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Abstract: The existence of solution to membrane shell equation is studied 
in a bounded open connected domain w (Lipschitzian when w has a boundary 
'"Y) in a C 1 •1 midsurface for homogeneous Neumann boundary conditions or 
homogeneous Dirichlet boundary conditions on a part ')'a of '"Y· It is proved that 
its tangential part is solution of the reduced membrane shell equation in H 1 ( w )N 
(resp. (w)N) unique up to an element of a finite dimensional subspace, while 
its normal component belongs to a weighed L2 (w) space by the pointwise norm 
of the second fundamental form. It is also shown that the reduced equation is 
equivalent to the equation for the projection onto the linear subspace of vector 
functions whose linear change of metric tensor is orthogonal to the second 
fundamental form of the midsurface. 

1 INTRODUCTION 

In recent papers ((8, 9, 11, 12]) it was established that the polynomial P(2, 1) 
model is both pertinent and basic in the theory of thin shells. It was shown in 
(8] that its solution converges to the solution of a coupled system of variational 
equations. For the plate and the bending dominated shell it yields (as the 
thickness 2h goes to zero) the membrane shell equation and the asymptotic 
bending equation. 

The first variational equation of the asymptotic coupled system coincides 
with the variational equation characterizing the asymptotic P(O, 1) model. It 
was shown in (8] that this equation decomposes into two equations: a first 
equation containing the Love-Kirchhoff group of terms and a second equation 
which coincides with the classical membrane shell equation. The detailed cor-
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respondence with the covariant form of the classical membrane shell equation 
is given in [10]. The decomposition is achieved by variable elimination which 
results in the introduction of an effective compliance CeP associated with the 
initial three dimensional compliance C. 

In this paper the membrane shell equation is studied in a bounded open 
connected domain w (Lipschitzian when w has a boundary "Y) in a C 1•1 sub­
manifold of codimension one for homogeneous Neumann boundary conditions or 
homogeneous Dirichlet boundary conditions on a part "Yo of "Y when "Yo has non­
zero HN- 2 Hausdorff measure. This paper is a companion paper to [8] where 
the spaces of solution E0 and EP corresponding to the respective asymptotic 
P(O, 1) model and the membrane shell equation are defined as completions of 
appropriate quotient spaces. It gives a complete characterization of the space 
EP without extra condition on the second fundamental form. Such a charac­
terization is currently available for the plate and uniform strong elliptic shells 
in [13, 5, 6, 7]. It also shows that we can always associate with the vector 
functions of the space EP a class of tangential components which turns out to 
be solutions of the reduced membrane shell equation. This reduced equation 
is also connected with a projection onto a linear subspace of elements of EP 
whose linear change of metric tensor is orthogonal to the second fundamental 
form. Another consequence of the characterization of EP is the fact that in the 
asymptotic convergence of the solution of the P(2, 1) model we now know that 
the tangential component of the displacement of the midsurface strongly con­
verges in H 1(w)N and the normal component in a weighed L2(w) space by the 
pointwise norm of the second fundamental form. The characterization given in 
this paper and the one of E 01 given in [9] for the P(2, 1) model sharpen the 
abstract results of [8]. 

For N = 3, this extends to arbitrary D2 b the available existence of solutions 
obtained by [1, 3] for g0 = 0, homogeneous Dirichlet boundary conditions on 
the whole boundary, the special constitutive law c-1 e = 2 J.L e + >. tre I and 
the uniform ellipticity of the 2-dimensional C 2-midsurface w. However in the 
case of uniform elliptic shells uniqueness does not so far follows directly in an 
obvious way. The first existence and uniqueness result seems to be due to [13] 
under relatively strong conditions. For a domain w with a C3 boundary "Y 
in an analytic midsurface, the existence and uniqueness of solutions ( in 
HJ(w)3 x L 2 (w) was established by [6, 7]. The conditions were relaxed by [1, 3]: 
the midsurface is of class C2 and the boundary "Y is Lipschitz for the existence 
(midsurface C 5 and the boundary "Y of class C4 for existence and uniqueness). 

Notation and Background Material. The inner product in RN and the 
double inner product in .C(RN; RN) (space of N x N matrices or tensors) are 
denoted as 

X. y = X; y;, A·· B = Ef=l A;j Bij· 

* M denotes the transpose of of an arbitrary k x m matrix M. 
In this paper the submanifold r of codimension one is specified as the bound­

ary of a subset n of RN. It is assumed that w is a bounded open subset of r 
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and that r is of class C 1•1 in a neighbourhood of w. This is equivalent to say 
that the algebraic distance function b of n is C 1•1 in that neighborhood. Its 
gradient "ilb coincides with the unit exterior normal n tor on w and its Hessian 

matrix D 2 b to the second fundamental form. Finally P *n will denote 
the orthogonal projection onto the tangent plane tow ([n *n];j = n; nj). For 
a detailed account of the intrinsic differential calculus on a C 1•1-submanifold, 
the reader is referred to the now available lecture notes [10, 8]. Finally it will 
be convenient to introduce the following notation for the decompositions of an 
N x N matrix r into its tangential and normal parts along w 

p r - r , def 
Tnn = rn · n, [t]r = rp + (Prn) *n + n *(Prn) + Tnn n *n 

and the spaces of symmetrical matrices 

SymN { r E .C(RN; RN):* r = r} 
{r E SymN:rn = 0} <=> 't:/r E SymN, rp E 

2 MEMBRANE SHELL EQUATION 

It was shown in [8] that the membrane shell equation can be obtained by de­
composition of the variational equation of the asymptotic P(1, 0) model which 
also yields the typical group of terms occurring in the Love-Kirchhoff condi­
tion. It involves an effective compliance CeP which retains the properties of 
the three-dimensional compliance C. So for the purposes of this paper it is 
convenient to start with the following assumption on the effective compliance. 

Assumption 2.1 The effective compliance is a linear bijective and symmetri­
cal transformation of such that there exists a constant a > 0 for which 

The membrane shell variational equation is given by: for all v0 E H 1(w)N 

(1.1) 

where the right-hand side is specified by a linear functional p_P. Associate with 
the space 

(1.2) 

and define EP as the completion of the quotient space V / ker with respect 
to the norm associated with the inner product 

(1.3) 
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Similarly for homogeneous Dirichlet boundary conditions on a part 'Yo of/, 
denote by the completion of the quotient space 

v"(o/keuP, v"/D {v E L2(w)N:vr E 

with respect to the norm generated by the scalar product (1.3). By Assump­
tion 2.1 on Cep, the bilinear term in (1.1) is continuous and coercive in EP. 

Theorem 2.2 Let Assumption 2.1 on CeP be verified. 

(i) Given gP E (EP)', that is there exists c > 0 such that for all v0 E H 1 (w)N 

{1.4) 

the variational equation: to find v0 E Ep such that for all v0 E H 1 (w )N 

[ [C;)c:f ( vo)J .. c:f (vo) df = gP (vo) (1.5) 

has a unique solution v0 in EP. 

(ii) Assume that w is connected and that 'Yo is a subset of 1 with strictly 
positive HN-2 measure. Given fP E that is there exists c > 0 
such that for all v0 E 

{1.6) 

the variational equation: to find v0 E such that for all v0 E (w)N 

{1. 7) 

has a unique solution v0 in 

3 REDUCED MEMBRANE SHELL EQUATION 

The membrane shell equation can be further decomposed into a system of two 
equations. For test functions v E V, that is E H 1 (w)N x L2(w), 

c:f (v 0 ) = c:f + D 2b 
3c > 0, E H 1 (w), I£P ( n) I ::; c c' I!L2(w) 

=> 3fp E L2(w) such that n) = fw f df 

It will be convenient to define the function 

By construction f! I!D2bll E L 2 (w). 

if IID2b(X)II :f. 0 
if IID2b(X)II = 0 
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Denote by Hl (w )N (resp. (w )N) the subspace { v E H 1 (w )N (resp. 
v · n = 0} of tangential vectors. The decomposition yields the two 

equations 

[c;jcf(v0 )] .. D2b = JP = J! IID2 bll 
E Hl(w)N, fw .. dr = (1.8) 

where by condition (1.4) on £P 

3c > 0, E Hf(w)N, :S 

In the case of the plate (D2b = 0), cf(v0 ) = + D2b = and 
there is only the variational equation 

E H 1(w)N, L [ c;jcf .. cf dr = £P 

which completely specifies E Hl(w)N /kercf (resp. and is 
arbitrary. There is a generalization of this result without adding new conditions 
on D 2 b. The second equation (1.8) specifies the tangential part of i)0 up to 
an element of some appropriate equivalence class providing a natural decom­
position of the membrane shell equation into an equation for the equivalence 
class of and an equation for again modulo another equivalence class. In 
the case of the plate the corresponding equivalence class for is so big that 
there is no information on and we have uniqueness for in the case of 
homogeneous Dirichlet boundary conditions on a part of the boundary. 

Denote by [v]E the equivalence class of v in EP (resp. E;:). Let 

Wo {x E w : D2b(x) = o} and W+ w\wo. 

For v E V (resp. define the function 

(1.9) 

Using the identity cf(v) = cf(vr) + Vn D 2b, it is easy to verify that for all 
v E V (resp. 

the quotient space 

V p Hl( )N/ k -P - t w ercr 

in w+ 

in wo 

( p def 1 ( )Nj k -P) resp. V')'o = H')'ot w ercr 

(1.10) 

(1.11) 

(1.12) 
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and the space 

U ( U def (Hl ( )N)) ,. resp. 'Ya = ns rat w (1.13) 

Consider the reduced membrane shell equation: to find vr E vP (resp. Vfo) 
such that for all wr E Hl(w)N (resp. 

i c;)ef(vr)··ef(wr) dr = fp(ns(wr)) (1.14) 

By condition (1.4) on fP there exists c > 0 such that for all wr E Hl(w)N 

and equation (1.14) has a unique solution in the completion of the quotient 
space v P = v 1 ker ef with respect to the topology generated by the norm 
IJef (vr )IIP(w). We now give a sharper existence theorem for the reduced mem­
brane shell equation and the membrane shell equation. This theorem is based 
on a characterization of the elements of the spaces EP and 

Theorem 3.1 Let Assumption 2.1 on CeP and (1.4) on fP be verified. 

(i) There exists a solution vr in Hf(w)N (resp. to the reduced 
membrane shell equation ( 1.14) unique up to an element of ker ef and 

[ns(vr)]E = [ns(v)]E (1.15) 

where [v]E is the solution of the membrane shell equation (1.5) (resp. 
(1.7)) in EP (resp. 

(ii) There exists a solution u such that ur E Hf(w)N (resp. and 
uniiD2 bll E L 2 (w) to the membrane shell equation (1.5) (resp. (1.7)) 
which is unique up to an element of ker cf. 

(iii) ker ef is finite dimensional. When D 2b # 0 almost everywhere in w, 
ker cf is also finite dimensional and 

(1.16) 

This theorem necessitates the following theorem on the structure of the spaces 
spaces EP and which follows from a sequence of lemmas. The proofs will 
be omitted for lack of space and will be given in a subsequent paper. 

Theorem 3.2 Let Assumption 2.1 on CeP be verified. 

(i) keref is finite dimensional and the space vP = V/keref (resp. v..;: = 
V,a/keref) is complete for the norm llef(vr)IIP(w)· 
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(ii} The space EP (resp. E,fa) is equal to 

{ ur + Un n : 

Specifically for each [v]E E Ep I there exists a unique [vr]v E vP = 
Hf(w)N (resp. v.:a = such that 

[rrs(ur)]E = [rrs(v)]E (1.18} 

and for each ur in the equivalence class [vr]v the normal component 

is such that Un IID2bll E L 2 (w) and 

[ur + Un n]E = [v]E. 

Conversely for allurE Hf(w)N and Un IID2bll E L2 (w) 

[ur + Un n]E E EP. 

(iii} When D 2b =/= 0 almost everywhere in w, then is finite dimensional. 

Define the closed linear subspace 

of EP (resp. E,fa). We first make sense of the map rrs on EP. 

Lemma 3.3 The map 

is well-defined, linear and continous. Moreover 

EP 
= rrs(V/kercf) = SP 

Vv ESP, = 

and rrs is a projection, that is [rrs(v)]E = [rrs(rrs(v))]E in EP. 

(1.19) 

(1.20} 

{1.21} 

{1.22} 

Lemma 3.4 The map rrs : Hf (w )N --+ U is a continuous linear bijection and 
U is closed for the topology generated by the norm 
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The space VP is complete for the norm IIE"f(vr)IIL2(w) and kerE"f is finite 
dimensional. 

Lemma 3.5 The map 

[vr]v 1--t 1rs ([vr]v) [ 1rs ( v)]E 
: vP = Hl(w)N /kerff -t U/kercf 

(1.23) 

is a well-defined isomorphism, where [v]v denotes the equivalence class of v 

in V P, V P is endowed with the topology generated by the norm IIE"f ( vr) II and 

U/kercf by the norm llcf(v)ll on EP. Moreover 

SP = U/kercf = 7rs(Hl(w)N)/kercf = 7rs(VP). 

Lemma 3.6 For each vEEP, the projection [7rs(v)]E is the unique solution 
in sP of the variational equation: for all w E H 1 (w )N 

1 C;]Jcf (1rs(v)- v)·· cf (w) dr = 0 (1.24) 

and there is a solution vr E Hl(w)N unique up to an element ofkerlf to the 

variational equation: for all wr in Hl(w)N 

(1.25} 

Moreover 

[1rs( v)]E = [ 1rs ( vr )]E. (1.26} 

All this remains true for Dirichlet boundary conditions on a part "/O of the 
boundary with in place of Hl(w)N and in place of EP. 

Lemma 3. 7 (i) The space EP is equal to 

{ur+unn: urEHl(w)N 

Specifically for each [v]E E EP, there exists a unique [vr]v E VP = 
Hl(w)N (resp. V-J: = /kerff} such that 

[7rs(vr)]E = [7rs(v)]E (1.28} 

and for each ur in the equivalence class [ur]v the normal component 

Ill WQ (1.29) 

is such that Un IID2bll E L 2 (w) and 

[ur + Un n]E = [v]E· 
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Conversely for allurE Hl(w)N and Un IID2 bll E L 2 (w) 

[ur + Un n]E E EP. 

(ii} When D 2 b f. 0 almost everywhere in w, then kercf is finite dimensional. 
The lemma remains true for Dirichlet boundary conditions on a part 'Yo of 

the boundary with Hl,10 (w)N and Ef/o in place of Hl(w)N and 
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