1997). Figure 6 shows the
TTCN test case corresponding to the this test purpose (unnecessary timer op­
erations, preambles, postambles, default trees and OTHERWISE statements
are removed for better readability).

8.4 Testing Origin Server

There are many common features in an origin server that have to be tested
for conformance; the test case that was selected for this demonstration deals
with access authentication.

PICS2.1:
Does the IUT (server) provide Basic Access Authentication? 0 YES

TP2.I:
To verify whether the IUT (server) responds to client requests, which affect
protected documents, with 401 'Unauthorized' status, accompanied with
the 'WWW-Authenticate' header.

LTC issues a request for a protected resource. The IUT receives the request
and finds that the retrieval of the requested document needs authentication.
LTC expects IUT to respond with status 401 'Unauthorized'. Moreover, this
response should contain the www....authenticate header. In this case the verdict
is pass, otherwise the IUT has failed. Figure 7 shows the test case for TP2.1.

46

c_tcp_socket ! connect
c_tcp_socket ! send GET (PROTECTED. HTTP_l_l. lUT)
START T_SERVER
c_tcp_socket ? receive [
response. header_set. response_header. www_authenticate=
c_Basic_Authentication)
c_tcp_socket ! close s401_Unauthori zed (IUT) (P)
CANCEL T_SERVER.

+timeout

Figure 7 Test case for testing server behavior.

8.5 Testing proxy

A proxy is the most complicated party of HTTP communication. It receives
the clients requests and tries to fulfill them from its cache. If the requested
resource cannot be found in the cache or the cached copy is not fresh enough,
the proxy retrieves it from another proxy of the cache hierarchy or directly
from the origin server.

PICS3.1:
Does the IUT (proxy) employ internal cache for handling requests? 0 YES

TP3.1:
To verify whether the proxy under test is able to store retrieved resources
in its cache.

The test case consists of two parallel test components. The HTTP _CJ>TC
acts as a client, while the HTTP lLPTC plays the origin server's role. As a pre­
test condition, the proxy's cache should be cleared. Then the two parallel test
components are instantiated. The client (LTC) issues a request to the proxy
for the ROOT resource located on the server. The proxy gets the request
and issues an additional request to the server, since the requested resource
cannot be found in its storage. The server sends the response along with the
target document to the proxy. If the proxy behaves well, it should store the
received document and forward it to the client. After getting the response,
the client issues the same request to the proxy. The proxy should fulfill this
second request from its cache, it should not turn to the server again. If the
server gets another proxy request, then the IUT fails. Otherwise, if the timer
expired, the verdict is a conditional pass. If the client gets the new copy
of the retrieved document, the verdict is a conditional pass, too. The final
verdict is calculated in the postamble. Figure 8 shows the concurrent TTCN
(ISO/IEC 9646-3, 1998) test case for test purpose 3.1.

9 CONCLUSIONS

In this paper, differences between OSI and Internet systems were summarized.
Then the Internet Reference Model was introduced together with the Joint
Test method for conformance testing. Afterwards, a practical application of

47

CREATE (HTTP_C_PTC : client. HTTP_S_PTC : server
? DONE (HTTP_C_PTC, HTTP_S_PTC)
client
c_tcp_socket ! send GET (ROOT, HTTP_l_l, server)

c_tcp_socket ? receive s200_0k (ruT)
c_tcp_socket ! send GET (ROOT, HTTP_l_l. server)

c_tcp_socket ? receive s200_0k (IUT) (P)
server
s_tcp_socket ? receive GET (ROOT, HTTP_l_l. server)

s_tcp_socket ! send RESPONSE (ROOT_DOC)

START T_SERVER
s_tcp_socket ? receive GET (. . .) F
? TIMEOUT T_SERVER (P)

Figure 8 Test case for testing proxy behavior.

the new concept was demonstrated on the testing of HTTP communication
parties.

We have shown a framework for testing Internet protocols, which was
worked out on the basis of the conformance testing framework of (X.290-
X.296, 1994-95). Experiences with testing HTTP showed that some extensions
are necessary to :rTCN for making it more suitable to describe test cases for
testing Internet protocols. This is true especially for testing performance re­
lated features of the product.

Future work can be, for example the interoperability testing based on this
concept of Internet protocols, and introduction of formal extensions that are
more suitable for Internet testing.

10 ACKNOWLEDGMENTS

The author would like to thank Dr. Sarolta Dibuz and Mazen Malek for their
helpful comments, and is also grateful to the anonymous reviewers providing
valuable comments and suggestions that have improved the quality of this
paper.

REFERENCES

Baumgarten, B. and Giessler, A.: OSI conformance testing methodology and
TTCN, North. Holland, 1994.

Bi, J. and Wu, J.: Towards abstract test methods for relay system testing.
Testing of Communicating Systems, Volume 10 pp 381-397, IFIP, 1997.

Bi, J. and Wu, J.: Application of a TTCN based conformance test environment
on the Internet email protocol. Testing of Communicating Systems,
Volume 10 pp 324-330, IFIP, 1997.

Carpenter, B. (editor): Architectural Principles of the Internet, RFC 1958
Informational, IETF Network Working Group, 1996.

Fielding, R., Irvine, VC, Gettys, J., Mogul, J., Frystyk, H. and Berners-Lee,
T.: Hypertext Transfer Protocol - HTTP/1.1., RFC 2068 Standards
Track, IETF Network Working Group, 1997.

ISO/IEC 9646-3, The Tree and Tabular Combined Notation (TTCN), 1998.

48

ITU-T X.200, Information Technology - Open Systems Interconnection - Ba­
sic Reference Model: The Basic Model, 1994.

ITU-T X.29O-X.296, OSI conformance testing methodology and framework
for protocol recommendations for ITU-T applications, 1994-1995.

Kato, T., Ogishi, T., !doue, A. and Suzuki, K.: Design of Protocol Monitor
Emulating Behaviors of TCP lIP Protocols. Testing of Communicating
Systems, Volume 10 pp 416-431, IFIP, 1997.

Kato, T., Ogishi, T., !doue, A. and Suzuki, K.: Intelligent Protocol Analyser
with TCP Behavior Emulation for Interoperability Testing of TCP lIP
Protocols. Formal Description Techniques and Protocol Specification,
Testing and Verification, FORTE X/PSTV XVII '97 pp 449-464, IFIP,
1997.

Malek, M. and Dibuz S.: A Pragmatic Method for Interoperability Test Suite
Derivation. EUROMICRO'98, Proceedings of the 24RD Euromicro
Conference, Stockholm,Sweden, 1998. Aug 24-26.

Paxton, V. (editor), Allman, M., Dawson, S., Heavens, I. and Volz, B.: Known
TCP Implementation Problems, idraft-ietf-tcpimpl-prob-02.txtl. Inter­
net Draft, IETF Network Working Group, May 1998.

Stevens, W. R.: TCP lIP Illustrated Volume 1, The Protocols. Addison­
Wesley, 1994.

Wright, G. R. and Stevens, W. R.: TCP lIP Illustrated, Volume 2, The Im­
plementation. Addison-Wesley, 1995.

11 BIOGRAPHY

Roland Gecse is a Ph.D. student of the Department of Telecommunications
and Telematics at the Technical University of Budapest. He received his M.Sc.
in electrical engineering at Technical University of Budapest in 1996. Since
1997, he is a member of the High Speed Networks laboratory, and joined Con­
formance Center at Ericsson Hungary. His research interests include confor­
mance, performance and interoperability testing of Internet protocols, formal
description techniques and software engineering.

