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abstract 

We study a discrete-time, single-server queue with partial buffer sharing. There 
are two priority classes of jobs. Though class 1 jobs in the queue have higher 
priority for the next service than any of class 2 jobs, class 2 jobs are allowed 
to occupy their own part of buffer when the shared part of buffer is full. We 
characterize a bursty arrival process using bursts which consist of the same class 
of jobs. Once the first job of a burst arrives at the queue, the successive jobs 
will arrive on every time slot until the last job of the burst arrives. The num­
bers of jobs of a burst and the inter-arrival times of bursts are assumed to be 
i.i.d., respectively, and the service time is assumed to be equal to one slot. This 
model targets the buffer management to meet the quality of service requirments 
of different traffic types as video, voice and data in ATM multiplexer. In par­
ticular, class 1 jobs may correspond to cells with the strict delay requirments. 
On the other hand, class 2 jobs may correspond to cells with the strict cell loss 
requirments. We propose an efficient numerical method to exactly obtain the 
job loss probability, the waiting time distribution and the mean queue length. 
Some numerical examples are also given. 
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1. INTRODUCTION 

We study a discrete-time, single-server queue with partial buffer sharing. There 
are two priority classes of jobs, and we characterize a bursty arrival process 
using bursts which consist of the same class of jobs. Once the first job of a 
burst arrives at the queue, the successive jobs will arrive on every time slot 
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until the last job of the burst arrives. The numbers of jobs of a burst and the 
inter-arrival times of bursts are assumed to be LLd., respectively, and the service 
time is assumed to be equal to one slot. The buffer consists of the shared part 
and the part for class 2 jobs only, whose capacitis are finite, so class 2 jobs are 
allowed to occupy their own part of buffer when the shared part of buffer is full. 
Class 1 jobs can occupy only the shared part, but they have a higher priority 
for the next service than any of class 2 jobs, Le., non-preemptive head of the 
line priority. 

This model was motivated by ATM(Asynchronous Transfer Mode) multi­
plexer (see, for example, Handel and Huber (1991)). In ATM networks, all in­
formation including voice, video, and data, is conveyed using a fixed-size block 
call a cell, and each type of information has its own quality of service (QOS) 
requirements, such as a cell loss probability and an end-to-end delay. For in­
stance, the voice traffic has more strict delay requirment than the data traffic, 
but is tolerant for the cell loss requirment than others. The model targets the 
buffer management to meet the various QOS requirments of each traffic type. In 
particular, class 1 jobs may correspond to cells with the strict delay requirments. 
On the other hand, class 2 jobs may correspond to cells with the strict cell loss 
requirments. Such buffer management strategy that combines the head of the 
line priority and the partial buffer sharing (or the pushout priority) was studied 
for the Poisson arrival cases by Gravey and Hebuterne (1991). 

The switch architecture is synchronized. Between two synchronization points 
any incoming cells that are in process of arriving at the input ports are written 
to the memory, and each output port transmits cells (if there are any for the 
output port). Because of the synchronization, the discrete-time queueing system 
is more suitable for the model of ATM mUltiplexer than the continuous-time one. 
The service time of the job is assumed to be equal to one slot, since the length 
of cells is fixed in ATM switch. 

ATM uses short fixed length cells to transmit the variable length packets 
generated at higher layers. The arrival process of cells cannot be renewal in 
general, because of a correlation between inter-arrival times of cells. This is 
one of the important characteristics of ATM traffic and makes the performance 
analysis difficult. In this model, the packet and the cell correspond to the burst 
and the job, respectively. The burst represents the sequential incoming cells 
from an input port. In order to model a superposition of each arrival stream 
from an input port, we consider an arrival stream in which the inter-arrival 
'time of bursts is generally distributed. The continuous-time version of this 
input process called 'Gradual Input' has been analyzed by Kino and Miyazawa 
(1993). 

A number of models have been proposed to capture the effect of correlated 
input processes. However, most of them have considered the continuous-time 
queue, and there are several results for the descrete-time queue. A model with 
a geometrically distributed burst size and a Poisson burst arrival has been an­
alyzed by Miyazawa and Yamazaki (1992). Morris (1981) has modeled a cor­
related input process by considering the source to be a function of a Markov 
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chain and has obtained queue length distributions numerically. Neuts (1990) 
has obtained an explicit formula for the mean waiting time in a queue whose in­
put is generated by N heterogeneous Markovian on-off sources. The generating 
functions of both the queue length and waiting time distributions have derived 
for SBBP(Switched Batch Bernoulli Process)/G/1 queue by Hashida, Taka­
hashi, and Shimogawa (1991) and for SBBP /G/1 priority queue by Hashida 
and Takahashi (1991). Brandt, Brandt and Sulanke (1990) have studied the 
batch arrival of messages with the geometrically distributed number of packets 
using the generating function. Johnson and Narayama (1996) analyzed discrete­
time Markovian arrival processes as descriptors of discrete-time bursty arrival 
processes. The discrete-time priority queues with correlated arrivals have been 
also studied in Takine, Sengupta, and Hasegawa (1994). The input processes 
proposed above are simpler than the one considered in this paper. Yamashita 
(1994) has modeled the single-class burst arrival system, and numerically ob­
tained the performance measures. Yamashita (1994) has extended this analysis 
to the two class model with shared buffer. Finally, we mention that a perfor­
mance model with partial buffer sharing has been analyzed by Kroner (1990). 

In this paper, we propose an efficient numerical method to exactly obtain the 
job loss probability, the waiting time distribution, and the mean queue length. 
For this purpose, we derive an embedded Markov chain at the arrival instants 
of bursts, which enables us to save a lot of space and computational efforts. 
The remainder of the paper is organized as follows. In the following section, 
we show the queueing model under consideration. In section 3, we derive the 
embedded Markov chain at the arrival instants of bursts, and we exactly obtain 
some stationary performance measures in section 4. In section 5, some numerical 
examples are illustrated. Finally, the concluding remarks are given in section 6. 

2. MODEL DESCRIPTION 

The queueing model under consideration is a discrete-time, single-server queue 
with partial buffer sharing. There are two priority classes of jobs. After a 
service completion, class 1 jobs in the queue have higher priority for the next 
service than any of class 2 jobs (non-preemptive head of the line priority). This 
means that class 2 jobs may start their service only if there is no class 1 job 
in the queue. On the other hand, class 2 jobs are allowed to occupy their own 
part of buffer when the shared part of buffer is full. The capacity of the shared 
part and total capacity of buffer are denoted by Ml and M2 (0:::; Ml :::; M 2), 
respectively. Then, the capacity M2 - Ml is used for class 2 jobs only. Note 
that the case of Ml = 0 corresponds to the loss system for class 1 jobs. 

We characterize a bursty arrival process using bursts which consist of the 
same kind of jobs, i.e., class 1 or class 2. Once the first job of a burst arrives 
at the queue, the successive jobs will arrive on every time slot until the last 
job of the burst arrives. The probability that a burst consists of priority class i 
(i = 1,2) jobs is denoted by rio The number of jobs of the nth burst is denoted 
by Sf if the burst consists of class i jobs, which is assumed to be independent and 
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identically distributed (i.i.d.) with a general distribution. We assume that there 
exists a positive number Smax such that Pr[Sf > Smax] = Pr[S:f > Smax] = O. 
The inter-arrival time between nth and (n + l)st bursts is denoted by rn+1, 

which is assumed to be i.i.d. with a general distribution. We allow that rn may 
take 0, i.e., more than one burst may arrive on the same slot. 

Servers are synchronized so that they start and end services at the same 
time. The service time of the job is assumed to be equal to one slot. The jobs 
arrive at the queue at the beginning of a slot and leave the queue at the end of a 
slot. When the first job of a burst arrives at the queue, the burst tries to keep a 
server, or buffer space if the server has been kept already, for all jobs belonging 
to the burst. That is, the jobs of the nth burst have the higher priority to enter 
the queue than any job of the (n+ l)st burst whenever they arrive. We call the 
rule FIFO discipline on a burst basis. An arriving job is lost if both the buffer 
for its class (only the shared part for class 1) and the server are occupied (or 
reserved) by other jobs belonging to prior bursts, even if they have not been in 
the system. Indeed, if rn + t < SF'-l, the jobs after (rn + t)th of the (n - l)st 
burst have not arrived yet when the tth job of the nth burst arrives. Note that 
even if a class 2 job of the nth burst succeeds in keeping the server, the job may 
be pushed out to the shared part of buffer if class 1 jobs of the bursts after nth 
arrive before its service and they can enter the shared part of buffer. In this 
case, the class 2 job is never lost, but is only made to wait in the buffer. 

In the following two sections, we propose an efficient numerical method to 
analyze the queueing model described above. 

3. EMBEDDED MARKOV CHAIN 

In this section, we construct a finite state embedded Markov chain, which will be 
used for obtaining some stationary performance measures of the queue described 
in the previous section. First of all, let us consider an embedded Markov chain 
by giving attention to all active bursts, i.e., bursts with remaining jobs (which 
have not arrived yet). If we keep track of the number of remaining jobs of 
each active burst, the priority class which each active burst belongs to, and 
the number of jobs in the buffer for each priority class at the arrival instant of 
bursts, the process has a Markov property. It might be possible to obtain some 
stationary performance measures, e.g., the job loss probability, the queue length 
distribution and the waiting time distribution from the steady state probability 
distribution of the process. However, the process becomes intractable as the 
number of active bursts increases. Therefore, it is important to reduce the 
state space of the Markov chain in order to efficiently obtain some performance 
measures such as the job loss probability. 

For this purpose, the methodology proposed by Yamashita (1994) is avail­
able. He analyzed the single class queue with the same arrival stream. The basic 
idea of his method is as follows: Let us consider the embedded point of the nth 
burst arrival instant. In order to know whether the jobs of the nth burst are 
lost or not, we need to know the number of jobs in the buffer because the jobs 
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which find that the buffer is full are lost. In the case of single server queue, the 
number of jobs never decreases while at least one burst is active whenever the 
(n + 1 )st burst arrives. Therefore, we may only keep track of the largest number 
of remaining jobs of active bursts and the number of jobs in the buffer on the 
last slot when at least one burst is active. It is much more effective than keeping 
track of the number of remaining jobs of each active burst and the number of 
jobs in the buffer. We extend the basic idea for the priority queue model. 

Let vf denote the largest number of remaining jobs among active bursts of 
class 1 at the arrival instant of the nth burst. In other words, vf means the 
time until the last slot when at least one burst of class 1 is active counting from 
the arrival instant of the nth burst, excluding the (n + 1)st burst and all the 
bursts after (n + 1 )st. Similarly, let v~ denote the largest number of remaining 
jobs among all active bursts (of class 1 or class 2) at the arrival instant of the 
nth burst. Note that if 0 < vf < v~, then the largest number of remaining jobs 
among active bursts of class 2 is vf at the arrival instant of the nth burst, but if 
o < vf = v~, then whether there are active bursts of class 2 is not clear, which 
we do not mind. 

Now, let us obtain the relationship between v'J and vj+1 (j = 1,2) given 
m+1 and Sf+1. AB the first case, we assume that (n + 1)st burst belongs to 
class 2. The last job of the (n + 1)st burst arrives on the (m+1 + s:+1 )th slot 
counting from the arrival instant of the nth burst. If v~ ::; m+1 + S:+l, then 
the burst which has the largest number of remaining jobs at the arrival instant 
of the (n + 1)st burst becomes the (n + 1)st burst. Otherwise, it is not the 
(n + 1)st burst but still the same burst at the arrival instant of the nth burst. 
Accordingly, we have following relations: 

n+1 _ { s:+1, if v~::; m+1 + S:+\ 
V2 - v~ - m+l, if v~ > m+1 + Sf+1. 

Since no new burst of class 1 arrives during m+1 slots, we have 

v~+1 = (vf - m+1)+, 

where 

(N)+ = max(O, N). 

(3.1) 

(3.2) 

AB the same way, for the case of (n + 1)st burst belonging to class 1, we have 

{ ~+1 if v~ < m+1 + Sn+1 n+1 _ l' :/ - l' 
Vj - V~ _ m+1 if v~ > m+1 + ~+1 

:/ ,:/ 1 , 
(3.3) 

where j = 1, 2. 
Here, we introduce another kind of variables. Let wf be the number of jobs 

of class 1 in the buffer on the vfth slot counting from the arrival instant of the 
nth burst, excluding the (n + 1)st burst and all the bursts after (n + 1)st even 
if they have arrived already on the vfth slot. wf takes into account the arrival 
jobs which do not keep the server. Similarly, let w~ be the number of jobs (of 
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class 1 or class 2) in the buffer on the v~th slot counting from the arrival instant 
of the nth burst, excluding the (n + l)st burst and all the bursts after (n + l)st. 
Again, as the first case, we assume that (n + l)st burst belongs to class 2. If 
vf < pH, the server will serve the class 1 jobs in the buffer, if any, on every 
slot by one from (vf + l)st to pHth slots counting from the arrival instant 
of the nth burst. However, if vf ~ pH, the class 1 jobs in the buffer are not 
served until P+1th slot, so Wf+1 = wf. Therefore, Wf+1 can be written as 
follows: 

if vf < p+\ 
if vf ~ Tn+1. (3.4) 

Now let us obtain wn+1 given pH sn+1 vn and wn If vn < pH then , 2 , 2 ,2, 2· 2 - , 
W~+1 is equivalent to the number of jobs in the buffer on the P+1th slot 
counting from the arrival instant of the nth burst and is less than w~ since the 
jobs in the buffer will be served after the v~th slot. If v~ > p+\ on the other 
hand, w~H is equivalent to the number of jobs in the buffer on the v~th slot 
counting from the arrival instant of the (n + l)st burst, and is greater than 
w~ since the number of jobs increases on every slot by one from the P+1th to 
min(v~, pH + S~+1 )th slots counting from the arrival instant of the nth burst, 
as long as there is enough space in the buffer. From the above discussion, we 
have 

{ 
[w~ - (p+1 - v~)]+, if v~ - p+1 ::; 0, 

W~+1 = min[w~ + v~ - p. H, M2], if 0 < v~ - p+1 ::; 8';+1, (3.5) 
min[w~ + S~+l, M 2 ], if srH < v~ - p+1. 

Next, we suppose that (n + l)st burst belongs to class 1. In this case, it 
is a little complicated to obtain wr+1 ,s, since we have to take care not only of 
the total number of jobs in the buffer not to exceed M2 but also of the number 
of class 1 jobs not to exceed M 1• After some straightforward considerations we 
can get the following relations for W~+1: 

W n+1 -2 -

[w~ - (p+1 - v~)]+, if v~ ::; p+\ 
min[w~ + v~ - TnH, M2 ], if vf ::; p+1 < v~ ::; p+1 + Sf+1, 
min[w~ + SfH, M2], if vf ::; pH, p+1 + Sf+1 < v~, 
min[w~ + min(vf - p+\ M1 - wf) + v~ - vf, M 2 ], 

if p+l < vf, v~ ::; p+1 + SfH, (3.6) 
min[w~ + min(vf - Tn+1, M1 - wf) + Sf+1 + Tn+1 - vf, M 2 ], 

if p+l < vf ::; p+l + SfH < v~, 
w~ + min(Sf+\ M2 - w~, Ml - wf) 

if p+1+Sf+1 <vf. 

In the first three cases of (3.6), the number of class 1 jobs never increase, so 
the formulae are the same as (3.5). In the fourth and fifth cases, the jobs from 
first to (vf - pH )th in the (n + l)st burst arrive during the class 1 bursts are 
active, so the number of class 1 jobs possiblly increases by vf - pH as long 
as the remaining buffer capacity Ml - wf is enough and the total number of 
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jobs in the buffer does not exceed M2 . The jobs from (vf - m+l + l)st to 
(v~ _m+l )th arrive during only the class 2 bursts are active. Therefore, they do 
not increase the number of class 1 jobs, but possiblly increase the toal number 
of jobs, since they push out the class 2 jobs from the server to the buffer and 
receive the services immediately. In the last case, all Sf+l jobs arrive during 
the class 1 bursts are active. 

Class 2 

(0,6,0,0) 

Class 1 (3,4,0,3) 

(3,3,1,5) 
Class 2 

n ~(------______________________________________ __ 

3 

4 

2 1 

Figure 1 Sample path of (vf,v~ , wf,w~) (Ml = 1 and M2 = 7) . 

Using (3.6) , W~+l can be expressed by 

W n +1 -1 -

[wy - (m+1 -vy)]+, if v~:::; m+l, 
[wY+w~+l-w~- (v~-vy)]+, 

if m+l < v~ :::; m+1 + Sf+l , 
[wy + w~+1 - w~- (Sf+l + m+1 - vy)]+, 

if vy :::; m+l + Sf+l < v~, 
w~ + min (Sf+l ,M2 -w~, Ml - wy), 

if m+1 + Sf+l < vy. 

(3.7) 

Note that in the second case of (3. 7), (W~+l - w~) is the number of class 1 jobs 
which join the system until v~th slot counting from the arrival instant of the 
nth burst, and (v~ - vy) is the time slots during which the class 1 jobs in the 
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shard buffer receive the service if any. The sample path of (vf, v~, wf, w~) is 
illusrated in Fig.1 for the case of Ml = 1 and M2 = 7, where the lost jobs are 
marked by x. 

(vf, v~ , wf , w~) has the Markov property, because (v?+l, v~+ \ wf+ \ w~+ 1) 

depends only on (vf,v~,wf,w~) given 1""+1 and Sr+l. Let us denote the set 
of all posible states of (VI, V2, WI, W2) by U, and denote the relationship by: 

(V~+I, V~+I, W~+I, w~+l) = f(vf, v!j, wf, w!j, ~+l, m+I). 

for the case that (n + l)st burst belongs to class 1, and 

(vn+l vn+l wn+1 wn+1) = g(vn vn wn wn sn+l m+l) 1 '2 , 1 , 2 1, 2, 1, 2, 2' . 

for the case that (n + l)st burst belongs to class 2. 
Since vf's are bounded by Smax and wf ::s; M i , (vf, v!j, wf, w!j) is a finite 

state embedded Markov chain at the arrival instant of bursts with less than 
(Smax + 1)2(Ml + 1)(M2 + 1) states, i.e., O(S~axMIM2)' 1""+1 ~ Smax + M2 
is a sufficient condition for V~+1 = Sr+1 and wr+l = 0 (i = 1,2). There­
fore, it is sufficient to consider the case 1""+1 = 0,1,"" Smax + M 2, Sr+1 = 
1, 2, ... ,Smax for every state (v?, v!j, w?, w!j) to calculate the coefficients of the 
equilibrium equations using (3.1) rv (3.7), which requires O(S!taxMIM2(Smax+ 
M2» time. Once we calculate the coefficients of the equilibrium equations, we 
can get the steady state probability distribution of (vf, v~, wf, w~), denoted by 
P(Vl' V2, WI, W2), by solving the system of stationary eqUilibrium equations: 

P(Vl,V2,Wl,W2) 
Stnax (X) 

= rl L L P(Sl)P(T) 

Sm.a.x 00 

+r2 L L P(S2)P(T) 

and P(Sd and peT) denote the probability that the number of jobs of a burst 
is Si and the probability that the inter-arrival time of bursts is T, respectively. 

We note that this method is still much more efficient than the straightforward 
way mentioned at the beginning of this section, though the number of states of 
the embedded markov chain (vf, v~ , wf, w~) increases in polynomial order as 
the maximum burst size and/or the capacity of the buffer increases. 
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4. PERFORMANCE MEASURES 

In this section, we get the performance measures: the job loss probability, the 
waiting time distribution, and the mean number of jobs in the buffer, using 
steady state probability distribution P(VI' V2, WI, tL12) obtained in the previous 
section. 

4.1 Job Loss Probabilities 

We first calculate the job loss probability defined to be the ratio between the 
average number of jobs out of a burst that are lost and the average number of 
jobs arriving in a burst. Let cr+1 be the number of lost jobs in the (n + 1)st 
burst belonging to class i given (vf, v~, wf, w~), sr+I , and m+ 1. Here, we again 
assume that the (n + 1)st burst belongs to class 2. Because of FIFO discipline 
on a burst basis, the jobs of the (n + 1 )st burst are lost when they find, at their 
arrival slot, that the other job excluding all the bursts after (n + 1)st keeps the 
server and that the buffer capacity for the class is full of jobs of the (n + 1)st 
burst which already arrived and/or jobs of all the bursts before (n + 1 )st. If 
v~ :$ m+1, all the arriving jobs can keep the server. If v~ > m+1, however, 
min(v~ - m+l, 8;+1) jobs can not keep the server and try to enter the buffer. 
Then, since the available buffer capacity is M2 - w~, we have 

0;+1= (~~-m+I-M2+W~)+, if 02<v~_r;+1':$~+1, (4.1) { 
0 if vn - m+1 < 0 

(~+1 _ M2 + w~)+, if ~+1 < v~ - m+1. 

Next, we consider the case that (n + 1)st burst belongs to calss 1. In this 
case, the arriving jobs can not enter the buffer if the total number of jobs in 
the buffer is M2 or the number of class 1 jobs in the buffer is M1 excluding jobs 
of all the bursts after (n + 1)st. The arriving jobs in the (n + 1)st burst may 
find the three possible situations, that is, among the bursts before (n + 1)st the 
class 1 bursts are active (until vfth slots), or only the class 2 bursts are active 
(from (vf + 1)st to v~th slots), or no burst is active (from (v~ + 1)st slots). 
We define these three periods by period 1, period 2, and period 3, respectively. 
Let Cf.t1 be the number of lost jobs in the (n + 1)st burst belonging to class 
1 which arrive at the queue during period k, given (vf,v~,wf,w~), 8~+1, and 
m+1. Clearly eft1 = 0 since the arriving jobs during period 3 can keep the 
server, and then -ive have 

en+1 - c,'l+1 + c,'l+1 1 - 1,1 1,2 • (4.2) 

During period 1, the available buffer capacity is min(M2 - w~, M1 - wf). Then 
we get 
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[vf- m+1 - min(M2 - w~, M1 - wf)]+, 
C n+1 = if m+1 < vn < m+1 + sn+1 1 

0, if vf - m+1 $ 0, 

1,1 1 - l' (4.3) 
[Sf+1-min(M2 -W~,M1 -wf)]+, 

if m+1 + Sf+1 < vf. 

The number of lost jobs during periods 2 can be obtained as we did in (4.1): 

{ 
(vn - m+1 - M + wn _ C n+1)+ if 0 < vn _ rron+1 < Sn+1 2 2 2 1,1' 2 1- _ 1 , 

~+1 = (sn+1 _ M + wn _ C n+1)+ if vn < rron+1 + sn+1 < vn 1,2 1 2 2 1,1' 1 _ 1 - 1 2, 
0, otherwise. 

(4.4) 

Using (4.1) rv (4.4), the loss probability for the class i jobs denoted by Pzoss,i is 
obtained by 

V2- 1 Stnax S-rnax 

Fi08S,i == L L P(V1, V2, WI, w2)P(T)P(Si)Cd L P(Si)Si 

h C rm+1· (n n n n) - ( ) Sn+1 S d were i means vi gIven VI' v2 , WI' w2 - VI, V2, WI, W2, i = i, an 
m+1 = T. 

4.2 Waiting Time Distributions for Class 1 Jobs 

Now, we get the waiting time distribution for the class 1 jobs denoted by WI, 
assuming FIFO discipline on a burst basis, that is, the jobs of the nth burst 
have the higher priority than any jobs of the (n + 1)st burst whenever they 
arrive. We define the waiting time distribution so that it satisfies the following 
equation: 

00 

L Pr[Wl = k] + ?toss,l = 1. 
k=O 

Because of FIFO discipline on a burst basis, the waiting times of all the jobs 
in a burst are same as long as no jobs in the burst is lost, which are equal to 
(v? - m+1 + w?)+ for the jobs of the (n + 1)st burst. If some jobs are lost, the 
waiting time of the jobs arriving after the loss are less than the jobs arriving 
before the loss by the number of lost jobs. Here we classify three periods as 
we did in calculating the job loss probabilities, and denote the waiting time of 
the jobs of the nth burst belonging to class 1 which arrive at the queue during 
period k by Wi\(k = 1,2,3). Note that the waiting time of jobs in the same 
period is same ~ince the lost jobs, if any, are the jobs which arrive on the last 
slots of each period. Then we get 

k-1 

W n+1 = (vn _ m+1 + wn _ ~ C n-!-l)+. 
1,k 1 1 ~ I,) 

j=l 

Another necessary information for the waiting time distribution is the number 
of jobs which can enter the queue, that is, the number of jobs whose waiting 
time is w;nt 1. Let Dr; 1- be the number of the jobs of the the nth burst belonging 
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to class 1 which enter the queue during period k. Df,k can be easily written 
using the number of lost jobs during each period, (4.3) and (4.4), as follows: 

{ 
0, 

D n+1 - v n _ m+1 _ (7.!1+1 
1,1 - 1 1,1 , 

Sn+1 _ en+1 
1 1,1 , 

if vf - m+1 :::; 0, 
if m+1 < v? :::; m+1 + Sf+1, 
if m+1 + sn+1 < Vn 

1 1, 

(4.5) 

D
n
+

1 -1 1,2 -

vn _ m+1 _ (7.!1+1 
2 1,2 , 

Sn+1 _ c,-'+ 1 
1 1,2 , 

Vn Vn en+1 
2 - 1 - 1,2' 

S n+1 + rrm+1 Vn rrn+1 1 .J. - - 1 - \./1,2 , 

0, 

if V?:::; m+1 < V~ :::; m+1 + Sf+1, 
if vf:::; m+1, m+1 + Sf+1 < v~, 
if m+1 < vf, v~ :::; m+1 + Sr+l, 
if m+1 < vf :::; m+1 + Sf+1 < v~, 
otherwise, 

and 

{ 
S!'I+l if vn < m+1 

1 , 2 - , 
D n+1 = sn+1 + Tn+1 _ vn if m+1 < vn < m+1 + sn+1 

1,3 1 2, 2 - l' 
0, otherwise. 

(4.7) 

Using (4.5) '" (4.7), the waiting time distribution for the class 1 jobs is obtained 
by 

00 Sm.a.z 

Pr[W1 =j) L L P(V1,V2,W1,W2)P(T)P(Sl) 
(V1,V~,W1,W2)EU T=O 81=1 

3 8 ...... ", 

x Ll[W1'k=j[Dl,kl L P(St}Sl 
k=l 81=1 

(j = 0, 1, ... , Smaz + M 1 ), 

(4.6) 

whereD1,k and W1,k means Dff and wr,t1 given (v?, v~,wf,w~) = (V1,V2' WI, tvz), 
Sf+1 = S1, and m+1 = T,respectively, and 

1 _. = {I, if W 1,k = j, 
[W1,k-J! 0, otherwise. 

Note that if m+1 ;::: Smaz + M 1, then wr,t1 = ° because the jobs find no class 
1 jobs in bursts before (n + l)st. For the case of FIFO disciplineon on a job 
basis the maximum waiting time is bounded by Mb but it is difficult to obtain 
the waiting time distribution since we use the embedded Markov chain at the 
arrival instant of bursts. 

4.3 Mean Waiting Times for Class 2 Jobs 

Next, let consider the waiting time for class 2 jobs. If we neglect the arrivals 
after the tagged bursts, we can obtain the pseudo waiting time distribution for 
class 2 jobs in the same way as the previous subsection. This is not the real 
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waiting time distribution, because the class 2 jobs may be passed by class 1 jobs 
of the posterior burst. The additional delay time by an arrival of the class 1 jobs 
in the (n+ l)st burst during period k is the same as D~r, the number of the 
jobs of the the (n + 1 )st burst belonging to class 1 which enter the queue during 
period k. The number of class 2 jobs passed by the class 1 jobs in the (n + l)st 
burst during period k denoted dy N;:+1(k = 1,2,3) can be also obtained by 

N n +1 _ a, I .L. v1 , ( ) { 
n 'f rr>n+1 < n 

1 - 0, otherwise, 4.8 

if vf::;; yn+l < vr, 
if Tn+l < vn < yn+1 + Sn+1 

1 - l' (4.9) 
otherwise, 

and 

an - (P' + ~+1)+, if vf::;; yn+l < v~ ::;; yn+1 + Sr+\ 
N;+1 = an - (P' + cr+1+ C2+1)+, (4.10) 1 

[an - CBn)+j+, if vr::;; yn+l, 

if yn+l < vf, v~ ::;; yn+1 + Sr+\ 
0, otherwise, 

where an = v~ - vf + w~ - wf and {3n = yn+ 1 - vf - wf. However, it is difficult 
to get the joint distribution of the pseudo waiting time and the additional delay 
time. Therefore, we can not get the waiting time distribution for class 2 jobs, 
but the mean waiting time can be calculated as follows: Let us assume that 
(vf, vr, wf, wr), Sr+\ and yn+1 are given. If the (n + l)st burst belongs to 
class 2, the total amount of pseudo waiting time of the jobs in (n + l)st burst 
becomes (v~ _yn+l +w~)+(S2+1 - C2+1) - ~+I(S2+1 +yn+1 -v~)+. If the 
(n + l)st burst belongs to class 1, the total amount of additional delay which 
the burst bring to class 2 jobs is expressed by L~=1 D~tl N;:+l using (4.5) f'V 

(4.7) and (4.8) f'V (4.10). Since the ratio between arrival rates of class 1 bursts 
and class 2 bursts is r1/r2, the mean waitin time for class 2 jobs is obtained by 

00 STna.:z; 

L L P(Vl' V2, WI, w2)P(T)P(S2) 
(Vl,V2,Wl,W2)EU T=O 82=1 

3 

X (1 LDI kNk + (V2 - T + W2)+(S2 - C2) - C2(S2 + T - V2)+j 
r2 k=1 ' 

Sm.az 

/ L P(S2)S2, 
82=1 

h D N d C D n+l Nn+1 d Cn+1 ' (n n n n)_ were 1,k, k, an 2 means 1,k k an 2 gIven v1 , v2 , WI' w2 -
(V1' V2, W1, 1112), Sf+1 = S1, and yn+l = T,respectively. 

Using the mean waiting time, we can get the mean queue length for class i 
jobs, Ii using the Little's law, i.e., 
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Li = WJJirdT, 

where Bi , T, and Wi denote the first moments of Si, T, and Wi, respectively. 

5. NUMERICAL EXAMPLES 

In this section, we present some numerical examples. We consider two examples 
as shown in Table 1. We assume that the inter-arrival time of bursts, T, is 
uniformly distributed from Tmin to Tmax and that the number of jobs in bursts 
of each class, Sl and S2, are uniformly distributed from Smin to Smax· Of and 
C~ respectively denote the squared coefficient of variation of T and Si' Note 
that C~ in Ex.2 is larger than the one in Ex. I. 

For both examples, we fix the total buffer capacity as M2 = 5 and the 
probability of the classes that the bursts belong to as r1 = r2 = 0.5. Then, we 
observe the behaviors of the job loss probability and the mean waiting time as 
the capacity of the shared part increases. Table 2 shows the number of states 
of the embedded Markov chain (V1' V2, W1, W2) for each example. We illustrate 
the job loss probability and the mean waiting time for each class in Fig.2 and 
Fig.3 respectively. 

Table 1 Parameters of examples 
Ex. Inter-arrival time The number of jobs Traffic 

Tmin Tmax T Of Smin Smax B C~ intensity 
1 1 9 5 0.2666 2 5 3.5 0.1020 0.7 
2 1 9 5 0.2666 1 6 3.5 0.2381 0.7 

Table 2 The number of states (Vb V2, W1'~) 
Capacity of the shared part 0 1 2 3 4 5 

Ex. 1 88 158 211 249 275 293 
Ex. 2 127 228 305 361 400 427 

We can conclude the numerical results as follows: 

1. The job loss probability as well as the mean waiting time increases as the 
coefficient of variation of Si increases when the traffic intensity is fixed. 
Though it is not shown here, we can say the same thing for Of. 

2. As the capacity of the shared part increases, the job loss probability for 
class 1 drastically decreases, but the one for class 2 slightly increases. They 
become exactly same when M1 = M2 = 5, which is most reasonable. 

3. As the capacity of the shared part increases, the mean waiting time for 
each class slightly increases, because the total job loss probability de-
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creases, and the substanial traffic intensity increases, consequently. When 
MI = 0, the waiting time for any class 1 jobs is zero since the class 1 jobs 
are not allowed to wait in the buffer in this case. 

4. It is shown that the proposed buffer management is efficient to meet the 
quality of service requirments of different traffic types by setting the capc­
ity of each part of buffer appropriately. 

6. CONCLUDING REMARKS 

We studied a discrete-time, single-server priority queue with partial buffer shar­
ing, and proposed an efficient numerical method to exactly obtain some per­
formance measures. We keep track of the largest numbers of remaining jobs 
of active bursts for each priority class rather than the numbers of remaining 
jobs of every active burst. Hence, we can save a lot of space and computa­
tional effort, compared with the straightforward way mentioned in Section 3. 
Though the number of states of the embedded Markov chain (vf,v~,wf,w~) 
increases as the maximum burt size and/or the capacity of the buffer increases, 
the computational complexity is still polynomial order. 

We can extend this work to multi-server systems. In the two-server systems, 
we have to keep track of the first and second largest numbers of remaining jobs 
of active bursts for each priority class, and the resulting embedded Markov chain 
. (n n n n n n) h n· th ·th I t b f . . IS VI,I' V I ,2' V2,1' V2 ,2' WI' W 2 ,were Vi,; IS e J arges num er 0 remaIDlng 
jobs among active bursts of class 1 to class i. The extension to three classes 
job systems is also possible. In these systems, however, the number of states 
rapidly increases as the maximum burt size and/or the capacity of the buffer 
increases, and they become intractable even for small systems. 
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