
Testing and Test Generation: State of 
the Art and Future Expectations 

Anders Ek, Telelogic AB, Box 4148, S-203 12 Malmo, Sweden, 
tel. +46 40 17 47 12, fax +4640 17 47 47, 
email anders.ek@elelogic.com 

Abstract 
Formal methods, testing and test generation are in this paper discussed from a 
pragmatical industrial perspective and in particular as seen from a CASE tool 
vendors point of view. Since a CASE tool vendor survives by convincing 
potential customers that they will make money by buying (sometimes expensive!) 
tools, he needs good sales arguments. So, how do formal methods, testing and test 
generation fit into this? Essentially the idea is to show that a development process 
supported by tools based on these concepts is more efficient, giving higher 
quality to a lower cost, than the currently used process. 
The SOMT method provides such a process based on object oriented analysis and 
formal methods, and the requirements and testing track of this method is the main 
subject of this paper. As a complement to the method also the necessary tool 
support is discussed and exemplified with features from the Telelogic Tau tool 
set. 

Keywords 
MSC verification, test generation, use case, MSC, SDL, TTCN, UML 

1 INTRODUCTION 

Testing is an important part of any development project and this is true also for 
projects using object oriented techniques and an incremental, use case centred 
development method. In this paper I will discuss a development method with 
these characteristics. The focus of the discussion will be on the requirements and 

A. Petrenko et al. (eds.), Testing of Communicating Systems
© Springer Science+Business Media New York 1998



298 

testing track that is a part of the method. The method is an elaboration of a tool 
specific method called the SOMT method (Telelogic, 1996) that is aimed at 
giving an efficient development process for certain classes of applications. The 
SOMT method is mainly intended for the development of reactive, distributed, 
real time, embedded and oommunicating systems. Characteristic for this type of 
applications is that they are difficult and expensive to test and that they very often 
are appropriate to design using object oriented methods. 

The SOMT method is based on combining the strength of object oriented analysis 
and use case centred design with formal methods, specification level testing and 
test case generation. The notations used in this method are UML, SDL, MSC and 
TTCN but if needed it is easy to generalise the method to other notations 
provided they have the necessary level of formalism. 

In this paper I will discuss both the method itself and the tool support required to 
use the method. When relevant I will give examples from the Telelogic Tau tool 
set (Telelogic 1998a). In section 2 I will give an overview of the method, in 
section 3 discuss various aspects of the requirements and testing track and finally 
in section 4 comment on the current usage in industry and the expectations we 
may have on the future development in this area. 

2. THE SOMT METHOD 

When discussing a development method it is convenient to discuss it in terms of 
activities and models, where the activities are different tasks that have to be 
performed and the models are the products (usually documents, source code etc.) 
that are produced by the activities. Even if the activities are presented here in one 
specific order this is just for the convenience of description. An actual project, in 
particular if it is using an incremental and iterative approach, will perform several 
activities in parallel and also iterate and alternate between different activities. 
Anyway, the following activities will have to be considered in a development 
project according to the SOMT method: 

• requirement analysis, 
• system analysis, 
• system design, 
• object design, and 
• targeting/implementation. 

Each of the activities has two different aspects, one architecture aspect that 
defines the structure and behaviour of the application and one requirements and 
testing aspect that defines how initial requirements are transformed into tests that 
are used to verify the correct functionality of the system. An overview of the 



299 

SOMT method is illustrated in Figure 1. In this figure the notation has also been 
assigned to the different. This is however only to give an indication of the most 
common usage, sometimes other variants are more convenient like using SDL in 
the system analysis or UML in the object design and the method does not exclude 
these possibilities. 

Context/Domain System Level 

Req. Analysis Model (UML) Use Cases (MSC) 

~ 
System Structure Decomposed 

(UML) Use Cases (MSC) System Analysis 

1 + 
System Design Interfaces / work Formalised 

package (SDL) Use Cases (MSC) 

Targeting/Implementatio 

1 _: / Test case I Behavior def. (SDL) I A 

MSC Ver. generatio 

1 Test Cases 
n I Executables r 

Target 
TTCN 

n 
Object Design 

testing 

Figure 1. Summary of the SOMT method. 

The rest of this section briefly describes the different activities. 

2.1 Requirements Analysis 

The requirements analysis is the first activity in the SOMT method. It is focused 
on the external aspect of the application to be built. The purpose of the activity is 
to capture and analyse the problem domain and the user requirements. For this 
purpose the system is viewed as a black-box and only the objects and concepts 
visible on the system boundary and outside the system are modelled. 

For our purposes there are two essential models produced: 

• a requirements object model including context diagrams and a problem 
domain model, and 



300 

• a use case model. 

The requirements object model may be a conventional object model, i.e. one or 
more diagrams illustrating a number of objects and their relations (including 
inheritance and aggregation relations) but it may also be a fully described model, 
including behaviour, of the external view of the system. The purpose of the object 
model is two-fold: 

• to use context diagrams to describe the system and the external actors that 
interact with the system, and 

• to document all the concepts found during the requirements analysis and the 
relations between them in order to ensure that developers and users have a 
common understanding of the problem domain. 

The use case model consists of a set of use cases, each described using MSCs and 
sometimes structured text. The purpose of this model is to capture and validate 
requirements from a user's point of view to make sure that the system will solve 
the right problem. As we will see below the use case model is also the first part of 
the requirements/testing track of SOMT. 

2.2 System Analysis 

In the system analysis activity the focus is on analysing the internal structure of 
the application. The purpose of the activity is to describe the architecture of the 
system and identify the objects that are needed to implement the required 
functionality. The models produced in this activity are: 

• an analysis object model, to describe the architecture of the system in 
terms of objects and subsystems 

• an analysis use case model which shows the interaction between the 
objects and subsystems in each use case. 

The analysis object model is a conventional object model that forms the input to 
the object design phase. The analysts should in this activity be concerned with 
identifying the objects that must be present in the system, the responsibilities of 
the different objects and how they interact to fulfil the requirements posed on the 
system. 

The analysis use case model is an elaboration of the use cases from the 
requirements analysis. In the system analysis the use cases are expressed in terms 
of the internal structure of the system and defines how the subsystems and objects 
in the system interact to provide the desired functionality. 



301 

2.3 System Design 

The focus of the system design is on interfaces, reuse and work packages. The 
goal is to get an implementation structure that makes it possible for different 
teams to work on different parts of the system in parallel and to have precise 
definitions of their interfaces. To accomplish this the architecture track of the 
system design should product models like 

• a design module structure, describing the source modules of the design, 
• an architecture definition, containing SDL systemlblock diagrams, that 

defines the structure of the resulting application and that gives precise 
definitions of the static interfaces. 

The requirements/testing track that is of more interest for us in this paper is in 
this activity focused on formalising the use cases to make them precise enough to 
be possible to verify against the application in a simulated environment. In other 
words, to prepare for the actual testing task. 

2.4 Object Design 

The purpose of the object design is to create a complete and formally verified 
definition of the system. The main work here is of two kinds: 

• to do the coding of the behaviour of the objects in the system, and 
• to verify that the system fulfils its requirements. 

The models used in this activity are mainly SDL diagrams, in particular SDL 
process graphs that are used to define the behaviour of active objects. 

The testing/verification task is done in a simulated environment using SDL 
simulators for interactive debugging and MSC verification for checking that the 
system fulfils its requirements as expressed in the formalised use cases. 

2.5 TargetinglImplementation 

The implementation and testing activities are aimed at producing the final 
application, i.e. executable software and hardware. The activities in this phase are 
very much depending on the execution environment of the application but usually 
include: 

• either using an automatic code generation tool to produce the code from 
the SDL design or manually implementing the SDL design, 



302 

• integrating the code to the hardware requirements by means of using 
real-time operating systems and cross-compilers to generate the 
executable for the hardware, 

• implementing and executing test cases in the target environment based 
on the design use cases from the system design activity. 

From our perspective the most interesting part is the implementation and 
execution of the test cases. In the SOMT method this is done by generating 
TICN test cases from the MSC use cases and executing the test cases against the 
application to verify that the targeting/implementation was successful. 

3 THE TESTING TRACK IN SOMT 

3.1 Use Cases 

The testing track of the SOMT method starts with a use case oriented 
requirements capture. The term 'use case' has its origins in object oriented 
analysis methods and was established in the classical book by Jacobson (1992) 
but is actually an old idea that in different shapes has been practised for many 
years. The idea is to focus on the users of the system, called 'actors' in use case 
terminology. For each actor we analyse in what ways he would like to use the 
system. These different ways of using the system form the use cases. 

So, each use case describes essentially a set of possible sequences of events that 
take place when one or more actors interact with the system in order to fulfil the 
purpose of the use case. A use case is thus simply a description, in one format or 
another, of a certain way to use the system. It has been found to be a very 
efficient way to capture a user's view of the system and the concept of use cases 
is now used in a number of object-oriented methods. A difference compared to 
most other approaches is that SOMT puts some more effort in the formalisation 
of the use cases to be able to use them for verification purposes during the object 
design. The formalisation is done using the MSC notation, in particular using the 
extensions provided in the 1996 version of the MSC standard as will be described 
in the next section. 

3.2 Message Sequence Charts 

A message sequence chart (MSC) is a high-level description of the message 
interaction between system components and their environment. A major 
advantage of the MSC language is its clear and unambiguous graphical layout 
which immediately gives an intuitive understanding of the described system 
behaviour. The syntax and semantics of MSCs are standardised by the ITU-T as 
recommendation Z.120. 



303 

There are various application areas for MSCs but for our purposes in the SOMT 
method the most important are: 

• to define the requirements of a system, 
• to check the consistency of SDL specifications using MSC verification, and 
• to form as a basis for specification of TTCN test cases . 

There have been two versions of the Z.120 recommendation published, one in 
1992 and one in 1996. The 1992 version included the conventional sequence 
diagram notation that made it possible to essentially describe simple sequences of 
events. This recommendation was quickly implemented in a number of 
commercial tools but two problems were reported from people using MSCs in 
industrial applications. Both problems concerned how to handle complexity in the 
requirements specifications. 

The first issue was that when people started using MSCs they quickly found out 
that they wanted to decompose the MSCs into smaller MSC that could be reused 
in different ways to cover different cases. In MSC'92 it was suggested to use the 
condition symbols for this. If one MSC ended with a condition 'Idle' and another 
started with the same condition it was informally meant that the second could 
follow the first one. The problem was that it was difficult to get a high level view 
of the actual use cases and the overview was lost. 

The second problem was that the number of MSC that was needed to describe the 
requirements was found to be very large. To a large extent the reason for this was 
that all different combinations of exceptional cases and alternative possibilities 
had to be described in separate MSCs. This lead to either an explosion in the 
number of MSCs needed or the introduction of informal comments into the 
MSCs. Most actual users chose the informal comment solution. Unfortunately 
this made all verification tools useless. 

However, both of these problems were solved in the revised Z.120 
recommendation issued in 1996. This was mainly accomplished by introducing 
two new concepts: 

• high-level MSC diagrams and 
• inline expressions. 

The high-level MSC diagrams (HMSCs) solves the overview problem. The 
HMSCs simply describe how other MSCs (either MSC'92 style MSCs or HMSCs) 
can be combined to define a more complex behaviour. For example, the HMSC 
in Figure 2 shows a situation where we first have the MSC 'ConnectionEst' and 



304 

then one or more DataTrans' followed by one Disconnect' MSC. Note that when 
the flow lines between the MSC references branch, this indicates an alternative 
between the subsequent MSCs. 

MSC Session 1(1) 

Figure 2. A high-level message sequence chart. 

The combinatorial explosion of the number of MSC caused by similar, but not 
identical MSCs was solved by the addition of inline expressions in MSC'96. The 
idea is that a number of the messages and other events in an MSC can be framed 
and defined to be e.g. optional or an alternative to other events. Essentially this 
gives us a possibility to describe several similar, but slightly different, MSCs in 
one MSC. The inline expression possibility reduces the number of MSCs that 
need to be written substantially while they still preserve the intuitive syntax of 
MSC'92 and the formality of the requirement specification 

From the SOMT point of view the new 1996 version of MSC meant that the 
developers in industry could start capturing the full set of requirements and still 
remain in the formal MSC notation. 

3.3 Decomposing the MSCs 



305 

In the requirements analysis the MSCs are usually on an application level of 
abstraction with one instance axis for each actor and one instance axis for the 
system to show the external view of the use cases. In the system analysis the 
MSCs are elaborated and the system instance axis is replaced with instance axis 
for the different subsystem and/or objects in the system. the purpose is to see how 
the functionality of the use case is distributed among the subsystems. 

3.4 Keeping the MSCs Consistent and Formal 

In the system design activity the designers of the application formalises the 
interfaces between different subsystems. Some typical tasks done is to precisely 
specify signal lists, signal names, parameters of signals and the structure of data. 

In the testing track the main tasks are to keep the use case MSCs consistent with 
the precisely defined static interfaces and to do a thorough review of the use cases 
to make sure that they are precise enough both to act as an correct requirement 
for the implementers of the system and as a basis for testing of the requirements. 

This may sound like a trivial activity but it involves quite a lot of work and it is 
very important if we want to get a smooth development and testing in the rest of 
the project. 

3.5 Design Level Testing and MSC Verification 

In the object design activity there are two major tasks to be performed. First of all 
the details of the application is defined in SOL. This means in practise that the 
complete dynamic behaviour of the objects in the system ('processes' with SOL 
terminology) is coded using the state machines, abstract data types and the other 
concepts of SOL. The result is a complete definition of the application described 
as a set of communicating SOL processes whose combined behaviour is defined 
by the SOL run time model. Since SOL includes a precise definition of the run 
time semantics it is fairly straight forward to build tools that can simulate an SOL 
system using the predefined run time semantics. The Tau tool set contains both 
SOT Simulator for debugging SOL systems and tools like the SOT Validator that 
can automatically explore the state space of the SOL system. 

This executable property of SOL is used in the SOMT method for the 
requirements/testing task to be performed in object design; the verification of the 
use case MSCs against the SOL specification. Basically this is a kind of testing 
performed in a simulated environment with the purpose of verifying that the 
different execution paths described by the MSCs indeed are implemented in the 
application. This is most efficiently done by simply letting a state space 
exploration tool perform a search through the state space and in parallel evaluate 



306 

the MSC seen as a restriction on the possible execution sequences. In the Tau tool 
set the SDT Validator is designed to do this (See Ek, 1993). 

This design/specification level debugging is very convenient in particular for 
distributed systems where a test in a real target environment would include 
downloading the application in a distributed testing hardware which is a fairly 
complex process. Also for real time systems the possibility to test in a simulated 
environment is very efficient since real time application often involve specific 
hardware that may not be available until late in the project. By testing in a 
simulated environment the testing process can start earlier. 

3.6 Test Case Generation 

However, even if the design is verified in a simulated environment there still is a 
need to do a real testing in the target environment. To facilitate this the SOMT 
method uses the TTCN language as test notation for target testing. 

The generation of TTCN test cases from the MSC use cases is a problem that has 
some intricacies that may not be immediately noticed. One is that an MSC use 
case may, in particular if HMSCs are used, actually be a description of many test 
cases. The reason is that the MSC may branch and the decision of which branch 
to choose depends on what aspect of the use case we want to test. This is a very 
convenient feature in the MSC since it gives a compact definition of the use case 
and a state space exploration based MSC verifier can deal with this. However it is 
a problem when trying to test in a target environment and thus it is a 
complication when mapping to TTCN. 

Another problem is that often the MSC use cases doesn't contain a complete 
description of e.g. all data values to use when sending signals to the application. 
The MSC verification can handle this but the data values are needed when doing 
real testing on target. 

To overcome these problems a flattening and further formalisation of the MSC 
use cases are needed before moving to TTCN. In the Tau environment this can 
be accomplished by using the MSC verification to produce test purpose MSCs as 
a side effect of verifying the use case MSC. The test purpose MSCs are simple 
MSCs that contain no branching but sufficient details to act as input to the TTCN 
generation. This is illustrated in Figure 4. 



SDLSystem 

MSC'96 
Use Cases 

MSC'92 
Test Purposes 

Autolink 

TTCN 
Test Cases 

Figure 4. Generation of test purpose MSCs and TICN test cases based on use 
case MSCs. 

307 

Another complexity arises from the circumstances under which the generated 
TICN test cases should be used. If they are only to be used for an in-house 
automatic verification step, where the generated tests are executed on the run 
time platform in order to check that the adaptation of generated code works as 
expected, then the quality in terms of readability of tht< test suite etc. is not too 
important. However, if parts of the SOL system are implemented by hand or 
maybe even by a different organisation than the one that develops the SOL and 
TICN the situation is different. Then the TICN specification will be official and 
thoroughly inspected by people. In this situation it is essential that the TICN test 
suite is nicely structured and readable. To a large extent the readability of a test 
suite depends on minor details like the names of constraints and parameters. 
Unfortunately this structuring and naming is very difficult or impossible to 
generate automatically. Fortunately, quite a lot of effort has been put into solving 
this by allowing the user to guide and control the automatic generation of test 
cases including e.g. controlling the naming and parametrisation of constraints. 

The Autolink feature in the SOT Validator (see Ek et al 1997, Schmitt et al 
1997 and Telelogic 1998b) is the result of a joint project between Telelogic and 
the Institute for Telematics in Luebeck. This project has to a large extent been 



308 

focused on these practical aspects of the test generation problem. The basis of 
the Autolink test generation features is the state space exploration possibilities in 
the SDT Validator but a substantial amount of the actual work has been to 
develop methods that solves the more practical problems. The result is a product 
that now is used to produce TTCN test cases to be published as official ETSI 
recommendations (see Schmitt et at 1998). 

4 STATUS AND EXPECTATIONS IN INDUSTRY 

The SOMT method has been the recommended methodology guideline for people 
using the Tau tools since it first was published in Telelogic (1996) and the 
combined usage of UML, SDL, MSC and TTCN is now spreading in industry. 

SDL is now an accepted development notation in the telecom part of industry 
where many applications have been developed using automatic code generation 
from SDL designs. It is also used in standardisation where SDL is used as a 
specification notation, e.g. the INAP specification done by ETSI is specified in 
SDL. Nowadays, the tool support for SDL based development and code 
generation from SDL are very good and both our Telelogic Tau tools and other 
tools like Veri logs ObjectGeode are now successfully competing on the CASE 
tools market. 

The combination of UML for analysis and SDL for design is starting to get used 
but is not really wide spread yet, even though predecessors of UML and object 
oriented analysis has been used for many years as a complement to SDL in the 
early stages of development. However, since UML now is standardised and is 
replacing older techniques like OMT and Booch I would expect the usage of 
UML to increase very rapidly in the future. 

MSCs and similar notations have been used for many years.in industry to capture 
requirements and is an established method. Traditionally however MSC has been 
used in a fairly informal way making it difficult to use it directly in tools for 
verifying consistency with the design. To a large extent this is the case because 
the first formal version of MSC as standardised in 1992 did suffer from a number 
of weaknesses compared to the informal versions used in industry. As a 
consequence MSC is heavily used but today mainly to informally specify the 
requirements and also often extended with informal comments to overcome the 
limitations in MSC'92. The typical SDL developer of today would use the MSCs 
as input to a manual simulation task. He would take the MSC and manually run 
the SDL simulator according to the MSC requirements, creating simulation 
scripts that can be reused for regression testing. This is not a bad strategy but 
involves a substantial amount of manual work and, which may be a more severe 
problem, it makes it necessary to maintain two levels of manually created and 



309 

maintained descriptions. Both the requirement MSCs and the simulation scripts 
need to be maintained. As the new 1996 version of MSC is starting to get tool 
support and acceptance in industry this situation has started to change and MSC 
verification is beginning to be used as an industrial testing technique (see e.g. Ek 
et ai, 1997). 

On the target testing market most major telecom suppliers today have had their 
own proprietary test notation and test environment. However, as more and more 
commercially available test platforms based on TICN are released and new test 
specifications using TICN are published we have at Telelogic seen a clear trend 
towards TICN as a platform for testing tools. This has raised the interest for 
automatic generation of TICN code considerably since there is a very strong 
request from our customers to try to reduce the manual work needed for 
developing tests. 

To summarise the industrial perspective it is, as always, driven by commercial 
considerations. To make money from new products they have to be delivered on 
time, at reasonable price and quality. All of these aspects lead to a need to 
streamline the development process and to use tool support to automate as much 
as possible of the necessary task in the development process. It pays off to let the 
engineers do engineering and use computers for routine tasks. 

As a consequence all new CASE tools features that promise to cut down the 
manual development costs are very interesting for the development industry. This 
is good news for example for test generation tool developers, since the test 
generation tools definitely match this description. However, there are two 
challenges facing the introduction of the new tools: 

• They must be able to handle industrial size problems. 
• They must fit into the development processes used in industry. 

Both of these problems are difficult, but with new commercial tools like the 
Telelogic Tau tools that are able to handle real applications, but still are based on 
formal techniques, the first problem is beginning to get a solution, even if there of 
course still is some potential for improvement. 

The second problem, i.e. to change the way of working for a development 
department with maybe several hundred developers, a large design base of 
existing code and several already released product versions is often an even more 
challenging problem. Fortunately, from a CASE tool vendors point of view, the 
development departments are also faced with tough requirements from their 
respective customers. They need to shorten their development time and increase 
their productivity with a maintained high quality. This is usually not possible 



310 

without changing the work process and in fact the entire CMM and quality 
certification movement is targeted on making the development processes visible 
so they can be enhanced and made more efficient. This gives CASE tools that try 
to automate e.g. the testing, a very good opportunity to be introduced as part of a 
more streamlined development process. 

So, the need and the market opportunity for design level testing, test generation 
and efficient test environments are here and it is up the tool vendors and testing 
community to face the challenges and provide the solutions. 

6 REFERENCES 

Ek, A. (1993), Verifying Message Sequence Charts with the SDT Validator. In 
Proc. 6th SDL Forum, Darmstadt, 1993, North-Holland. 

Ek, A., Grabowski, 1., Hogrefe, D., Jerome, R., Koch, B. and Schmitt, M. (1997) 
Towards the industrial use of validation techniques and automatic test 
generation methods for SDL specifications, In Proc. 8th SDL Forum, Evry, 
France, Elsevier. 

Jacobson, I. et al (1992), Object-Oriented Software Engineering, Addison­
Wesley. 

OMG 1997, The Unified Modelling Language Version 1.1, Object Management 
Group. 

Schmitt, M., Koch, B., Grabowski, 1., Hogrefe, D. (1997) Autolink - a tool for 
automatic and semi-automatic test generation. In Proceeding of the Seventh 
GIIITG Technical Meeting on Formal Description Techniques for Distributed 
Systems, Berlin, June 1997. 

Schmitt, M., Koch, B., Grabowski, J., Ek, A., Hogrefe, D. (1998) Autolink -
Putting test generation into practise, In Proc IWfCS 98, Tomsk, Russia, 
Chapman & Hall 

Telelogic (1996), Tau methodology guidelines part 1 - The SOMT method, 
Telelogic Tau 3.1 Documentation, Telelogic. 

Telelogic (1998a), Telelogic Tau 3.3 Documentation, Telelogic. 
Telelogic (1998b), Validating an SDL System, Telelogic Tau 3.3 Documentation, 

Telelogic. 



311 

7 BIOGRAPHY 

Anders Ek has studied computer science and engineering at Lund Institute of 
Technology in Sweden. After his graduation in 1986 he started working at Telia, 
the national Swedish telecom operator. At Telia he did research on formal 
methods and associated development methodology. Since 1992 he has been 
working with development of tools and methods at Telelogic, a commercial 
CASE tool vendor providing tools based on formal description techniques. 


