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Abstract: Some ergodic and adaptive control problems for stochastic semi­
linear systems are described. The stochastic systems have cylindrical noise 
processes and the control is either distributed or boundary /point. The de­
velopment of adaptive control for stochastic distributed parameter systems is 
described commencing with adaptive control problems for linear stochastic sys­
tems with quadratic cost functionals. 

1 INTRODUCTION 

The study of adaptive control of stochastic distributed systems has developed 
primarily in this decade. For adaptive control, the systems are only partially 
known and they must be controlled so there are the problems of identification 
and control. For the control part it is clear that some results for the control 
of the completely known systems should be available, so it is natural that 
there is some lag time between the results for optimal control and adaptive 
control of these systems. If it is desired that an adaptive control achieves the 
optimal cost for the control of the known system then an ergodic cost criterion 
is natural. If an adaptive control achieves this optimal cost then it is called 
self optimal. The semigroup approach has been an important method for the 
analysis of distributed parameter systems. The initial work on adaptive control 
using the semigroup approach is done in [2] where an adaptive control problem 
of a partially known linear stochastic system, for example, a stochastic partial 
differential equation, with a distributed control and a quadratic cost functional 
is solved. Since it seems to be more natural to use boundary or point control, 
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instead of distributed control, some adaptive control problems for partially 
known linear stochastic distributed parameter systems with boundary /point 
control and quadratic cost functionals are solved in [3, 4]. These adaptive 
control problems use the optimal controls for deterministic, linear distributed 
parameter systems with infinite time horizon, quadratic cost functionals. It is 
well known, at least for finite dimensional systems, that the optimal control 
for the deterministic system gives the optimal control of the stochastic system 
with the corresponding ergodic cost. However this relation assumes that the 
systems are linear and the cost functional is quadratic. 

For stochastic semilinear systems the situation is significantly more com­
plicated. There are questions of existence and uniqueness of the solutions of 
the stochastic differential equations that describe the stochastic semilinear sys­
tems. The transition measures and semigroup for the solution of a stochastic 
semilinear system with a Markov-type control have to be shown to be strongly 
Feller, tight and irreducible so that invariant measures exist and are unique. 
These results are important for the ergodic control problem. For the adaptive 
control problem it is important to verify the continuity of the optimal cost and 
the optimal control with respect to parameters. These properties are impor­
tant because typically a strongly consistent family of estimates of the unknown 
parameters is constructed and it is desired to show that a certainty equivalence 
adaptive control, that is obtained by using the estimate of the unknown param­
eter in place of the true parameter in the optimal control, converges in some 
sense to the optimal control and the "running" costs for this adaptive control 
converge to the optimal ergodic cost for the known system. 

For modelling of the controlled stochastic semilinear system there are dis­
tributed and boundary /point control. For boundary /point control some results 
have been obtained for ergodic control and continuity properties for adaptive 
control in [6]. While these results provide important information for both er­
godic and adaptive control, an optimal control is not given explicitly so that 
the continuity of an optimal control with respect to parameters is not known. 
Thus, if a certainty equivalence adaptive control is used with a strongly con­
sistent family of estimates of the unknown parameter, then it is not clear that 
these adaptive controls converge to an optimal control for the true system. 
For distributed control of parameter dependent semilinear stochastic systems, 
some results have been obtained for ergodic control and continuity properties 
for adaptive control in [5]. However, an optimal control is not given explicitly, 
so it is difficult to verify that a family of adaptive controls converges to an 
optimal control. Another approach to ergodic cost, distributed control is given 
in [8]. While these results have potential application to adaptive control, it 
seems that more information is required about an optimal control. 

For some ergodic, distributed control problems of stochastic semilinear sys­
tems, a Hamilton-Jacobi-Bellman equation is solved and an optimal control is 
given in [9]. In [7] the results in [9, 10] are used as a starting point for the 
verification of continuity properties of the optimal cost and an optimal con­
trol with respect to parameters. These results are used to solve an adaptive 
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control problem. Some of these results are described explicitly in this paper. 
The proofs of the results that are given here are contained in [7]. The noise 
process that occurs in these semilinear stochastic systems is cylindrical, that is, 
it does not exist in the Hilbert space where the state of the system is described. 
Thus the semigroup associated with the linear part of the semilinear system is 
required to regularize this cylindrical noise. 

2 PRELIMINARIES 

A partially known stochastic semilinear system is described with a distributed 
control. 

Let (X(t), t 0) be an H-valued, parameter dependent, controlled process 
that satisfies the (formal) stochastic differential equation 

dX(t) = (AX(t) + f(a, X(t)) - u(t))dt + Q112dW(t) (2.1) 

X(O) =X 

where H is a real, separable Hilbert space with inner product (-, ·) and norm 
I · I, A : Dom(A) -+ H is a densely defined, unbounded linear operator on 
H, f(a, ·) : H-+ H for each a E A C that is a compact set of parame­
ters, (W(t), t 0) is a standard, cylindrical H-valued Wiener process defined 
on a filtered probability space (0, F, (Ft), IP>) and Q E £(H). The family of 
admissible controls is 

U = {u: x n-+ BR I u is measurable and (Ft) adapted} (2.2) 

where BR = {y E H I IYI < R} and R > 0 is fixed. A family of Markov 
controls, e.g., u(t) = also considered where ii E U and 

U = { ii : H -+ BR I ii is Borel measurable}. (2.3) 

The cost functionals J(x, >., u) and i(x, u) are given as 

J(x, .X, u) = lEx,u 100 e--'t(1P(X(t)) + h(u(t)))dt (2.4) 

and 

]( x, u) = lim inflEx,u 2_ t ( 1P(X (t)) + h( u(t)) )dt (2.5) 
T-+oo T } 0 

where ).. > 0 and h : BR -t and 1P: H-+ describe a discounted and 
an ergodic control problem, respectively. 

The following assumptions are selectively used to solve an adaptive control 
problem. 

(Al) The linear operator Q = Q112• Q112 is invertible, Q- 1 E £(H) and 
(S(t), t 0), where S(t) = etA, is an exponentially stable semigroup 
of contractions, that is, IIS(t)ll.c(H) :S: e-wt for all t 0 and some w > 0. 
Furthermore, the semigroup is Hilbert-Schmidt and there is a"/ > 0 such 
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that J: < oo for some T > 0 where II·IIHs is the Hilbert­
Schmidt norm. 

(A2) The function f(a, ·) : H -t H is Lipschitz continuous and Gateaux 
differentiable. The Gateaux derivative Df(a, ·)his continuous on H for 
each hE Hand a E A and there is a (3 E IR such that (Df(a, x)h, h) s 
(3Jhl 2 for all x E H, hE H and a EA. 

(A3) There are constants p > 0, () > 0 and C > 0 such that l/(a1,x)­
/(a2, x)l S Cla1- a2l 8 (1 + JxJP) for all a1, a2 E A and x E H. 

(A4) 1f; E Cb(H). 

(A5) The function 1f; : H -t IRis convex and bounded on bounded sets and 
continuous. The function fi : H -t IR given by H(x) = x)­
h(y)] is Lipschitz continuous and Gateaux differentiable. Each directional 
derivative of fi is continuous on H. 

Some implications of the assumptions (Al)-(A5) are described now. For the 
linear stochastic differential equation associated with (2.1), that is, f = u = 0, 
there are a unique mild solution and a unique invariant Gaussian probability 
measure, p, = N(O, Q00 ) where Q00 is a trace class operator on H. If (A2) is 
satisfied then (2.1) has a unique mild solution for each u E U and a E A. If 
the control in (2.1) has the feedback form u(t) = u(X(t)) where u E f1 then the 
solution of (2.1) is obtained by an absolute continuity of measures as a weak 
solution in the probabilistic sense. 

The assumption (A3) is used to verify a suitable continuous dependence of 
the solutions ofthe ergodic Hamilton-Jacobi-Bellman equations on the param­
eter which is important to verify the self-optimality of a certainty equivalence 
adaptive control. The assumptions (A4) and (A5) are standard conditions on 
a cost functional in the stochastic control of semilinear systems (e.g., [9, 10]). 
Note that (A5) is satisfied in the case where h(x) = Jxl2 so that H(x) = H(JJxll) 
where 

H r _ { r: if lrl S 2R 
( ) - Rlrl- R2 if Jrl > 2R 

To provide some additional perspective for the adaptive control problem, an 
example of a stochastic partial differential equation that satisfies the assump­
tions is given. Consider the stochastic PDE 

ay a2y 
at (t,e) =I ae2 (t,e) + F(a, y(t,e))- u(t,e) + TJ(t,e) (2.6) 

for (t,e) E IR+ x (0, 1) with the initial condition y(O,e) = Yo(e). e E (0, 1) and 
the Dirichlet boundary conditions 

y(t, 0) = y(t, 1) = 0 
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fort 2: 0 and 1 > 0 is a constant, F: satisfies F(o:, ·) E for 
each o: E A, F'(o:,y)::; {3 and IF(o:1,y)- F(o:2,y)l::; Clo:1- o:2l 8 (1 + IYI) for 
some constants {3 E C > 0 and all o:, o:1, 0:2 E A, y E and 11 formally 
denotes a space time white noise. The control (u(t), t 2: 0) is assumed to 
be adapted to the noise process and to take values in a ball, BR, in L2 (0, 1). 
The formal equation (2.6) can be rigorously described in a standard way as an 
equation of the form (2.1) in the Hilbert space H = L2 (0, 1), A= 1(82 /8€2 ), 

Dom(A) ={so E L2 (0,1) I !f',!f'' are absolutely continuous, so" E L2 (0,1), 
so(O) = so(1) = 0}, f(o:, x)( ) = F(o:, x( )) for x E H, o: E A, € E (0, 1) and 
a cylindrical Wiener process with Q = OJ where J > 0 is a constant and I 
is the identity on I. For tf; and h in the cost functionals (2.4, 2.5) arbitrary 
tf; E Cb(L2(0, 1)) and h : L2(0, 1) -+ satisfying (A5) can be chosen, e.g., 
h(u) = lul 2 . It is well known that all of the assumptions (A1)-(A5) are satisfied 
where 1 E (0, 1/4) in (A1). 

3 MAIN RESULTS 

The formal Hamilton-Jacobi-Bellman equations corresponding to the control 
problems (2.1, 2.4) and (2.1, 2.5) are respectively 

1 
+(Ax, + (f(o:, x), 

- + tf;(x) = (3.1) 
1 
2TrQD2va(x) +(Ax, Dva(x)) + (f(o:, x), Dva(x)) 

- H(Dva(x)) + tf;(x) = p(o:). (3.2) 

In (3.2) it is necessary to solve for the pair (va, p(o:)), p(o:) E each o: EA. 
It is clear that the existence of strong solutions to (3.1) and (3.2) cannot be 

expected because of the first two terms on the left hand side of these equations, 
that is, Q is not trace class and A is only densely defined in H. The approach 
in [9] is to replace the first two terms in (3.1) and (3.2) by the generator of an 
Ornstein-Uhlenbeck semigroup in a suitable function space. The results of [9, 
10] are used but for simplicity the solutions of (3.1) and (3.2) are defined in a 
weaker sense which is suitable for the applications to adaptive control. 

Let J.L = N(O, Qoo) be the invariant measure and (Rtso)(x) = Ea.so(Z(t)) be 
the Markov transition semigroup for the Ornstein-Uhlenbeck process (Z(t), t 2: 
0) that is the solution of (2.1) with f::: u = 0. It is well known that (Rt, t 2: 0) 
is a strongly continuous semigroup on the Hilbert space 1l = L2 (H,J.L). Let .C 
be the infinitesimal generator of the semigroup (Rt, t 2: 0) in 1£. Furthermore, 
let £ 0 be given by 

.Coso(x) = + (x,A* Dso(x)) (3.3) 

for x E Hand so E Dom(.Co) where Dom(.Co) ={so E I (1/2)TrQD2so(·) E 
Cb(H), (·,A* Dso(·)) E Cb(H)}. 
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Let cp E Dom(£0 ) and use the Ito formula to obtain 

(.Ccp)(x) = cp(x)) 
t,J.O t 

=lim - cp(x)) 
t,J.O t 

= (.Cocp)(x) 

(3.4) 

so .C is a closed extension of the operator .Co. This equality, (3.4), motivates 
the following definition of solution of (3.1) and (3.2). 

Definition 3.1 A function E Dom(.C) and a pair (va,p(a)) E Dom(.C) x 
are solutions to (3.1) and (3.2) respectively if 

(3.5) 

and 
.Cva +(!(a,·), Dva)- H(Dva) + '1/J = p(a) (3.6) 

are satisfied. 

This definition of the solutions to (3.1) and (3.2) requires only that the solu­
tions be in Dom(.C) C L2(H, J.t) so the equations (3.5) and (3.6) are understood 
in an L2(H, J.t) sense. This relatively weak notion of solution is used to avoid 
some technical complications. Some results on the solutions to (3.1) and (3.2) 
are given in [9] and [10]. It is shown that the solutions are more regular than 
that required in the Definition 1.3.1. For the following two propositions the 
parameter a E A is fixed. 

Proposition 3.1 If (A1), (A2), (A4) and (A5) are satisfied, then the equation 
(3.1) has one and only solution in Dom(.C) n Furthermore, 

= inf J(x, >., u) 
uEU 

(3.7) 

so that gives the optimal cost and an optimal control in feedback form is 
= for the discounted cost control problem (2.1, 2.4). 

This proposition has been basically proven by Gozzi and Rouy [10] when 
f(a, ·) is bounded. The generalization in Proposition 1.3.1 has been done by 
Goldys and Maslowski [9]. 

The ergodic control problem is usually considered to be more difficult than 
the discounted control problem because the Hamilton-Jacobi-Bellman equation 
(3.2) has an intrinsic degeneracy, that is, there is no uniqueness of the solution 
to (3 .2) because if ( Va, p( a)) is a solution of (3 .2) then ( Va + c, p( a)) for c E 
is also a solution. 

Let R > 0 in (A5), satisfy 

R< ..jW1 
IQ-1/2i.c(H)k(wt).J7T 

(3.8) 
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where w- f3 > 0, w1 E (0, w- /3) is fixed and k(w1) > 0 is a constant depending 
only on w1 that is obtained from an upper bound on the Frechet derivative of 
the Markov transition semigroup induced by the solution of (2.1) with u:::: 0. 

The following proposition is a "W1•2(H, J.t)-version" of a result in [9] on 
the existence and the uniqueness of a solution to the ergodic Hamilton-Jacobi­
Bellman equation. While the existence result is weaker than the one in [9], the 
family of solutions for uniqueness is enlarged. The parameter a E A in the 
following proposition is fixed and 

w = {<p E W 1•2 (H,J.t) II<' E Dom(.C), IIDI<'II < 00 

l<p(x)l + I.C<p(x)l :S k(1 + lxlq) for all x E H 

and some positive real numbers k and q}. 

Proposition 3.2 If (A1), (A2), (A4), (A5) with w - f3 > 0 and (3.8) are 
satisfied then there is a unique solution ( Va, p( a)) E (W x C(H)) x lPl. of (3.2) 
such that Va (0) = 0. Furthermore, 

p(o:) = inf ](x, u) 
uEU 

so that p( a) is the optimal cost and an optimal control in feedback form is 
ita(x) = DH(Dva(x)) for the ergodic control problem (2.1, 2.5). 

Consider the equation (2.1) with the true parameter value o:a E A, that is, 

dX(t) = (AX(t) + f(o: 0 , X(t))- u(t))dt + Q112dW(t) 

X(O) =X (3.9) 

where 

u(t) = DH(Dva(t)(X(t))) (3.10) 

where (o:(t), t 2: 0) is an adapted, measurable, A-valued process satisfying 

lim o:(t) = o:o 
t-+oo 

a.s. JlD 

and v, is given in Proposition 1.3.2. For notational simplicity, let v = Va 0 and 
p=p(o:o). 

Proposition 3.3 If (A1)-(A5) are satisfied, w- f3 > 0 and the inequality (3.8) 
are satisfied, then 

](x, u) = p(o:o) 

for each x E H, that is, the adaptive control u given by (3.10) is self-optimizing 
for the ergodic control problem (2.1, 2.5). 
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