
5
Kaleidoscape: A 3D
Environment for Querying
ODMG Compliant Databases
Norman Murray, Carole Goble and Norman Paton
Department of Computer Science
University of Manchester
Oxford Road
Manchester M13 9PL, UK
{murrayn, carole, norm} @cs.man.ac. uk

Abstract
Kaleidoscape is a three dimensional (3D) implementation of a data-flow ori­
ented visual query language, which has been implemented in 3D to examine
the advantages and disadvantages of such an interface paradigm over current
WIMP GUIs. This paper describes a version of Kaleidoscape that allows the
user to construct queries from within a 3D environment. These queries are
then translated into the ODMG standard textual query language OQL for
evaluation, the results of which can be viewed and browsed from within the
Kaleidoscape environment.

Keywords
visual query language, 3D, OQL, ODMG, results visualisation

1 INTRODUCTION

Kaleidoquery (Murray, Paton & Goble 1998) is a visual query language for
ODMG (Object Data Management Group) compliant object databases (Cattell
et al. 1997). Queries created with Kaleidoquery can be translated into ODMG
version 2.0 Object Query Language (OQL). This allows implementations of
Kaleidoquery to be used with any object database that conforms to the
ODMG standard.

Kaleidoscape is the 3D implementation of Kaleidoquery that was designed
using the framework in (Murray, Goble & Paton 1998). We chose to implement
Kaleidoquery in a 3D environment in order to assess any benefits gained and
problems found when using 3D visualisations that utilise the human percep­
tion system's ability to understand full three dimensional volumetric space,
and to examine the impact of differing forms of hardware ranging from the
standard monitors and desktop mice to head mounted displays, 3D mice and

Visual Database Systems 4 Y. Ioannidis & W. Klas (Eds.)
© 1998 IFIP. Published by Chapman & Hall

86 Part Three Session: Database Interfaces

auto-stereoscopic displays. A belief exists that conventional direct manipula­
tion WIMP interfaces, while working well for some tasks, may be a limiting
factor for others (Raskin 1997, van Dam 1997). Interface hardware is now rea­
sonably common and becoming established, allowing 3D location information,
gesture and speech recognition.

In this paper, we begin with a brief introduction to the Kaleidoquery lan­
guage and the Kaleidoscape interface architecture. We then examine the im­
plementation of the interface by looking at the presentation of the database
schema, navigation within the environment, the construction of a query, and
the display of the results. Finally, we discuss some conclusions drawn from
experience with the interface, and list future work required on the interface
to support the user in constructing queries in a 3D environment.

2 KALEIDOQUERY DESIGN PHILOSOPHY

The Kaleidoquery language is fully described in (Murray, Paton & Goble
1998). In this section we give a brief introduction to and explanation of the
design of the language.

Visual query languages attempt to bridge the gap of usability for users over
standard textual query languages and environments. Many problems with tex­
tual query languages have been identified, and these include: a steep learning
curve; common semantic and syntactic errors; the structure of the database
classes, attributes and relationships is not readily available to users; increasing
complexity when specifying the order of boolean operators with parentheses
as the query grows (Borgman 1986, Greene et al. 1990, Michard 1982); and
the differences in meaning between the English and boolean logic meaning
behind the and and or operations (Greene et al. 1990, Michard 1982).

In creating Kaleidoquery we attempted to solve the above problems. By
creating a visual query language and generating a display of the database
schema we hope to solve the first three problems. To solve the problem with
the boolean operators we utilised a filter flow approach to query specification,
substantially extending earlier uses of the approach (Shneiderman 1991).

Providing the advantages of a visual query language over a textual language,
Kaleidoquery attempts to solve these problems using the above mentioned
methods and provides:

1. an unusually powerful visual query language for OODBs, supporting the
full functionality of OQL (Cattell et al. 1997),

2. compliance with the ODMG model version 2.0 and consistency with OQL
with its well understood language constructs plus direct support for eval­
uation,

3. a filter flow oriented visual model,
4. a separation of the tasks of writing the query constraints and organising

the structure and ordering of the results.

Kaleidoscape: a 3D environment for querying ODMG compliant databases 87

In Figure 1 (a) we see the Kaleidoquery representation of the following OQL
query:

select p
from p in People
where (p.age < 20 and p.age > 16) or (p.name = "Smith")

The instance information flows up through the constraints from the set of
instances (extent) called People of the class Person, visualised with a simple
person icon, ©. With and, the constraints on the age follow one after the
other. As the information flows through the constraint on each age, instances
that do not satisfy the constraint are filtered out. The boolean or is visualised
by the branching of the filter flow paths. The results of the constraints on each
half of the or query (the two constraints on age or-ed with the constraint on
the name) are combined on completion of the or. The results of the query
flow into a new group of persons, visualised at the top of the query.

~ age~ t name = Smith

age < 20

~
age < 20 © ~ ~ 1ocation = "England"

~
Company

(a) VisuaIising and and or (b) Visual ising navigation in a constraint

Figure 1 Example visual queries

Figure 1 (b) visualises the OQL query:

select p
from p in People
where p.age < 20 or p.employer.location = "England"

On the left of Figure 1 (b) we can see how a constraint has been formed
through navigation from one class to another related class. To place a con­
straint on a person's company, the user has to navigate from the Person class
to the Company class. The navigation along the relationship is visualised as
a horizontal arrow with the relationship name located above the arrow. After
the arrow the icon of the related class is displayed, iL From the Company
class we can select the attribute location and place the constraint that it be
equal to "England".

88 Part Three Session: Database Interfaces

3 KALEIDOSCAPE IMPLEMENTATION

Kaleidoscape has been implemented on a Silicon Graphics workstation using
the OpenInventor library for display of the 3D graphics, and the Minimal
Reality (MR) toolkit to provide access to head mounted displays (HMD) and
3D mice. The Kaleidoscape interface is capable of exploiting HMDs, stereo
projectors, auto-stereoscopic displays and monitors for visual display, and 3D
mice, desktop mice and the keyboard for user input. The database interface
doesn't talk directly to the database but talks to another module that com­
municates directly with the database, in this case O2 • This has the advantage
that when a different object database is to be used it is only the program that
talks to the database that needs to be changed.

Queries in Kaleidoscape are stored as graphs. Each class on which con­
straints have been placed has a set of nodes associated with it, with each
node containing a description of the constraint. Together, each of these nodes
forms a graph defining the structure of the query.

To create the OQL equivalent of the visual query we traverse the constraint
node graph. The select clause of the OQL query comes from the attributes that
the user has selected for inclusion in the results. The from clause is defined
by the extent or query results that flow into the data-flow. To construct the
where clause of the OQL the constraint node graph of the class is traversed,
with the appropriate OQL being generated. IT the constraint node contains a
pointer to a related class constraint node graph then this is translated into
OQL. This continues until the final node in the graph is translated. The OQL
generated can then be sent to an ODMG compliant database for evaluation.

4 KALEIDOSCAPE ENVIRONMENT

4.1 Schema Display and Navigation

The schema is composed of particular classes, chosen from the database that
the interface is communicating with and the extents that hold the instances of
the database classes. We need to visualise these classes within the environment
so that the participant can browse the schema and compose queries, see Figure
2 (a) *. In visualising the schema we will examine the following areas: class
and extent presentation; the landscape environment; and navigation.

(a) Class and Extent Presentation
The class visualisation is composed of the name of the class and an appropriate
3D icon. For example, Figure 2 (a) depicts the classes, Address, Apartment,

* This plus other figures of the interface are screen dumps from a session using Kaleidoscape
on a Silicon Graphics workstation.

Kaleidoscape: a 3D environment for querying ODMG compliant databases 89

(a) Database schema in Kaleidoscape (b) Attribute display of the class Per­
son

Figure 2 Database schema and attribute display

Person and Company. The name of the class is always oriented towards the
participant so that as they move around the schema, the class name is always
visible. We have chosen to display both the class name and a visualisation
of the class, as studies have shown that icons with a textual description give
better comprehension than purely textual or pictorial icons (Kacmar & Carey
1991). As the participants become familiar with the class visualisations they
will associate the icon with the class and in this way will not have to read the
class name. Also, if the class is being viewed from a distance the class name
may not be entirely legible but the participant may be able to recognise the
class icon.

Located above each of the classes are any extents associated with the class.
These contain the instances of the class that are stored in the database. This
is visualised as the extent name along with the class icon showing what type of
instance the extent contains. For example, in Figure 2 (a) we can see that the
classes Person and Company have the extents People and Companies located
above their respective class visualisations. Along with the external iconic view
of the class and its name, the class also has to display its attributes. Examining
the attributes of a class can be done by selecting the class with the 3D mouse
or the desktop mouse. In Figure 2 (a) we see a visualisation of a virtual hand
that moves in response to the movements of the 3D mouse. This can be used
to select objects in the environment, or the participant can select items using
the desktop mouse cursor.

When a participant selects a class, the selection mimics an animated hy­
per link , in that the user is moved towards the class in animated steps, first
by rotating the user to directly face the class and then flying them towards
the class visualisation which alters to show the internal attribute structure of
the class as they approach it.

90 Part Three Session: Database lnteifaces

At present the attribute visualisation consists of a textual display, as shown
in Figure 2 (b). This display consists of a list containing each attribute name
along with its associated type. For example, in Figure 2 (b) we see that the
Person class is composed of five attributes, including an employer that is of
the type Company, and a list of Persons containing the parents of a Person.
At present, relationships between classes are only visualised by the type of the
attribute being displayed textually alongside the attribute name. For example,
in Figure 2 (b) we se~ that the attribute employer is of type Company. A more
direct visual cue to the related class could easily be added, for example, as
arrows linking the related classes.

(b) Landscape Environment
As can be seen in Figure 2 (a) the classes are laid out on a plane or land­
scape, which is depicted as a simple tiled floor. The entire database interface
is depicted within the same environment - that is the database schema, the
queries that the user is constructing and the results of these queries are all
located in the same 3D environment. With conventional interfaces the data­
base, query and results are usually located in separate windows, but by using
our landscape metaphor, results of queries can be located alongside, behind
or even inside the query, alleviating the task of window management. Also,
queries on similar topics could be clustered together in the environment.

The Kaleidoquery language lends itself to constructing queries from other
queries. As the queries are constructed, the results of the query are visualised
at the top of the query where they can be used as input to another query.

(c) Navigation
We have seen how the database schema is visualised and how the participant
can navigate to classes by selection. Movement around the database envi­
ronment can be performed using the keyboard or mouse to move forwards,
backwards, rotate, etc. The participant can also use the 3D mouse to move
around the environment. When in use, the user can see the 3D mouse rep­
resented as a hand in the environment, as seen in Figure 2. The mouse has
5 buttons, 3 placed along the top of the mouse and 2 trigger buttons placed
on the front. As the 3D mouse is moved, or the user alters the orientation
of the mouse, the virtual hand moves to reflect the real movements. To move
through the environment, the participant orientates their hand to point in
the direction that they wish to move (with the virtual hand this direction
is depicted as the direction the fingers are pointing). As they move they can
continue to alter the orientation of their hand to change the direction in which
they are moving. The user can also browse the schema by moving between
related classes. The class Person in Figure 2 (b) contains the attribute em­
ployer that is of type Company. If we wish to view the attribute details of
the employer class, then we select the attribute employer and the user is au-

Kaleidoscape: a 3D environment for querying ODMG compliant databases 91

tomatically navigated towards this related class in the 3D environment. This
can be described as an animated hyperlink.

4.2 Query Creation and Visualisation

In the previous sections we saw how the schema is displayed and how the
participant can navigate through the schema and browse the classes, attributes
and relationships. To compose a query involves: selecting the classes that we
wish to query over; placing constraints to restrict the instances of interest; and
selecting what attributes to see in the results. We shall examine how these
tasks are performed by looking at the construction of some example queries.

(a) Simple Query Constructs
In this section we show how to build a simple query to find all the instances of
the type Person in the extent People with the constraint that they are aged
less than 20. To begin construction of this query we select the class on which
we are interested in placing the constraint, in this case the Person class. As
previously described, this results in the display of the attributes of the Person
class, as seen in Figure 2 (b). To construct a constraint on this class, we select
the attribute on which we wish to place the constraint, in this case the age
attribute. On selection of this attribute we are presented with the operations
that can be applied to that attribute, as shown in Figure 3 (a).

(a) Some operations available on the
age attribute

(b) Query with a single constraint on
age

Figure 3 Class attributes and a simple query

From this list, the operation < can be chosen, and the scalar value 20
entered via the keyboard. This results in the Kaleidoquery shown in Figure 3
(b). We can also see in Figure 3 (b) that the interface has chosen to use the
People extent as input for the filter flow query as it is the only extent on the

92 Part Three Session: Database Interfaces

class Person. From the visual query, we see that the instances of the extent
People flow up to the constraint and the instances that satisfy the constraint
are allowed to flow into the results visualised at the top of the query. To view
the results of a query, or of any extent in the schema, the user simply selects
the results or extent visualisation, whereupon they are transported to another
environment displaying the instances (the results environment is described in
Section 4.3).

(b) and and or
If we are to place more constraints on the query in Figure 3 (b) then we will
need to combine them with the equivalent of boolean operations and and or
in OQL. We showed how this is visualised using the filter flow method in
Section 2.

Figures 4 (a), (b) and (c) show how the boolean operators are visualised. In
Figure 4 (a) the two constraints on the attribute age are aligned on the same
flow. This means that the instances of the extent People first pass through the
constraint age < 20. The instances that satisfy this constraint flow upwards
to be filtered by the next constraint age> 16. The instances that also satisfy
this constraint are allowed to flow into the results visualisation at the top of
the query. Where constraints follow one another on the same data-flow, this
is equivalent to the boolean operation and.

In Figure 4 (b), we can see that the data-flow has divided into two. The
instances from the People extent follow both paths. The result of this query
is a union of the instances that have age < 20 and those with name = Smith.
Finally, in Figure 4 (c) we see a query containing a combination of constraints
that have been and-ed and or-ed. This is the same query as was defined in
Section 2 and shown in Figure 1 (a).

To construct the above query the user has to indicate how they want to
combine their constraints. The first constraint, shown in Figure 3 (b), is placed
in the query automatically as there is only one choice for its placement. As
additional constraints are constructed, the user needs to select where in their
query they want to place the constraints. To do this the user selects the data­
flow pipe where they want the query to appear using their virtual hand or the
desktop mouse, using different mouse buttons in the present implementation
to distinguish between and and or.

(c) Path Expressions
Previously, we have only seen queries being constructed on the scalar at­
tributes of the class that was first selected, such as the types string and
integer. We can also apply queries using the relationship attributes of a class.
For example, we see that the Person class shown in Figure 3 (a), along with
the scalar attributes age and name, has the related attribute employer that is
a link to an instance of the class Company and also contains links to parents
and children.

Kaleidoscape: a 3D environment for querying ODMG compliant databases 93

(a) and-ed query (b) or-ed query

(c) and and or

Figure 4 Queries showing and and or

In Section 4.1 (c) on Navigation we saw how movement between related
classes was performed, where the user selected the related class in the list of the
class's attributes, and was animated towards the related class in the database
schema. When the user selects a relationship attribute, they can either perform
some aggregate operation on the related attribute, e.g. count, sum, etc., or
move to the related class and place constraints on the attributes of the related
class. When the constraints on the related class have been completed, we can
then combine these related constraints with our original query by selecting
where in the data-flow we wish to place the related constraints. For example,
if we wish to construct the query to find all persons that are aged less than 20
or have employers located in "England", we first build the age < 20 constraint
as seen in Figure 3 (b). We then select the employer attribute of the Person's
class, seen in Figure 3 (a). This moves us to the Company class and we
are shown its attributes. From this we can build the constraint location =
"England" shown in Figure 5 (a). From this figure it can be seen that at

94 Part Three Session: Database Interfaces

~ - 7
,

/

(a) Query built on Company (b) Completed query with constraint on
simple and complex attributes

Figure 5 Building constraints on a relationship attributes

'.

present there is no data-flow input to the query. This is because we have not
yet placed the constraint within the query that we are constructing on the
Person class. Satisfied with the construction of this constraint we can return
to the Person class and select the data-flow where we wish to place our new
constraint. The data-flow input to the constraint we created on the class
Company shown in Figure 5 (a) is the instances of the employer attribute of
the Persons in the extent People.

(d) Results Selection
With the query as shown in Figure 5 (b), the results can be seen to have
flowed along the data-flow arrows of the query to the icon displayed at the
top of the query. As we selected no attributes for inclusion in the result, the
results of the query will be formed of the complete instances. If only certain
key attributes of the class are required in the results, the user can select these
by placing a cross beside the attributes for inclusion, as shown in Figure 6
(a). If we look at Figure 6 (b) we see how this is visualised in the query. The
visualisation of the results at the top of the query has a cross annotated next
to the icon representing the Person class to indicate that only a selection of
the complete attributes of the class are in the results.

Other functionality of the query language OQL, implemented in Kalei­
doscape is catered for in a similar manner to the previously mentioned func­
tions, i.e. after the user selects an object in the environment they are presented
with a list of the available operations on that object. For example, if they se­
lect a related class they can navigate towards it to browse it and construct
some constraints as previously defined, or they could use the related class in
a membership, universal or existential quantification test. If the user selects
the results visualisation of a query, then the tasks that they can perform over

Kaleidoscape: a 3D environment for querying ODMG compliant databases 95

X employer:Company
parenfl:Ust{person)
chlJdren:ba,IPelllonI
age:mt

(a) Selected attributes shown in the
class attribute view

\

(b) Query showing how attributes are
shown selected

Figure 6 Selecting attributes for inclusion in the results

"

the results include viewing the results, as discussed in the following section,
or structuring or ordering the results.

4.3 Results Visualisation

The results of a query can be viewed in the 3D environment, or can alter­
natively be presented textually in a terminal window. To gain access to the
results environment users select the result or extent visualisation that they
wish to view. On selection they are moved towards this visualisation. As they
hit the instance visualisation they enter the instance visualisation where the
results are displayed.

Currently the results are located in the 3D space according to the values
of certain scalar attributes of the instances. Three of these values are used to
position the instance in 3D space with a fourth being used for the colour of
the instance. The user is allowed to alter the four attributes that have been
chosen to visualise the instance data to alter the results display. Of course,
the user also has the option of only using one or two of the dimensions for
spatially locating the results. The user can also scale each of the individual
axes to expand or compress the results.

In Figure 7 we see how the attributes name, age and number of children
have been used to distribute the instances. Colour has been used to represent
whether the parents of the instances are present in the database. Each of the
instances are automatically displayed according to the type of the attribute,
so strings are sorted alphabetically, collections by size, etc. The number of
children axis has been scaled down as can be seen by comparison with the
other axes.

96 Part Three Session: Database Interfaces

•

Figure 7 The current results environment

5 RELATED WORK

Visual query languages have attempted to bridge the gap of usability for users
(for a survey see (Catarci et al. 1997)). Forms based query languages such as
QBE (Zloof 1977), present the database structure as tables or forms into
which queries can be placed. Graph based query languages (e.g. Guidance
(Haw et al. 1994)) have the advantage over forms style interfaces in that
they can directly represent relationships within the structure of the database
and the query. Icon based languages (e.g. Iconic Browser (Tsuda et al. 1990))
represent database concepts pictorially and allow direct manipulation of icons
to represent queries. Multi paradigm query interfaces also exist to allow the
user to pick and choose or alternate between interface styles, (Doan et al.
1995).

Current graphical query languages to ODMG compliant object databases
are limited to Quiver (Chavda & Wood 1997) and GOQL (Keramopoulos
et al. 1997). Only two simple examples of the Quiver query language are
given in (Chavda & Wood 1997), but preliminary evaluations show that it
is easier to use than the standard textual OQL interface. GOQL is a graph
style query language and a complete description of its constructs is given
in the paper. Neither of the query languages describe the interface that has
been implemented to support the visual language, and neither exploit 3D
environments.

The three main areas of interest in 3D interfaces to databases are schema
display, query creation and display and results visualisation. WINONA (Rapley
& Kennedy 1994) displays the schema using either a hierarchal or circular
wall visualisation, with querying being limited to simple form-based string
searches. Lyberworld (Schweickert & Hemmje 1996) uses a cone tree struc­
ture for selecting predefined queries, and distributes the results inside a sphere
according to their relevance to key attributes located on the surface of the
sphere. Q-PIT (Benford & Mariani 1994) locates and visualises the instances
of the database in a 3D environment according to the mapping of the in-

Kaleidoscape: a 3D environment for querying ODMG compliant databases 97

stances attributes. AMAZE (Boyle & Gray 1995) comes closest to a complete
3D interface to a database with the schema and results being visualised in 3D,
although queries are entered via a forms interface. AMAZE's query language
is also less powerful than Kaleidoscape lacking self-join and visual expression
of aggregate operations.

6 CONCLUSIONS AND FURTHER WORK

With Kaleidoquery and Kaleidoscape we set out to create a more usable visual
version of OQL and to create an interface for viewing the database schema,
building a query and viewing the results in three dimensions. We also wished
to examine the utility of currently available display hardware, such as auto­
stereoscopic displays, 3D projectors, head mounted displays, and interaction
hardware and techniques, such as 3D mice.

We have completed the task of creating a visual OQL, and this paper reports
on the early implementation of the 3D environment. Presently most of the
Kaleidoquery language has been implemented within the 3D environment and
the schema can be browsed and queries can be built, translated into OQL
and passed to a database, with the results being presented in a separate 3D
environment.

We now need to concentrate on taking more advantage of the 3D environ­
ment, and on creating tools to help the participant in the environment. We
shall see how we are going to tackle each of these problems in turn.

6.1 Exploitation of the 3D Environment

As mentioned previously, Kaleidoquery was not designed specifically for im­
plementation in a 3D environment. We shall now look at how we can enhance
not only the Kaleidoquery language but also the complete environment to
take further advantage of the added dimension.

The Kaleidoscape environment is primarily composed of the schema, query
and results visualisations. We shall examine how each of these visualisations
could be enhanced.

Database Schema Currently the database schema visualises the classes
laid out on a landscape in user-defined groups. Other aspects of the database
schema that could be visualised are the relations between classes which could
be shown with arrows linking the relevant classes. Class hierarchies could be
depicted in a similar manner.

The Query We have to be careful when altering the query so that it takes
advantage of the extra dimension. We do not want the query to become un­
readable when the user directly views the query due to occlusion. Parts of the
query could obscure other sections making it unreadable without either the

98 Part Three Session: Database Interfaces

user moving in the environment or the user manipulating the query, which
could annoy the user. Having said that, the extra dimension does have its uses.
With complex queries with many filters and complex results structures, the
data-flow lines could overlap, which can create confusion in a 2D environment
as seen in some graph displays. By using the extra dimension we would hope
to alleviate this problem.

We could also used the third dimension for displaying complex queries over
many classes. The main query would be displayed along two axes, going from
left to right and bottom to top. Filters on classes other than the main query
class could be displayed on the horizontal plane, using depth to abstract out
sections of the query.

We could also have layered queries. When building a query we may want
to produce a new query that is only slightly different from a previous query.
Rather than copying this query, the queries could share similar filters - depth
would be used for displaying the different filters. In this way we know that
the queries are almost identical. In addition to showing queries in a layered
form we could show the results of layered queries on the same results axes to
highlight the differences in the results.

Results Visualisation With visualising the results we have used the three
dimensions for spatially locating the results. The visualisation could be en­
hanced by allowing the user to alter the range of the axes to filter the instances
shown. For example, along the y axis could be plotted the number of children
a person has. This could range from 0 to 6. If the user is only interested in
people with children then they could alter this range to cover 1 to 6, thereby
removing all instances of people with no children.

The results environment could also be extended to allow other attributes of
the instances to be used to specify their values, e.g. size, shape, opacity, spin
speed, etc. could be used for mapping the values of the instance attributes to
their visualisation.

6.2 User Support

The ideas for this future work come from both our earlier VRML prototype
evaluations and observations of the use of the current system. Some of these
ideas include:

Map A map would aid navigation through large schemas, as well as giving
an overview of the database schema.

Message Bar This would contain information on the current state of the
task the user is carrying out.

Query History and Workspace This would allow for the storage of quer­
ies and their use in further queries, allowing for refinement of query results.

Kaleidoscape: a 3D environment for querying ODMG compliant databases 99

Query Generation Currently the participant begins building their queries
from within the database schema rather than within the class instances. We
could examine allowing the participant to begin creating their query from
within the instance data environment as done in Spotfire (Ahlberg 1996),
although Spotfire can at present only handle databases containing a single
table.

Our current interface still requires entry of information via the keyboard,
although movement and selection of artifacts in the environment can be ac­
complished via the keyboard, desktop mouse or 3D mouse. We could also
look at alternate methods of information entry such as speech and hand held
chord keyboards which have proved popular with wearable computers (Starner
et al. 1997).

At present we are reviewing the interface informally through heuristic and
expert evaluation. When we have completed construction of the Kaleidoscape
environment we will perform a more rigorous user evaluation of the interface.
To fully acknowledge the benefits and downfalls of the 3D environment we
could compare it with a WIMP implementation of Kaleidoquery, although
at present this does not exist. The completed Kaleidoscape interface and its
evaluation will be reported in a future paper.

REFERENCES

Ahlberg, C. (1996), 'Spotfire: An Information Exploration Environment', SIG­
MOD Record 24(4),25-29.

Benford, S. & Mariani, J. (1994), Virtual environments for data sharing and
visualisation - populated information terrains, in 'Proceedings of the
2nd International Workshop on User Interfaces to Databases'.

Borgman, C. L. (1986), 'The User's Mental Model of an Information Retrieval
System; An Experiment on a Prototype Online Catalog', International
Journal of Man-Machine Studies 24, 47-64.

Boyle, J. & Gray, P. M. D. (1995), The Design of 3D Metaphors for Database
Visualisation, in 'Proceedings of Visual Database Systems', Chapman
and Hall, pp. 185-202. Stefano Spaccapietra, Ramesh Jain (Eds.).

Catarci, T., Costabile, M. F., Levialdi, S. & Batini, C. (1997), 'Visual Query
Systems for Databases: A Survey', Journal of Visual Languages and
Computing 8, 215-260.

Cattell, R. G. G., Barry, D., Bartels, D., Berler, M., Eastman, J., Gamerman,
S., Jordan, D., Springer, A., Strickland, H. & Wade, D. (1997), The
Object Database Standard: ODMG 2.0, Morgan Kaufmann Publishers,
Inc.

Chavda, M. & Wood, P. (1997), Towards an ODMG-Compliant Visual Ob­
ject Query Language, in M. Jarke, M. J. Carey, K. R. Dittrich, F. H.
Lochovsky, P. Loucopoulos & M. A. Jeusfeld, eds, 'Proceedings of 23rd

100 Part Three Session: Database Interfaces

International Conference on Very Large Data Bases', pp. 456-465.
Doan, D. K., Paton, N. W. & Kilgour, A. C. (1995), 'Design and User Testing

of a Multi-paradigm Interface to an Object-Oriented Database', ACM
SIGMOD Record 24(3), 12-17.

Greene, S., Devlin, S., Cannata, P. & Gomez, L. (1990), 'No IFs, ANDs, or
ORs: A Study of Database Querying', International Journal of Man­
Machine Studies 32,303-326.

Haw, D., Goble, C. & Rector, A. (1994), GUIDANCE: Making it Easy for the
User to be an Expert, in 'Proc. 2nd Int. Workshop On Interfaces to
Database Systems', Springer-Verlag, pp. 19-43. P. Sawyer (Ed).

Kacmar, C. J. & Carey, J. M. (1991), 'Assessing the Usability of Icons in User
Interfaces', Behaviour and Information Technology 10(6), 443-457.

Keramopoulos, E., Pouyioutas, P. & Sadler, C. (1997), GOQL, a Graphical
Query Language for Object-Oriented Database Systems, in 'Basque
International Workshop on Information Technology', pp. 35-45.

Michard, A. (1982), 'Graphical Presentation of Boolean Expressions in a Data­
base Query Language: Design Notes and an Ergonomic Evaluation',
Behaviour and Information Technology 1(3), 279-288.

Murray, N., Goble, C. & Paton, N. (1998), 'A Framework for Describing Vi­
sual Interfaces to Databases', To be published in the Journal of Visual
Languages and Computing .

Murray, N., Paton, N. & Goble, C. (1998), Kaleidoquery: A Visual Query
Language for Object Databases, in 'Proceedings Advanced Visual In­
terfaces'.

Rapley, M. H. & Kennedy, J. B. (1994), Three Dimensional Interface for an
Object Oriented Database, in 'Proc. 2nd Int. Workshop On Interfaces
to Database Systems', Springer-Verlag, pp. 143-167. P. Sawyer (Ed).

Raskin, J. (1997), 'Looking for a Humane Interface: Will Computers Ever
Become Easy to Use?', Communications of the ACM 40(2), 98-101.

Schweickert, T. & Hemmje, M. (1996), A Graphical User Interface to the
Object-Oriented Database System VODAK on the Basis of the Generic
Visualisation Toolkit Lyberworld, in 'Proc. 3rd Int. Workshop On In­
terfaces to Database Systems', Springer-Verlag. J. B. Kennedy and
P. J. Barclay (eds.).

Shneiderman, B. (1991), Visual user interfaces for information exploration, in
'Proceedings of the 54th Annual Meeting of the American Society for
Information Science', Learned Information Inc., Medford. NJ, pp. 379-
384.

Starner, T., Mann, S., Rhodes, B., Levine, J., Healey, J., Kirsch, D., Picard,
R. W. & Pentland, A. (1997), 'Augmented Reality through Wearable
Computing', Presence 6(4),386-398.

Tsuda, K., Hirakawa, M., Tanaka, M. & Ichikawa, T. (1990), 'Iconic Browser:
An Iconic Retrieval System for Object-Oriented Databases', Journal
of Visual Languages and Computing 1(1), 59-76.

Kaleidoscape: a 3D environment for querying ODMG compliant databases 101

van Dam, A. (1997), 'Post-WIMP User Interfaces', Communications of the
ACM 40(2), 63-67.

Zloof, M. (1977), 'Query-By-Example: A Data Base Language', IBM Systems
Journal, Vol. 4 pp. 324-343.

7 BIOGRAPHY

Norman Murray received his B.Sc. in Computer Science from Aberdeen Uni­
versity in 1994 and M.Sc. in Human Computer Interaction from Queen Mary
and Westfield College, the University of London in 1995. Since then he has
been at University of Manchester conducting research towards a Ph.D. on
the topic of "Interface Environments to Object Databases" funded by the
EPSRC. His research interests include visual query languages, virtual reality,
and information visualisation.

Carole Goble is a senior lecturer in information systems at the University
of Manchester, where she co-leads the Information Management Group. She
was a research associate at Manchester from 1982 and joined the faculty in
1985. Her research interests include hypermedia and multimedia information
systems, description logics for managing data and metadata, user-interfaces
to databases, and distributed information systems.

Norman Paton is a senior lecturer in information systems at the University
of Manchester, where he co-leads the Information Management Group. Prior
to this, he was a lecturer at Heriot-Watt University from 1989-1995, and a re­
search associate at Aberdeen University from 1986-1989. His research interests
include active databases, deductive object-oriented databases, user-interfaces
to databases, and distributed information systems.

