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Consider an investor who has the following instruments available to him: a bank 
account paying a fixed rate of interest r and n risky assets ("stocks") whose 
prices are modeled as geometric Brownian motions. The investor is allowed to 
consume at a rate c(t) from the bank account and is subject to the constraint 
that he remain solvent at all times. Any trading in the stocks must be self­
financing, and incurs a transaction cost which is proportional to the amount 
being traded. The investor's objective is to maximize his expected discounted 
utility of lifetime consumption. 

Similar problems were first studied by Constantinides [2) and Magill and 
Constantinides [9] for n = 1, and solved by Davis and Norman [3). Technically 
speaking, the optimal process is a reflecting diffusion inside the no trade region 
(a wedge) and the buying and selling strategies L!(t) and M!(t), cf below, are 
local times at the boundaries. 

Akian, Menaldi and Sulem [1) consider the multi-asset case described above 
(n > 1), assuming that the noise terms are uncorrelated. Using dynamic pro­
gramming methods, the value function is shown to be the unique viscosity 
solution of a variational inequality. This inequality is then discretized and 
solved numerically to provide the optimal strategy and indicate the shape of 
the trading boundaries, but convergence is not proved. 

We present a different numerical scheme based on some ideas of Kushner 
and Martin [8), Kushner and Dupuis [7) and Fleming and Fitzpatrick [4), and 
we show convergence of the value functions. 

Section 2 deals with the formulation and theoretical study of the portfolio 
selection problem. We introduce the model employed by Akian et al. [1), but 
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with correlated noise, and we formulate the control problem associated with 
the model. The analytical methods of [I) carry over without much difficulty 
to show that the value function is the unique viscosity solution of a variational 
inequality. Then we transform the singular control problem into a new problem 
involving only absolutely continuous controls, using a random time change. It 
is shown that the value functions for the two problems are closely related and 
that the value function for the transformed problem is the unique viscosity 
solution of the corresponding Hamilton-Jacobi-Bellman (H.J.B) equation. 

The Markov chain approximation to the transformed problem is constructed 
in Section 3, and convergence of the the value functions of the transformed 
problem is established as the discretization parameter goes to zero. Although 
the discretization method follows that of Kushner et al, [8], [7), the convergence 
arguments do not. They rely on the viscosity solution techniques used by 
Fitzpatrick and Fleming, [4). 

Details will be given in the forthcoming thesis of the first author. 

2 PROBLEM FORMULATION AND ANALYSIS 

Let (n, :F, P) be a probability space with a given filtration (:Ft)t>O· We let the 
processes So ( t) and S; ( t) be the amount of money invested in the-bank account 
and the ith risky asset at time t respectively. Then 

n 

dS0 (t) = [rS0(t)- c(t)]dt + + A;)dL;(t) + (1- J.L;)dM;(t)], 
i=l 

n 

dS;(t) = b;S;(t)dt + E O'jjS;(t)dWj(t) + dL;(t)- dM;(t), (2.1) 
j=l 

S;(O)=x;, i=O, .. ·,n 

where Wj(t), j = 1, · · · , n, are independent Brownian motions and L;(t) and 
M;(t) represent the cumulative purchase and sale of the ith risky asset on 
[0, t] respectively. The constants r and b; represent the interest rate and the 
mean return for stock i respectively and u :: (u;,j)i,j=l, ... ,n is the volatility 
matrix which measures the level of "noisiness" of the stock price processes. 
The coefficients A; and J.Li are the proportionality constants of the transaction 
costs associated with stock i, so that purchasing 1 dollar's worth of asset i will 
cost (1 +A;) dollars, which is transferred from the bank account. Conversely 
selling 1 dollar's worth of stock i will result in a payment of (1 - J.L;) dollars 
into the bank account. 

Definition 2.1 A policy for investment and consumption is a vector 
(c(t), (L;(t), M;(t))i=l, ... ,n) of measurable adapted processes such that 

1. c(t) 0 and fat c(B) dB< oo for a.e (t,w), 

2. L;(t) and Mi(t) are non decreasing, left continuous processes with right 
limits and L; (0) = M; (0) = 0. 
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For a policy P := (c, (L;, M;)i=l,.·· ,n), the corresponding processes S0 (t) and 
S;(t) are left continuous with right hand limits and (2.1) is equivalent to 

S0 (t) xo +fat [rSo(B)- c(B)]dB + t[-(1 + >..;)L;(t) + (1- J.t;)M;(t)], 

S;(t) = X;+ 1t b;S;(8)d8 + t 1t CT;jS;(O)dWj(B) + L;(t)- M;(t), (2.2) 
0 j=l 0 

fort 0. We define the solvency region to be 

S = {x = (xo, x1, · · · , Xn) : W{x) > 0} (2.3) 

where 

n 

W(x) = x0 + L:min{(1- p;)x;, (1 +>..;)xi)}. (2.4) 
i=l 

Note that W(x) represents the the net wealth, that is the amount of money in 
the bank account after the investor has liquidated all her assets. 

Definition 2.2 ApolicyP=. (c(t),(L;(t),M;(t));= 1,. .. ,n) isadmissibleifS(t) E 
S a.s. t 0, i.e. 

W(S(t)) 0 a.s. t 0. 

Denote by U(x) the set of all admissible polices. Observe that when S(t) E 
8S, the only admissible action is to trade to zero, i.e. S(t+) = 0 with no 
consumption. Thereafter S = 0. For xES and P E U(x), define 

J(x, P) =Ex e-et __ dt, 100 c(t)'"Y 

o I 
(2.5) 

where Ex is the expectation operator given an initial endowment x, 6 is a 
positive discount factor and 0 < 1 < 1. Here (2.5) represents the investor's 
expected discounted utility of lifetime consumption. The problem is to find 

V(x) := sup J(x, P). 
1'EU(x) 

We now make the following assumptions: 

• [A.1] CT is invertible and 

where b = (b1, · · · , bnf, 1 = (1, · · · , 1)T and a= CTCTT. 

(2.6) 
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• (A.2] J.L;, A; E (0,1), A;+ f.l; > 0 Vi= 1,· · · ,n. 

Remark 2.1 Assumption [A.l} reduces to the one stated in Akian, Menaldi 
and Sulem {1} when a is diagonal. When transaction costs are equal to zero 
(hence here also), assumption {A.l} implies that the value function for the prob­
lem is finite, cf. J{ aratzas, Lechoczky, Sethi and Shreve {6}. 

Let 

{ n Jf(xJ } 9= 

The following result can be proved as in (1]. 

Theorem 2.1 Suppose that assumptions [A.l} and [A.2} hold. Then 
(i) the value function V is concave and 1-Holder continuous on S, and 
(ii) V is the unique viscosity solution in g of the variational inequality 

max{Av + max .C;V, max M;V} = 0 inS vXo l:Si:Sn l:Si:Sn 

V = 0 in aS, (2.7) 

where 

1 n n a2 V n aV aV 
AV =- ""'""' a;jXiXj-- + ""'b;x;- + rxo-- oV, 2 L..J L..J ax· X · L..J ax· axo 

i=l i=l ' J i=l ' 

av av 
.C;V = -(1 i'l> 

vxo vx; 
aV aV 

M;V=(l-f.l;)---, 
axo ax; 

G(p) = max(-cp+ -) 
c!::O I 

= (.!.- 1)p'Y/('Y-l), 
I 

and a;j is the (i,j)th entry of the matrix a. 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

Using a time change (stretching time when trades occur) and adding another 
state and control variable, we can transform the above singular problem into a 
problem involving only absolutely continuous controls, cf. Kushner and Martin 
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[8], Kushner and Dupuis [7] and Haussmann and Suo [5]. Let 

So(t) = Xo + 1t { [rSo(IJ)- c(IJ)]u(IJ) 

+ t[-(1 + >.;)i;(IJ) + (1- JL;)m;(IJ)](1- u(IJ)) }diJ 

S;(t) = x; +fat { b;S;(IJ)u(IJ) + (i;(IJ)- m;(IJ))(1- u(IJ)) }diJ 

+ t 1t U;jS; (IJ)v'u(ijdWj(IJ), i = 1, · · · , n, (2.12) 
j=l 0 

Sn+l (t) = Xn+l + 1t u(IJ)diJ. 

The control variable for this problem is given by a vector of measurable, 
adapted processes, P =: (c(t), (l; (t), m; (t) )i=l,-·· ,n, u(t)}, taking values X 

Z x [0, 1], where Z = {z E : z; = 1}. Note that i; (m;) is the rate 
at which stock i is bought (sold), and u = 0 when trading occurs. Define 

S=S 

where Sis defined by (2.3). 

Definition 2.3 A control p =: (c(·), (Z;(·), m;(·));=1,. .. •"' u(·)) is said to be ad­
missible for the transformed problem if 

S(t) E S a.s. t ;::: 0. 

Let U(x, Xn+t) be the set of admissible polices for the transformed problem. 
Observe that it is independent of Xn+l, and as before, if S(t) E as, then the 
only admissible action is to take u = 0 and to trade (continuously) to zero. 
Given the initial endowment x := (x, Xn+l) E Sand P E U(x), define 

A A A 100 ·s· (t) c(t)' J(x, P) =Ex e-u "+' --u(t)dt, 
o I 

(2.13) 

where Ex is the expectation operator with respect to the new probability mea­
sure P given the initial endowment x. The transformed problem is to find 

V(x) := sup J(x, P). (2.14) 
Peii(x) 

It can be shown as in [5] that the two control problems are equivalent, that is 

Proposition 2.1 

V(x) = e-ox,.+, V(x) = e-6x,.+, V(xo, ... , Xn)· 
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The Hamilton-Jacobi-Bellman equation corresponding to problem (2.14) is 

{ AAAVA() A max u x +uexp -- --
(i,m,il)EZx[0,1] "(- 1 axo 

+(1- u) t[(£;V(x))i; + (M; V(x))mi]} = 0 XEs (2.15) 

V(x) = 0 X E aS 

where 

A A 1 n n a2 V n aV aV aV 
AV =- LLaijXiXj-!l-- + + + -!1--. 

2 . 1 . 1 ux;xJ· . 1 ux; uxo uXn+1 
·== J= •== 

(2.16) 

Let Q := { e-6 Xn+• f : f E Q} C C(JRn+l). Then we have 

Theorem 2.2 Assume {A.Jj, [A.2]. The value function V is the unique vis­
cosity solution in Q of (2.15}. 

3 MARKOV CHAIN APPROXIMATION 

Let h > 0 be an approximation parameter and define :Eh to be the lattice 

Kj = 0,±1,±2, · ··, j = 0, · · · ,n, 

Kn+1 = 0, 1, · · · }, 

and :ERr= {x E :Eh : x; :S Nh},where N is some positive integer which will be 

chosen so that Nh--+ oo ash--+ 0. Define the set S]V, the boundary aSJv and 
the outer boundary to be 

s]V s n :ERr 
aS]V :ER, n ([aS± e;h ± eihl \ S i = 0, .. · , n). 

{x E s]V+1 : X;= (N + 1)h for at least one i = 0, ... 'n + 1}. 

We will now construct a Markov chain defined on iLRr := s]V u aSJv u 
whose behaviour "closely matches" that of the continuous process S. 

Define OJv := [O,I<Nh] x Z X [0, 1] where K is an artificial bound, which 

will disappear in the limit as h --+ 0 and N h --+ oo. For given Sh (0), define the 
Markov chain {Sh(k): k = 0, 1, ···}recursively by 

sh(k + 1) = sh(k) + wh(k) k = o, 1, ... , 

where, for each k, given state Sh(k) = x = (xo, · · ·, Xn+ 1) E ii..Rr and control 
a:= (c,i,m,u) E O]V, the (conditional) distribution of Wh(k) is denoted by 

P (- I x, a), and is defined as follows. 
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For x E S]V, 

'h( I' ua;;x[/2-u'E#ila;jXjXjl/2+h(b;xtu+(1-u)l;) 
P e;h x, a)= Qh(x) , 

'h ' ua;;x[ /2- u E#i la;jXjXjl/2 + h(b;x;u + (1- u)m;) 
P (-e;h I x,a) = Qh(x) , 

f>h( hI , ) = h(rxciu + (1- u) E7-1 (1- ttdmi) 
eo x, a Qh(x) , 

P, h(- hI , ) _ h(rx0u + (1- u) E7-1 (1 + >.;)i; + cu) 
eo x,a - Qh(x) , 

A h A hu 
P (en+Ih I x, a)= Qh(x), i = 1, · · ·, n, 

PA h( ·h ± ·h I ' ) - u(a;jXiXj)± /2 . . 1 e, eJ x,a- Qh(x) z,J= ,···,n i =f. j, 

PA h(- ·h ·hI A ) - u(a;jXiXj)± /2 e, =feJ x,a- Qh(x) i,j=1,···,n i =f. j, 

F(O I x,a) = 1- L F(w I x,a). (3.1) 
w;to 

The normalizing constant Qh ( x) is taken so that for all o: E O}y. 

Qh(x) [ a;;x;u- la;ix;xilu/2 + h{ + (i; + m;)(1- u)) 

+ rlxolu + t[(l + >.;)i; + (1- J-t;)m;](l- u) + cu + u} l· 

P(-x 1 x,o:) = 1. (3.2) 

Hence aSJV is an absorbing set for the chain, in fact {0} is an absorbing state. 
This ensures that we obtain the correct boundary value for our approximation. 

For x E ash+ N> 

P(z- x 1 x, o:) = 1, (3.3) 

where z is the point in SJV nearest to X. This makes as';/ reflecting. 
We need to ensure that the above expressions are transition probabilities, 

i.e. we want 

u [a;;xT- _L_Ia;jXiXjll 0, i = 1, · · ·, n, xES. 
J :J#I 
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To this end, define Pi= la;jl, i = 1, · · · ,n, and let 

IC ·- { mn+2 . -1 < I X; I < . . . - 1 } .- XEJN. ·P; _ Xj _p3 , z,J- , .. ·,n. 

Here the p's may assume the value oo. Now restrict u(x) = 0 for x f/. /C. We 
are in fact forcing the system to trade into /C. From a heuristic analysis, cf [1], 
we expect that the no trade region is a cone in the first orthant. Our method 
requires that this cone be contained in /C. In practice, one proceeds under this 
assumption, and then checks at the end whether the boundary of IC intersects 
the no trade region. If not, then all is well, but if it does, then another method 
must be found. We formalize this assumption as 

• [A.3]/C contains the no trade region. 

Of course, if a is diagonal then [A.3] holds. 

Definition 3.1 A control Ph = (Ph(k))k'=o := ((c(k), l(k), m(k), u(k)))f=o is 
said to be admissible for the Markov chain if 

S(k) E a.s. fork= 0, 1, · · · 

The set of admissible controls is denoted by UfV. 

For x E and Ph E UfV, define 

Jh(x, Ph)= Efi:,f:>h u(k).6.th(Sh(k))l' 
k=O 

where 

A h(')- {h2/Qh(x) ifx E s]V, 
X - 'h+ 'h 0 if x E as uas N N 

and Eli: ph is the expectation operator given sh (0) = X and control ph. The 
value is then defined to be 

Vh(x) = sup Jh(x, Ph). 
f>heu& 

The problem is to find a control f>h E UfV such that 

Vh(x) = }h(x, f>h) Vx E s]V u as';/. 

(3.4) 

Remark 3.1 Ifx E asJv, then it remains there, so .6.th(S(k)) = 0, k = 0, · · ·. 
This implies that }h(x, Ph)= 0 for any admissible control sequence Ph, which 
in turn implies that Vh(x) = 0. 



OPTIMAL PORTFOLIO SELECTION 197 

The following convergence result can now be established. 

Theorem 3.1 Assume [A.1}-[A.3}. Then for xES 

lim Vh(Yh) = V(x) 
h.j.O 

yh-ti: 
yhESi:, 

where Vis the unique viscosity solution of (2.15). 
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