
4
What You See is What You Store:
Database-Driven Interfaces

J. Thamm and L. Wegner
Universitiit Gh Kassel, FB 17, D-34109 Kassel, Germany
{injt, wegner}@db.informatik.uni-kassel.de

Abstract
Any graphical user interface (GUI) requires large amounts of complex metadata for
the layout of windows and menus, their style and behavior, their bindings, etc.
Designing, debugging and maintaining this interfaces is a difficult task and object­
orientation is of little help as it tends to overcrowd the code with these metadata.
Following a similar idea by Goyal et al., who considered GUI programming a data­
base research problem and gave solutions based on logical programming, we pro­
pose storing these metadata in a database which we connect to a scripting language,
here Tcl. We explain the details first with a small example where the database acts
as a front-end to Mathematica®. Next we indicate schemes, tables and generic
methods for automated GUI design. Finally, we discuss the ultimate step, namely
managing the interface at run-time from the database. In concluding, we present
arguments for our belief that this technique goes well past current GUI builders and
has great potential for simplifying design and maintenance of any type of applica­
tion interface.

1 LffiERATING GUI'S FROM THE DATA-INTENSIVE STYLE

Visualizing data has two aspects. Firstly, visualization will usually be imbedded into
a graphical interface made up from a collection of widgets. Through the interface
the user can browse, query, and update the data. Today, the design of these conven­
tional aspects of interfaces is supported by interface builders like e.g. Tcl's XF tool
(Ousterhout, 1994).

Visual Database Systems 4 Y. Ioannidis & W. Klas (Eds.)
@ 1998 IFIP. Published by Chapman & Hall

70 Part Three Session: Database Interfaces

The second, more difficult, aspect is visualizing the data proper, i.e. translating
numeric and textual data into visually intuitive, appealing graphical representations.
This task also includes transformation, incorporation, and indexing of other multi­
media data, like graphs and pixel pictures, video and audio data, etc. When the tar­
get is a standard graphical representation, filters might already exist. Otherwise,
new methods must be programmed and tied to the previously mentioned widgets.

Both aspects of the job make visualization difficult and time consuming, mostly
because of the complex and idiosyncratic nature of windowing systems. This is true
regardless of the actual interface system, whether it is low-level XU, higher level
Motif (Brain, 1992), a scripting language like TcI (Ousterhout, 1994) or Java (Sun,
1995), or VRML programming (VAG, 1996).

Object-orientation has facilitated the task somewhat. In particular, the message
passing paradigm is beneficial because of the asynchronous nature of interfaces.
Ted Lewis calls this new-era software (Lewis, 1996): " ... the software design para­
digm changes to a reactive form in which the program responds to events through
event handlers. These event handlers are small pieces of code, possibly applets, that
perform very specialized and limited functions". However, debugging event han­
dling is rather difficult because of this asynchronous nature.

Secondly, object-orientation implies inheritance and the resulting class hierar­
chies help in deriving new widgets from existing ones and ordering them into a tree.
However, these class libraries have become quite huge and understanding the uni­
verse of types puts a heavy burden on those who have to implement the interface
and accidental over-writing of existing methods is not uncommon. Also, using pre­
existing building blocks still requires good programming skill whereas Ted Lewis
foresees a decoupling of software consumption and production in the future.

Finally, object-orientation includes the idea of encapsulation which hides imple­
mentation details inside procedures offering to the outside only a limited number of
methods (access and modification procedures) for indirectly manipulating the data
which also reside inside the procedures. In the case of graphical user interfaces and
visualization, however, complex objects are quite often simple records (tuples)
with, say 10, components (fields, attributes) and, in the extreme case, ten manipula­
tion and ten query functions all differently named after the fields. Setting and get­
ting parameters for the generic functions of the Xt-Iibrary (XtSetArg, XtSetValues,
XtGetValues) and the way logical resources like the Graphics Context are handled
in X, Xt and Xm come to mind.

The point we argue here is that object-oriented systems have a tendency to turn
data into program code and even interactive interface builders like XCESSORY for
OSFIMotif or XF for Tclffk generate primarily code and to a lesser extent resource
files. When resource files are generated and used at run-time, e.g. the X Window
. Xdefaul ts file, they are often in a very simple format and serve only for load­
ing into a main memory record at system start time.

The same tendency is observable in the Web where elaborate styles and demand
for interaction and animation have moved more and more metadata (markup
instructions, calls of applets, ...) into the pages without a clear separation of both.

What you see is what you store: database-driven interfaces 71

The alternative which we propose to change this unsatisfactory design process is
• to store resource data in a suitable database,
• to connect the database to the visualization engine either during the design stage

or even at run-time.
Similar ideas appear in an area called active databases or active object systems
(Buchmann, 1994), e.g. with procedures as data types as a feature of POSTGRES
(Rowe and Stonebraker, 1987), trigger systems, as proposed for SQL3 (Date and
Darwen, 1993) or rule systems, like the ECA-rule system (Dayal et aI., 1988).

The remainder of the paper is organized as follows. In Section 2 we argue in favor
of an object-relational DBMS as a platform for visualization and introduce our
visual database editor ESCHER. Section 3 discusses ESCHER's interaction mode
which has been described before (Wegner, 1989; Wegner et aI., 1996b). Section 4
then proposes navigational extensions to Tcl, called TclDB, modelled after
ESCHER's interaction mode. They were initially suggested in (Wilke et al., 1997)
and are now operational. Section 5 gives a short example of the use of skripts in
connecting our database editor to Mathematica.

Sections 6 and 7 then carry the idea from a database front-end for visualization
tools to interface design in general and discuss the advantages of this approach.
They take an outlook at what is needed to fully include event handling in our
approach, i.e. to run the interface from the database itself rather than from a code
translation of the database contents. Section 8 concludes the paper with a summary
and observations concerning efficiency and performance.

2 INTRODUCING ESCHER

There is agreement that "plain" relational DBMS cannot support demanding graph­
ical applications like e.g. CAD-system front-ends. This stems from the need of a
RDBMS to normalize data and to reconstruct complex hierarchies through expen­
sive joins. Secondly, lack of suitable types with respect to multimedia applications
used to be another argument against relational databases.

By now, RDBMS have been extended to include complex objects (at least struc­
turally if not behaviorally) and a richer set of basic types. They are often called
object-relational DBMS and we shall use one particular variant, namely nested rela­
tional databases, for our demonstrations. Note that the DBMS must provide a pow­
erful interactive browser and editor because the interface design and later
debugging stages require visual support. Our prototype editor ESCHER (Wegner,
1989, Thamm et aI., 1996) provides this support as can be seen in Figure 1 where
the displayed data are packing information for widgets from a Tk demo. Details of
ESCHER and of the example are given below.

A natural alternative to the object-relational model would be one of the available
fully object-oriented DBMS (OODBMS). However, if these are derived from
object-oriented languages augmented by persistence and transactions, nothing is
gained because we end up again with "compiled solutions".

72 Part Three Session: Database Interfaces

()ptlck larc.

OOptiou

expud Tn
tdt .bdtoll.b4 d de top

!!H7 2

dde bottCle
tdt . bd tOIl . b.tt ou fill It

ptl4y 2-

tdt . bdto. . b ttou . code expu4)'U

dde len

tdt . ~ttOll . ~ttOllS . d1s_ expu4)'U

in dde len

tdt .b.tto dde top

ucllor • tdt .c"eck.bl dde top

Figure 1: Pack infonnation as NF2 table with two fingers.

The same argument made us also look for interpreted (scripting) languages as
connection between database system and visualization engine. Java (Sun, 1995) and
Tel (Ousterhout, 1994) are two obvious choices and we opted for Tel mostly for his­
torical reasons. Tel is then extended to pennit navigational access to the database
(see Section 4 below) because ESCHER provides a cursor-based mode for browsing
and editing tables. However, other interconnection modes, e.g. embedded SQL, are
conceivable with an object-relational DBMS and in fact ESCHER provides declara­
tive query facility using a QBE-like interface (Wegner et aI., 1996a).

The resulting scripts may then be stored as well inside the object-relational data­
base system. Given suitable tables with resource data (Section 7), scripts and tables
together effectively implement the graphical interface of the very same database
system which stores them. This self-referential nature is a fundamental construction
principle of our prototype and should explain why it is called ESCHER after the
famous Dutch artist M.C.Escher (1898-1972) whose drawings feature the impossi­
ble self-referential worlds.

What you see is what you store: database-driven interfaces 73

3 A SHORT GLIMPSE AT ESCHER'S INTERACTION MODE

ESCHER supports visualization in non-standard applications and serves as a
research platform into areas such as multimedia and visual information systems
(Thamm et aI., 1996), QBE-Iike queries (Wegner et aI., 1996a) and computer-sup­
ported cooperative work (CSCW) (Wegner et aI., 1996b). ESCHER is available as
public domain software from our ftp site in Kassel.

Here, we are mostly concerned with GUI-development aspects, thus we refrain
from going into the data model aspects and concentrate on the interface implemen­
tation principles.

Figure I shows a window over a table with packing information for a demo wid­
get. The table can be edited using cut-and-paste with a clipboard. As can also be
seen, a schema is displayed above the table. The schema defines packing informa­
tion, i.e. pack info is a set-valued attribute taking tuples with 3 attributes as mem­
bers: a numeric atom field, here all set to null (we explain below why there are no
ids entered), a string valued path to the widget whose packing info we give, and a
list (ordered collection) of options, which in turn are tuples with name and value
attributes, both string-valued.

As a visual database editor, ESCHER supports browsing and navigation by means
of so called fingers. They generalize the cursor paradigm in graphical and text edi­
tors. On the graphical display, a finger is reflected by a colored area which corre­
sponds to the object a finger is currently pointing at. In a table, as in Figure I, more
than one finger may point to objects, one of which is the active finger and is used for
navigating through the table.

Essential operations on fingers are the navigational operations "going into an
object" (In, i.e. descending into the next deeper nesting level), "out to the surround­
ing object" (Out), "to the next object" (Next, staying on the same nesting level), and
"to the previous object" (Prev, Back). At the interface, the user navigates through
the instances using these basic finger operations, either by clicking on buttons in the
lower left corner of the window, by use of the ESC-, ENTER- and arrow-keys, or by
directly clicking with the mouse into the table. In the latter case, the finger ')umps"
to the atomic field in which the mouse cursor is positioned. If the user wants to point
to the surrounding (complex) object, the user needs to hold the left button pressed
and drag the mouse. The finger will immediately move Out to the smallest
surrounding object which contains the start and end point of the mouse movement.

Internally, a mouse click gets translated in a sequence of finger operations operat­
ing on schema and table trees. Figure 2 below shows the tree representing the table
from Figure I. As can be seen, a finger corresponds to a path inside the tree. The
path (node addresses) is stored by means of a stack. Going into an object thus corre­
sponds to a push operation, escaping from an object to the surrounding object
becomes a pop operation. These stack operations will show up again in our naviga­
tional extension to Tcl in Section 3 below.

Fingers are used internally for all types of operations, e.g. recursively computing
tree heights, summing up extensions, sorting objects recursively, drawing the

74 Part Three Session: Database Interfaces

TF

Figure 2 Object tree with stack for a table finger.

2

J

4

S

schema and the table, "catching" the mouse cursor and quickly redrawing the visi­
ble portion, etc.

Atomic and complex objects can be edited using Insert, Delete, Backspace, Cut­
and-Paste with a clipboard, etc. Note that operations involving the clipboard work
with a sub-schema which is established when the first object is moved into it and
that objects which are appended to the clipboard must have matching types.

Finally, metadata like the schemes can be inspected (and edited, given proper
authorization) as well. For that purpose, a metascheme, called BootScheme is
defined within ESCHER. BootScheme is actually a table object under itself, i.e.
BootScheme serves as a fixpoint and in fact is circular to handle arbitrary nesting
(Wegner, 1989).

4 A NAVIGATIONAL EXTENSION TO Tel

As mentioned before, we aimed at a declustering of the software which implements
the interface. Thus we needed scripting and graphical features as offered by e.g. Tcl
or Java. Moreover we wanted to model the extensions to the existing scripting lan­
guage as closely as possible to the interactive navigational mode which we
described above.

Table I summarizes these extensions. Clearly, most of them are I: I-translations
of key strokes, menu options, and finger positioning operations through a mouse
click or drag ..

To understand some of the sample programs, a few additional comments might be
helpful. Every newly opened table has a finger tid. root from which additional fin­
gers can be forked, where tid is the TcI id for the table. When scripts are stored as

What you see is what you store: database-driven interfaces 75

Table 1: Basic set of TclDB-commands

Command Remark

escher command having to do with the ESCHER database:
boot path get database going, returns 011
shutdown shut database down, returns 011
list applications db is organized into applications, returns list of appl's
list schemas -list of schemas (table schemas) defined for an appl.
list tables - list of tables defined for an application
application

seledname change to another application, returns application name
new name creates a new application, returns name of new appl.

delete name removes an application from database, returns name

table command having to do with one or more tables:
open name open a database table given by name, returns Tcl table

-id tid identifier tid, either system chosen or user defined
list return name 1 tidl name2 tidl ...

close tid close a table, returns tid
new name scm create table giving its new name and existing schema
delete name delete a table from an application, returns name

finger command having to do with finger (cursor) generation
forkjid create a new finger from existing finger jid, returning

-id newfid either system chosen newfid or user defined newfid
freejid release finger fid
list list all existing fingers, returns jidl fid2 ...

-table tid list fingers within a particular table tid, returns jidl ...

fid push -first with an existing fingerjid move on first (default)
-last enclosed object, resp. move finger on last enclosed obj.
-name attrname resp. move into tuple on attribute given by attrname
-where predicate move finger on object satisfying predicate, returns 011
path move finger along path including attributes and indexes

jidpop move finger jid to enclosing object

jidgo move finger from one object (tuple, attribute) to
-first first object within enclosing complex object
-last last object ...
-back to previous object (above, to left)
-next to next object (below, to right)
-forcedup to previous object (above) within attribute regardless
-forceddown of tuple boundaries, same to next object (below)
-name attrname within tuple to attribute given by attrname

fid get [path] return value on which finger rests, optionally extended
by path starting with finger position

76 Part Three Session: Database Interfaces

Table 1: Basic set of TclDB-commands

Command Remark

fid type [path] return type of object on which finger sits
fid attr [path] return attribute name of attribute on which finger sits

fid set
value [path] set value for atomic object on which finger fid sits
-tonull [path] set complex object to database null
-toempty [path] tum a set-valued object into an empty set

fidinsert inserts a null-object
-before [path] before finger fid and move fid onto element
-after [path] after finger fid and move fid onto element

fid delete [path] delete object to which finger fid currently points and
movefid to predecessor or to successor or, if neither
exists, to enclosing object

fid on -first return true iff finger fid on first element of collection
-last return true iff finger fid on last element of collection

fid isempty [path] return true iff finger fid on an empty collection
fid isnoll [path] return true iff finger fid on a database null value
fid isatomic [path] return true iff finger fid on an atomic value
fid iscomplex [path] return true iff finger fid is on a complex value

fid istype -set [path) return true iff finger fid on a set value
-tuple [path) ... on a tuple value
-list [path] ... on a list value

attribute values, the script comes with a default finger which is forked from the fin­
ger which triggered the execution of the script.

Fingers fid are treated as commands. Most commands return value, type, or prop­
erty of the object to which the finger points at the moment. Sometimes, however, it
is more convenient to retrieve a value further down without explicitly navigating to
it. Therefore, most of the commands, with the exception of pop and on, take an
additional argument path, where path is an expression built from attribute names,
indexes and predicates combined in the usual dot-notation (Subieta et a1., 1994).

Similarly, selection predicates using the option -where predicate can be part of
the go and push methods for fingers and position the finger along the first matching
value. This avoids explicit searching for a particular tuple within a collection.

Fingers may also cross table boundaries via object references (links) which are
used for object sharing. Note that links are persistent fingers. Higher level proce­
dures can be written which provide relational join features and produce materialized
views. One typical generic function is iterate, which deals with a common task
in nested tables: iterating over a collection. It is defined in Figure 6 used there in a
procedure getOpts.

What you see is what you store: database-driven interfaces 77

5 EXAMPLE: CONNECTING MATHEMATICA TO A DATABASE

To illustrate the principal connection from the object-relational database to the
interface via our TclDB scripting facility, consider the following example. It repre­
sents a restricted front-end to Mathematical. The data come from two tables. One is
called DEMOPLOTS. tbl, which is shown in Figure 3 below, and contains argu-

oAIGS
'PID

AJG ,AI

u. • y • 0 3 PIbU
'1 0 3 PP~o

2 au elJ 3. •• 0 3 ppeo
•• • 0 3

3 up -Ix-2+y-2) • -2 2 LT
'I -2 2 YPabove

e r- II 'I II 0 3 Plbl(

'1 0 3

Figure 3 A database tuple piped into Mathematica.

ments and ranges for a set of functions. Any function may be plotted as a 3D graph
using style options from the second table STYLES. tbl shown in Figure 4. Both

I. Mathematica® is a registered trademark of Wolfram Research. Inc. All examples shown in this section
were adapted from (Wolfram, 1993)

78

n

Part Three Session: Database Interfaces

PlMI'

LT

PP40

Plot -> (-. 5 •. 5)

IPJD

1
4

3

ilt -> (-2. -2. 0) ()

PlotJ'obta -> 40

JNWI

Figure 4 The STYLES table with plot id as foreign key.

tables are connected by a n:m-relation which is mapped into a symmetrical nested
foreign key attribute.

Moving a finger over the table, a user can trigger the execution of a script which
collects the data from the tuple on which the interaction finger sits, joins it with the
specified styles option and creates a Mathematica input line from it. This is piped
into Mathematica for display as shown in the upper right comer of Figure 3. The
actual program is only about one page and can be found at our ftp-site.

We should emphasize again that it is not our intention to create a complete front­
end to a algebra system like Mathematica. We should also mention that the cur­
rently newest version Mathematica 3.0 provides "palettes" which are templates for
cut-and-paste input construction. However, they are no general solution to the prin­
cipal weakness of Mathematica and other algebra systems, namely "the difficulty of
getting large lists of data from other programs, such as databases or spreadsheets
(Stallmann, 1997)". We may now create multiple copies of a function using cut­
and-paste, vary their ranges and styles, view them from different view points, etc.
without having to retype the input. We may also query function tables, selecting e.g.
all dyadic or triadic functions. We might have additional attributes with comments
or joins to their derivatives.

For educational purposes, users might want to create animations and establish

What you see is what you store: database-driven inteifaces 79

,- ~~_ . , - - fY I -

lL::I,~Il.-,::JC:::J'='"::r= ()Plots 1~1I11'8 ,-........
1.- -, --I---.. ,

, -',,- ,
• • ..

_II r~~ , .. [~rJ -, ,
- ..

(a) Finger propagation with DB-editor interaction.

--- - --- - -
.... 1&- "' ... ~I!

~=~;r~::]i~';~ ~ .-.-- - I.~ ~ ... -;-
... , :

• ... • • • ~ - • · I ... • • .. •

(b) Missing inverse mapping with plot interaction.

Figure 5 Open versus closed graphical tools for GUI creation.

collaborative sessions in which lecturer and students navigate inside the generated
graphs. If e.g. a diagram shows three superimposed plots as in Figure 5, it is easy
for TclDB to sense the presence of another (interaction) finger and then to highlight
exactly that plot to which the interaction finger currently points. Similarly, we may
hook up a 3D input device to ESCHER which delivers (x, y, z)-coordinates which
we store in the styles set of OPTIONS as e.g. Mathematica ViewPoint values
which then creates the desired change in the plot on each change of values.

However, a serious drawback of this piped communication is the impossibility of
correlating mouse coordinates on the plot with complex or atomic objects. Because
of the closed nature of Mathematica's output it is presently impossible to tell in Fig­
ure 5 (b), which of the three functions a user presently clicks on with the mouse and
to relate this back to the nested table. Again we should indicate that Mathematica
3.0 now has a function which returns mouse coordinates and if further scaling and
positioning information were available, the inverse mapping could be computed.

6 CREATING A GUI FROM A DATABASE

In the previous section we have shown how the ESCHER database editor together
with the newly implemented TclDB scripting facility can be connected to an exist­
ing graphical tool, in our case to Mathematica. Now we go one step further and take

80 Part Three Session: Database Interfaces

the interface generation into our own hands.
Until now ESCHER's interface is built upon OSFIMotif with a complex, but

fairly standard part concerning menus, windows and buttons and a specific part
dealing with clipping, finger movements and visualization for the arbitrarily large
NF2-tables and schemes. Fortunately, ESCHER has a fairly clean layered architec­
ture and all application specific visualization activities as based upon the previously
mentioned Object Manager (OM) functions which represents the interface to the
ESCHER database engine.

These in turn were mapped into the Tcl-extensions listed in Table 1. The big step
was then to design suitable GUI-schemes, create and populate tables for these
schemes with the data required to "hold" the interface and finally write generic
methods to drive it.

While we cannot go into details for lack of space, one can easily get a general
idea by looking at the pack procedure in Figure 6. The procedure operates on the
table tcl-pack. tbl from Figure 1. Its task is to generate Tel code which packs
widgets according to options stored in the just mentioned pack table. Going from
back to front, it is easy to see that the last procedure packWidget first searches
for the proper widget and then calls getOpts to extract the options and convert
them to a string. It then uses the returned string to initiate packing on the outer level.

Procedure getOpts in turn simply iterates over the options list, reads the name
and value fields and concatenates their contents to a string in Tel's format.

The other major generic methods, besides pack, are configure and bind.
These and a few others operate on a number of tables, some of which are essential,
others optional depending on the type of application. They appear in Figure 7 which
sketches the conceptual schema for a general GUI application. One essential table is
Tcl-pack. tbl which has been shown before in Figure 1, other essential tables
are Tcl_bind. tbl, Tcl_widget_options, Tcl-pre. tbl (widget prepro­
cessing), Tcl-post. tbl (postprocessing), and Tcl_widget~z. tbl which
is the necessary widget tree whose shape depends on the xyz-application. Other
optional tables are Tcl_menu_entries . tbl, Tcl_text_commands. tbl,
and Tcl_WIn. tbl which governs window manager functions.

Figure 7 also indicates how the tables are related to each other. Note that the
path-attributes which appears in three of the tables is a foreign key in the widget
tree where the path must be concatenated from the name-attribute using the usual
dot notation.

Obviously, there are several choices for the logical schema design and experience
must tell how much normalization is needed. One clear insight is that recursive
schemes are needed much like our infinite metaschema because widget hierarchies
are unbounded in depth. Stratifying the widget tree into a "fiat" table with foreign
keys as connectors is certainly not efficient enough and destroys the chance to visu­
ally descend into a widget hierarchy.

Another open point is management of widgets and widget-ids at run-time. This
relates to the leftmost attribute #atom in Figure 1 which presently contains null
values (shown as ?d?). When the actual GUI-interface is created from these data,

What you see is what you store: database-driven interfaces

##############################
iterate for each element of a complex value
attention: return in $body doesn't work properly
proc iterate {finger body} {

if {[$finger iscomplex] != l} {
error "iterate on non-complex finger \ "$finger\ ''''

}
if {[$finger push -first] == O} {return O}
while {l} {

uplevel 1 $body
if {[$finger go -next] == O} break

}
$finger pop
return

}
##############################
build list of options
proc getOpts {f} {
$f must sit on a tuple which contains an "options" list,
which consists of tuples with "name" and "value" attr's.
Each pair is concatenated, "names" are preceded by a dash.

set options {}
$f push -name "options"
iterate $f {

lappend options -[Sf get "name"] [Sf get "value"]
}
pop to surrounding tuple
$f pop
return $options

}
##############################
pack widget
proc packWidget {widget} {

global f...,p i# finger $f...,p sits on Tcl...,pack's "pack infos"
search for $widget's entry, nothing to do if not found
if {[$f...,p push -where {"path == $widget"}] == O} return
get pack options list and pack widget
globExec pack $widget [getOpts $f...,p]
pop to "pack infos" set
$f...,p pop

Figure 6 TcJDB script samples for the pack method.

81

Tcl actually assigns widget ids to instances. Within our development path, database
driven GUI management will progress from the design to the run-time stage. Thus,
in the future these identifiers will be stored into the tables and serve as keys, have
index support and there will be object identifiers allowing fast materialized views.

7 FROM CURSOR TO AGENT

Having a GUI design database which uses the object-relational data model and has
a visual editor is already a great help in handling interface creation. In implementa­
tions which have higher level descriptive languages like XSQL, OQL, etc. avail-

82 Part Three Session: Database Interfaces

window manager commands widget pecific option

pack in~
t-o----iiaoiiii~

application

Obl".II,..

()~ ..

Figure 7 Sketch of GUI conceptual schema.

able, creating a new interface might be supported by formulating the proper queries
over the GUI-database. Similarly, it would not be hard to have an interactive GUI­
designer map its results to tables instead of libraries.

Ultimately, we plan to have the GUI run from the database as well, i.e. event
queues are stored lists of tuples which contain keystroke data, mouse coordinates,
etc. Lightweight locks will permit proper synchronization of actions, projections
will block out modal attributes, etc. In particular we expect event tracing, one of the
biggest problems in GUI-debugging, to become easier by visually stepping through
our scripts. Since we have already a way of efficiently visualizing finger positions
within nested tables, it is a simple step to visualize the finger which a script receives
as parameter (see e.g. iterate and getOpts in Figure 6).

Fingers will then turn into actors and we can watch "films" with actors fetching
events (e.g. a mouse click on a scroll bar), delivering them to the destined widget,
creating new internal events for redrawing the slider and scrolling the canvas data.
Watching and analyzing these animations will help us write better interfaces and
debug them faster.

8 CONCLUSION

We have argued that one way of managing the increasing complexity in GUI devel­
opment is to move as many interface metadata as possible into ordinary (nested)

What you see is what you store: database-driven interfaces 83

tables which are open for inspection and editing. We claim that the nested relational
model matches nicely the hierarchical structure of widgets and that resources map
easily into attributes.

In general, this proposal corresponds to the Gill database programming strategy
reported in (Goyal et aI., 1996). However, instead of using logic programming for
the "algorithmic side", we suggest deelustering of program code by providing
smaller chunks of code in form of portable, interpretable TelDB scripts.

As with any interface programming, ease of code generation and performance are
the main issues. As for the design stage, we offer a conceptual Gill-schema and
generic methods for producing Gill-instances from stored data. These data could be
inherited from previous applications, could be modified with cut-and-paste, be
materialized views with selections and projections, and could be the output of any
of the commercially available interactive Gill-builders.

Performance will also be something to watch, in particular, since we migrate from
a very efficient OSFlMotif platform. Speeding up the new interface by introducing
visual indexes for graphical queries ("Select all windows which have to be redrawn
due to an expose event"), having links for shared objects, pre-computed joins, and
materialized views seems a must.

Finally, we feel that our Tel-extensions provide a seamless integration of
ESCHER's navigational paradigm into the scripting language. In fact we could pro­
duce scripts interactively by recording key strokes and converting them into TelDB
scripts. Furthermore, recent proposals for a cursor-based binding in the SQUCLI
(Venkatro and Pizzo, 1995) point into the same direction.

Many aspects have only been sketched, like event handling and rule mechanisms,
when the interface is run from the GUI database. Other needed improvements and
further clarifications concern scoping and binding of names (Subieta et aI., 1994),
visualizing finger movements in trace modes, support for concurrency awareness
(Wegner et aI., 1996b) and new transactional models (Rusinkiewicz, Klas et aI.,
1995) in CSCW, support for CAD- and GIS applications, other visualization styles
like forms, graphs, table lenses, etc. Now that the scripting facility is up and running
we hope to gain more experience with database-driven interfaces.

9 REFERENCES

Brain, M. (1992) Motif Programming - The Essentials ... and More. Digital Press,
Burlington, MA.

Buchmann, A.P. (1994) Active Object Systems. in: Advances in Object-Oriented
Database Systems (eds. A. Dogac, M. Ozsu, A. Biliris, T. Sellis) Nato ASI
Series F: Computer"and System Sciences, Vol. 130, Berlin, Springer, 201-224.

Date C. and Darwen, H. (1993) A Guide to the SQL Standard. Addison-Wesley,
Reading, MA. 3rd edition.

Dayal, S., Buchmann, A.P., and McCarthy, D.R. (1988) Rules are Objects too: A
Knowledge Model for an Active, Object-Oriented Database System. Proc. Adv.

84 Part Three Session: Database Interfaces

in OODBS, Bad Munster, 129-143.
Goyal, N., Hoch, C., Krishnamurthy, R, Meckler, B., and Stone, M. (1996) Is GUI

Programming a Database Research Problem? Proc. 1996 ACM SIGMOD Int.
Conf., Montreal, Canada, June 4-6, 1996, SIGMOD Record 25:2, 517-528.

Lewis, T. (1996) The Next 10,0002 Years: Part II. IEEE Computer, 29:5, 78-86.
Ousterhout, J.K. (1994) Tel and the Tk Toolkit. Addison-Wesley, Reading, Mass.
Rowe, L.R and Stonebraker, M.R. (1987) The POSTGRES Data Model. - Proceed-

ings of the 13th International Conference VLDB, 83-96.
Rusinkiewicz, M., Klas, w., Tesch, T., Wiisch, J., and Muth, P. (1995) Towards a

Cooperative Transaction Model - The Cooperative Activity Model. Proc. 21.
VLDB, Zurich, Switzerland, 194-205

Stallmann, F.w. (1997) "Mathematica by example". Comput. Reviews 38:9, 428-9.
Subieta, K.,Beeri, C., Matthes, F., and Schmidt, J.W. (1994) A Stack-Based

Approach to Query Languages. in Proc. 2nd Int. EastJWest Database Workshop
(eds. J.Eder and L.A.Kalinichenko), Klagenfurt, Austria, 25-28 Sept. 1994,
Springer, London, 159-180.

Sun Microsystems (1995) The Java Language Specification, Verso 1.0 Beta.
Thamm, J., Thelemann, S., and Wegner, L. (1996) Visual Information Systems - A

Database Perspective. Proc. DMS '96 Third Pacific Workshop on Distributed
Multimedia Systems, HKUST, June 25 - 28, 1996, eds. David Du and Olivia R
Liu Sheng, Knowledge Systems Institute, Skokie, IL, 274-285.

VAG (1996) VRML Architecture Group: The Virtual Reality Modeling Language
Specification - Version 2.0. http://vag.vrml.orhIVRML2.0IFINAU.

Venkatrao, M. and Pizzo, M. (1995) SQUCLI - A New Binding Style For SQL.
SIGMOD Record 24:4 (Dec.) 71-77.

Wegner, L.M. (1989) ESCHER - Interactive, Visual Handling of Complex Objects
in the Extended NF2 Data Model. Proc. IFIP Work. Conference on Visual Data­
base Systems, Tokyo (April 1989) 277-297

Wegner, L., Thelemann, S., Wilke, S., and Lievaart, R (1996a) QBE-like Queries
and Multimedia Extensions in a Nested Relational DBMS. Proc. Int. Conf. on
Visual Information Systems (ed. C. Leung) Melbourne, Australia, 5-6 February
1996,437-446.

Wegner, L., Paul, M., Thamm, J., and Thelemann, S. (1996b) A Visual Interface for
Synchronous Collaboration and Negotiated Transactions. Proc. Advanced
Visual Interfaces (AVI'96), Gubbio, Italy, May 27-29, 1996 (eds. T.Catarci,
M.F.Costabile, S.Levialdi, G.Santucci) ACM Press, 156-165.

Wilke, D., Wegner, L., and Thamm, 1. (1997) Database-driven GUI Programming.
Proc. 2. Int. Conf. on Visual Information Systems (Visua1'97), San Diego CA
(15-17 Dec.) 205-214.

Wolfram, S. (1993) Mathematica - A System for Doing Mathematics by Computer.
2nd ed., Addison-Wesley.

