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Abstract 
In the past few years a large number of teletraffic measurements have been 
extensively studied by many contributors. Most of the authors agree on saying 
that the traffic measured on today's broadband networks is long-range depen­
dent. Oddly enough these contributors do not question the stationarity of the 
traffic on these long time scales when the hypothesis of stationarity is essential 
to speak of long-range dependence. Concurrently it has been demonstrated 
that some kind of non stationarities in a short-range dependent process can 
lead, if they are not detected, to the untrue conclusion of long-range depen­
dence. 

We prove on the basis of different tests of stationarity that the hypothesis of 
short range dependence and the hypothesis of stationarity are contradictory 
on long time-scales. Contrary to many authors who decide in favor of the 
long-range dependence we propose to model the measured traffic as a locally 
stationary and markovian process. We exhibit a new markovian model and 
we show how one can track the varying parameters of this model by means of 
a recursive maximum likelihood algorithm. 

We then generate a non stationary markovian traffic whose varying param­
eters are matching the parameters of the measured traffic. We verify that the 
use of a classical visual index of long-range dependence brings to the same 
conclusion of long-range dependence for the non stationary and markovian 
model than for the measured traffic. 

Keywords 
Long-range dependence, long memory, non-stationarity, tests, Hidden Markov 
Model. 

1 INTRODUCTION 

In the past few years a large number of contributions have been devoted to the 
statistical study of different traffics measured on today's broadband networks. 
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There is now a consensus to say that this traffic is long-range dependent. These 
contributions are very significant. They are indeed at variance with markovian 
models of traffic such as the Poisson process or the Markov Modulated Poisson 
Process for which queuing results have been established. 

It has what is more been established that some quality measures such as the 
overflow probability or the average packet delay are strongly underestimated 
by markovian models if the traffic is long-range dependent. The only queuing 
results that can be established for long-range dependent processes are overes­
timations of the overflow probability of a queue fed by a long-range dependent 
process. These results appeal to the difficult theory of great deviations. 

We wonder if the traffic might not be a stationary and long-range dependent 
process but a non stationary and markovian process. It is known ([1],[2],[3]) 
that deterministic jumps or trends in the mean of a time series without long­
range dependence can mislead to the conclusion of long-range dependence 
if one relies on visual indexes of long-range dependence such as the variance 
time plot. In the above-mentioned contributions the authors investigate hours 
of traffic and oddly enough they do not test the stationarity of the traffic on 
these time-scales. 

To support our intuition we investigate a traffic stream that is commonly 
studied in the litterature (LBL-PKT3). This trace was originally investigated 
by Paxson and Floyd [4] who conclude that it exhibits a high degree of bursti­
ness that can not be explained by markovian models and who discuss how this 
burstiness might mesh with self-similar models of traffic. 

The rest of the paper is organised as follows. In Section 2 we expose different 
tests of stationarity for mixing processes and their application to the LBL­
PKT3 stream. We conclude that the hypotheses of stationarity and of mixing 
are incompatible on long time scales which proves that stationary markovian 
models are inadequate on long time-scales. In Section 3 we propose a new 
model, the Shifted Exponential Hidden Markov Model (SEHMM) and we 
briefly recall how one can track the parameters of this model. We then simulate 
a non stationary SEHMM. We show that for this synthetic non stationary and 
markovian model the variance time plot index leads to the same conclusions 
as those obtained by Paxson and Floyd for the real traffic. These findings 
question the consensus according to which the traffic measured on modern 
broadband networks is long-range dependent. 

2 TESTS OF STATIONARITY 

2.1 Theory of the tests 

(a) General Framework 
Basically the tests of stationarity that we propose rely on the comparison 
of different empirical statistics calculated on two neighbour segments of finite 
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length of the stream. The hypothesis of stationarity is rejected if the empirical 
statistics for the two neighbour segments are significantly different. 

Denote by { Xt} the sequence of the inter arrival times (IAT) from which a 
set of finite length {Xt}19:5T is observed. Suppose that one aims at testing 
if this finite observation is strict sense stationary. Denote by T1 the presumed 
change point. For the sake of homogeneity we also define To = 0 and T2 = T. 
We do as if {Xt}l<t<r1 and {Xt}r1+l<t<T were two realizations of finite length 
~ = T;- Ti-l of tw~ processes {Xl} a;d {X;}. 

In what follows we test the stationarity of the IAT process in the sense of 
(i) the mean of the process (ii) the sampled cumulative distribution function 
JE(g(Xt)) where g(x) = (1Ia 1 (x), · · · , llaN (x))', (~ih<i<N being a partition of 
~+and (iii) the first covariance coefficients JE((X(, XtX~+l, · · · , XtXt+N-d'). 
We introduce a new time series {Zt} that is defined as (i) Zt = Xt (ii) 
Zt = g(Xt) or (iii) Zt = (X(,XtXt+l···· ,XtXt+N-d depending of the 
non stationarities that we want to detect. 

(b) Central Limit Theorems 
Different Assumptions are needed to establish a Central Limit Theorem for 
the vector of the empirical statistics. 

Assumption 1 { Xt} is strict sense stationary. 

• T· T-too 
AssumptiOn 2 ¥ -t c; > 0. 

Assumption 3 { Xt} is a-mixing with an a-mixing coefficient that verifies 
I:~:O a~(2+6) < +oo and with lE(IXtl2+6) < +oo. 

Assumption 4 Qt t-=4oo +oo and Qt = o(t). 

Let us recall that the a-mixing coefficient of the process {Xt} is defined as 
an= supA,B IJP'(An B)- IP'(A)IP'(B)I the supremum being taken on all sets A 
in M~00 and B in Mi+~ where M~ = u (Xt, a:::; t:::; b). 

The Assumption 3 is verified by many usual processes and in particular by 
a large class of Markov processes. It is in particular verified by any ARMA 
process if the density of the innovation is strictly positive on ~ [5] and by 
any finite state irreducible Hidden Markov Chain. For a survey about mixing 
processes and about the Central Limit Theorem for such processes we refer 
the reader to [6] and the references therein. 

Theorem 1 Assume {A1-A2-A3). Then it holds that 
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Note that fo is equal to the spectral density matrix of {Zt} at zero fre­
quency. This remark permits the construction of a consistent estimator 

+mT T T 
" 1 ~ ~ ·l!.±!.t ~ •l!.±!.t fo = T L.J w(k)~((L.J(Yi- p)eJ T )'(L.J(Yi- p)eJ T )) 

0 1 1 

where mT = VT and w(k) = llk=D + 2m;+1 ll19:5mT· 

Denote by Z~ = ·A I:;~Ti-t+l Zf the empirical statistics for the segment of 

index i and denote by ZT = ( ( z~ )' ( Z:j. )')' the vector of the empirical statistics 
for the two segments. 

Theorem 2 Assume {A1-A2-A3}. Then it holds that 

VT(ZT- (11)' ®JE(Zt)) "'AN(O, r) where r = ( c!~fo 

and where A® B denotes the Kronecker product of A and B. 

To demonstrate the Theorem 2 we mimic the approach of Epps in [7]. We 
define a new estimator Z~ where the first qT terms are removed 

The basic idea consists in proving that VT z~ and VT z~ converge in distri­
bution to the same normal distribution and in proving that -/TZj. and -/TZ:j. 
are asymptotically independent, in the sense that 

T(lE(exp(iZj.uH + iZ:j.vH)) -lE(exp(iZj.uH))lE(exp(iZ:j.vH))) T:4oo 0 

It results from the Davydov Theorem [8] that 

ilE(exp(i(Zj.uH + Z:j.vH))) -IE(exp(iZ~)uH)lE(exp(iZ,f)vH)I :=:; o:(qT) T~oo 0 

and though Zj. and Z:j. are asymptotically independent. 

Denote by D~ = VT(Z~ - z~) = fl. I:;~T::;~1 Zt the difference between 

VT(Z~ and VTZ~. It results from (A2-A4) that the covariance matrix of 
D~ tends to zero as T tends to infinity. It then results from the Theorem 1 
and from the Slubtski Theorem [9] that VT(ZT- (11)' ®JE(ZT )) "'AN(O, f) 
which concludes the proof of Theorem 2. 

{c) Tests 
• Stationarity of the mean and of the marginal distribution 
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As stated above the test of stationarity consists in comparing Zj and Zj.. 
For the mean and for the marginal distribution of the process we consider 
the difference between Zj and Zj. on the two neighbour segments Zj -
Zj. = U ZT, where U = (1 - 1) in the test of stationarity of the mean 
of {Xt} and U = (1- 1) 0 IN in the test of stationarity of the marginal 
distribution of { Xt}. 

Theorem 3 Assume (A1-A2-A3). Then it holds that 

VTU ZT ,-..; AN(O, UfoU') 

Theorem 4 Assume (A1-A2-A3}. Then it holds that 

TZT(r-1/2)Hr-1/2 .ZT ,-..; x2(N) 

where r ~ denotes the square root of r' r = r ~ (r ~ )' 0 

• Stationarity of the first correlations 
In [10] Mauchly introduces the sphericity statistics to test whether two 
gaussian random vectors have the same covariance matrix. Drouiche and 
Mokkadem ([11],[12],[13],[14]) generalize this test to the case of time series 
to test whether two processes have proportional spectra. Vaton [15] pro­
poses to use this measure of spectral similarity to test whether a process 
is second order stationary. We briefly recall the principles of the test of 
second order stationarity proposed by Vaton [15]. 
For any positive sequence p = (p0 ,p1 , · · · ,PN-d' denote by TN(P) the 
Toeplitz matrix TN(P) = 2:::~=-01 PrMr where Mr is the matrix whose entry 
(i,j) is equal to Mr(i,j) = dr(li- jl). Denote by Jl and v two positive 
sequences and define 

S( ) _ (det(TN(Jl)TN 1(v))) 11N 
Jl, v - ifTr(TN(Jl)TN 1 (v)) 

It results from the arithmetico-geometric inequality that S(Jl, v) ~ 1 with 
equality when Jl = o:v where o: is a proportionality constant. 
Our idea is to derive the asymptotic distribution of the ratio S(Zj, Zj.) 
normalized by a factor that depends on the length T of the observation 
and to reject the hypothesis of stationarity if the obtained value is lower 
than a prescribed threshold determined by the false alarm probability. 
Note that S( Zj, Zj.) is a deterministic function of ZT. This permits the 
derivation of an asymptotic result for S( Zj, Zj.). The demonstration of this 
result is based on a Taylor development of Sat point (JE(Zt),IE(Zt)). AsS 
is maximum at point (IE( Zt), IE( Zt)) a second order Taylor development is 
needed. 
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Theorem 5 Assume (A1-A2-A3). Then it holds that 

2TS*(ZT) ~:0 zH\725((11)' ®IE(Zt))Z with Z ""'N(O,f) 

where \72 S* ((11)' ®lE(Zt)) denotes the Hessian of S at point (11)' ®lE(Zt ). 

The only technical points that are needed to establish the expression of \72 S 
are the second order differential of the determinant and of the inverse of 
any matrix M. These expressions can be obtained by differential calculus : 

log IM + ~MI =log IMI + Tr(M- 1~M)- Tr(M- 1~M M- 1~M) + o(II~MII2) 
(M + ~M)-1 = M- 1 - M- 1~MM- 1 + 2M- 1~MM-1~MM-1 + o(II~MII 2) 

• Thresholds 
The Theorems 4 and 5 permit to reject the set of Assumptions (Al-A3) 
with a false alarm probability of a. If the obtained statistics is superior 
to the (1- a) quantile of the asymptotic distribution one concludes that 
(Al-A3) is wrong which means that Al and A3 are mutually exclusive. 
Note that in the Theorem 5 the asymptotic distribution is a quadratic form 
in a multidimensional Gaussian random variable and that the prescribed 
threshold is obtained by Monte-Carlo simulation. 

2.2 Results 

The simulations are replicated for thirteen time-scales ranging from six sec­
onds to one hour and thirty minutes and for ten pairs of neighbour segments 
for each time-scale. 

On the Figures 1 and 2 we plot TZf!(r- 112)Hr- 112ZT for all the pairs of 
neighbour segments. The 90% and 99% quantiles of x2(N) are represented in 
dotted lines. (Al-A3) is rejected when TZf! (r-112)Hr-112 ZT is superior to 
the (1- a) quantile of x2 (N). 

On the Figure 3 we plot the cumulative distribution function P(X ~ 
2TS(Zj., Zj. )) for the asymptotic distribution X = zH\72 s i(E(Z,),ll:(Z,)) z 
where Z""' N(O, f). The 90% and 99% fractiles for the distribution of X are 
represented in dotted lines. ( (Al-A3) is rejected if P(X ~ 2TS(Zj.,Zj.)) is 
superior to (1- a). 

The conclusions of our simulations is that (A1-A3) is wrong for most pairs 
of neighbour segments for long time-scales. Classical models such as the sta­
tionary Poisson process or the stationary Markov Modulated Poisson Process 
are consequently not adapted to the traffic that we investigate on these long 
time-scales. 

Note that the Assumption A3 is wrong for long-range dependent processes 
such as the Fractional Gaussian Noise or the fractionally integrated autore­
gressive moving average process. Consequently the tests developed do not 
permit to reject Al for long-range dependent processes. The difficulty to de-
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cide between long-range dependence and non stationarities has already been 
discussed by Duffield et al.in [2). 

It is thus difficult to decide if the evidences of auto-similarity mentioned 
by many authors result from a real auto-similarity of the traffic or from some 
non-stationarities that might have mislead to the conclusion of auto-similarity 
([1],[2],[3]) or from the coexistence of both phenomena. 

3 A NON STATIONARY AND SEMI-MARKOVIAN MODEL 

3.1 The Shifted Exponential Hidden Markov Model 

As mentioned in Section 2 it is difficult to decide between a real auto-similarity 
of the traffic and some non stationarities. Our intuition is that the hypothesis 
of local stationarity is as plausible as the hypothesis of long-range dependence. 
Contrary to many authors who suggest modeling the BISDN traffic as a long­
range dependent process we propose to model the measured traffic as a locally 
stationary and markovian process. 

One way of modeling time series that are suspected to be locally stationary 
consists in using a parametric model whose parameters are jumping from time 
to time or are drifting with time at a rate that is sufficiently fast for the non 
stationarities to be perceptible and sufficient slow for parameters tracking to 
be possible. 

We propose to model the observed process as a locally stationary Hidden 
Markov Chain with conditional laws that are shifted exponential. We call this 
model the Shifted Exponential Hidden Markov Model (SEHMM). 

Denote by { Ot} the successive inter-arrival times and denote by { Qt} a finite 
state Markov Chain whose transition matrix is denoted by P and whose initial 
distribution is denoted by 1r. The parameters of the distribution of Ot condi­
tionally to Qt = i are the shift s; and the intensity .A; of the shifted exponential 
distribution. Denote by :Ft = a-(ot,Ot-1,···) and by Yt = u(qt,qt-1,· ··)the 
filtrations associated to the processes { Ot} and { Qt}. Then 

P(Qt = i I :Ft-1, Yt-1) = P(Qt = i I qt-1) 
'v'A E B, P(Ot E A I Qt = i, :Ft-1, Yt-1) = P(Ot E A I Qt = i) 

=fA 1I[s;,+oo[(u).A;exp(-.A;(u- s;))du 

The SEHMM is a new model proposed by Vaton et al.[16] from the anal­
ysis of the traffic measured by Paxson and Floyd [4]. This model has many 
attractive features, among which the existence of simple on-line and off-line 
algorithms of estimation and control for such models. 

One should remark that the SEHMM is a generalization of the model of 
Kofman et al .. According to Kofman et al. who analyzed the traffic measured 
by Jain and Routhier [17] the distribution of the inter arrival times is a mixture 
of exponentials. The SEHMM is also close to the Markov Modulated Poisson 



532 Part B Traffic Control, Modelling and Analysis 

Process (MMPP). In both cases the model is semi-markovian and the marginal 
distribution of is a mixture of exponential distributions. 

The vindication of this new model as well as off-line and on-line procedures 
of estimation of the parameters of this model are detailed in [16]. Note that 
the estimation of the shifts s; is particularly involved. This estimation can not 
be performed in a maximum likelihood sense since the likelihood has many 
discontinuity points. The Cramer-Rao variance lower bound that justifies the 
use of the maximum likelihood estimator is not even defined; the conditions 
under which this bound is derived are indeed not fulfilled. Vaton and Chonavel 
[18] propose an algorithm of estimation of several shifts in the case of incom­
plete data. This algorithm is based on a Fourier transform of the marginal 
distribution of the process; it exploits the fact that the shift of a distribution 
is equivalent to a modulation by a complex exponential function of the Fourier 
transform of this distribution. In what follows the shifts s; are supposed to 
be constant and known. This point has been verified on the traffic that we 
investigate in this contribution. 

3.2 A recursive estimation procedure 

In our context it is of major interest to derive a recursive algorithm of es­
timation of the model that we propose since we wish to cope with varying 
parameters. The recursive estimation of the parameters of a HMM has been 
studied by several authors (see Elliott [19] for a review). In this contibution 
we briefly recall the original procedure developed by Mevel [20]. 

Denote by O(t) the value of the parameters at time t. Contrary to the 
procedure developed by Elliott [19] the procedure developed by Mevel is not 
based on the EM paradigm but it exploits directly the particular structure of 
the log-likelihood derivative. Denote by 

b;( Ot; O(t)) = n[s;(t),+oo[(ot)A; (t)exp( ->.; (t)( Ot - s; (t))) 

the probability density function of Ot conditionally to Qt = i and toe= O(t) 
and denote by at the one step ahead prediction filter at time t 

at(i) = P(Qt+1 = i I Ot, Ot-1, Dt-2)· 

Because of the semi-Markov property the one step ahead prediction filter, its 
gradient 9t ='Vat and its Hessian ht = 'V2at can be computed recursively 

at+1 = F(at, Ot+l) and 9t+1 = G(at, 9t, Ot+l) and ht+l = H(at, 9t, ht, Ot+l) 
(1) 

The computation of the log-likelihood of { o1, · · · , Ot} and of its gradient is 

t-1 t-1 
logp(ou;O) = Z:)ogp(or I o1:r-d = Llog(Lar(i)b;(orH)) (2) 

, r=O r=O 
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which permits a stochastic approximation procedure 

B(t + 1) = B(t) +It (Hogp(o~~ ou-lBt) (3) 

where It is a sequence of step-size (in the tracking context, we set It = 1). 
The idea is to exploit the recursive formulae 1 to compute recursively the term 
of excitation in this stochastic gradient algorithm. Mevel [20) demonstrates 
that the stationary points of this algorithms are the extrema of the Kullback 
information and he demonstrates the asymptotic normality of the estimator 
under the hypothesis of stationarity. 

3.3 A visual index of long-range dependence 

A time series { Xt} is long-range dependent if its autocovariance function r(j) 
is r(j) ~ cpH-2 as j-+ +oo where 1/2 < H < 1. It is well known [21) that 

if {X~ m) } denotes the aggregated series 

X (m)- ~ 
t -

tm 

m 
k=(t-l)m+l 

the sample variance varX(m) of the aggregated series is varX(m) ~ 0'5m2H- 2 

as m-+ +oo. 
This permits the construction of a visual index of long-range dependence. 

One plots log varX(m) versus log m for various aggregation levels. If the series 
is long-range dependent the graphic fits a straight line with a slope -1 < {3 = 
2H - 2 < 0. The slope of this straight line provides an estimate of the Hurst 
parameter H. 

This visual index of autosimilarity is the main evidence of many contrib­
utors to sustain that the traffic measured on modern broadband networks is 
long-range dependent. 

As we suspect that some non stationarities might have mislead to the con­
clusion of long-range dependence we mean to exhibit the same visual index 
for a non stationary SEHMM that we simulate. We compare our conclusions 
with the conclusions of these authors. The parameters of the non station­
ary SEHMM are matching the varying parameters of the real traffic that we 
estimate with the stochastic gradient algorithm exposed above. 

The logarithm of the sample variance of the aggregated process is plotted 
versus the logarithm of the aggregation level on Figure 4 for both the real 
traffic and the traffic that we simulate. The full line is a reference that corre­
sponds to a time series that is not correlated. The graphic resembles a straight 
line in the case of the locally stationary SEHMM as well as in the case of the 
real traffic. The estimates of H deduced from the slope of the straight lines 
are close if one takes into account the bad quality of this estimate. 
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4 CONCLUSION 

In this contribution we have developed different tests of stationarity for mixing 
processes. Thanks to these tests we have established by intensive simulation 
that any stationary and semi markovian model is inadequate on long time 
scales for the traffic measured on modern broadband networks. The hypothesis 
of stationarity and the hypothesis of mixing that these models postulate are 
indeed incompatible on these time scales. 

We suspect that the apparent auto-similarity revealed by many contributors 
results at least partly from some non stationarities of the traffic. We have 
proved by simulation that a locally stationary and markovian model exhibits 
the same evidence of autosimilarity as the real process. Our findings question 
the consensus that has become established around the long range dependence 
of the traffic measured on modern broadband networks. They lead the way to 
some new realistic and tractable models. 
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Figure 3 Stationarity of the first five correlations 
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Figure 4 Variance of the aggregated process versus the aggregation level 


