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1 INTRODUCTION 

We discuss the optimal control problem for which the state is governed by a 
semilinear elliptic partial differential equation with a distributed control. 

The system reads 

{ -t:J..y = yP + u, 

Ylan = 0. 
in n 

(1.1) 

Where n C RN (with N 2:: 3) is a bounded region with on smooth. p = 
is the critical sobolev exponent. 

The cost functional is given by 

L(y, u) = G(y) + H(u) (1.2) 

We assume that 
(HL) G and H: L2(n)--+ R = (-oo,+oo] are proper, convex and lower 

semicontinuous. 
In section 2 , we will see that there is a minimal positive 
solution y(x;u) E HJ(n) for each u E B;!(O) C L""(n) C L2 (n) , where 

B;!(O) is given by 

B:(o) = {u E L""(n)lllulloo::; r andu(x) ;::=: 0, a.e. x En} (1.3) 

for arbitrary values of the coupling parameter a. 
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and r > 0 is a constant given in §2. 
Note that here we define y(x; 0) = 0 . Thus we may consider u E B;'-(0) as 

the control and y(x; u) , the minimal positive solution of (1.1) corresponding 
to the state. 

We assume 
(HF) Let Y be a Banach space with strict convex dual y• , F : H6(0) -+ Y 

be continuously Frechet differentiable and Q C Y be a closed and convex subset. 
Set 

A= {(y(x;u),u) E L 2 (0) x L 2 (0) lu E B;'-(0), y(x;u) is the 
minimal positive solution of (1.1) 

corresponding to u andy( x; 0) = 0} 

A pair (y, u) E A is called a feasible pair. 

Aad = {(y(x; u), u) E AIF(y(x; u)) C Q} 

A pair(y, u) E Aad is called an admissible pair. 
Note that F(y) C Q is a kind of state constraint which was given by X.Li 

and J.Yong(cf.[3]). For its applications, we refer readers to [2] and [3]. 
We formulate the optimal control problem as follows 

(P) Inf L(y, u) over all (y, u) E Aad 

We shall study the necessary conditions for the problem (P) in this paper. 

2 THE MINIMAL POSITIVE SOLUTION 

We first quote a result of [5] as follows. 
Theorem A: For any u E H- 1 (0) with lluiiH-• CNS!:f , problem (2.1) 
possesses at least one positive solution y with y 1=. 0 in n . Where eN = 

and Sis the best sobolev constant for the embedding HJ-(0)-+ 
LP(Q). 

From Theorem A and the methods of monotone interation we can prove the 
existence of minimal positive solution for problem (2.1). 

Theorem 2.1 Under the assumption of Theorem A, Problem (2.1) possesses a 
unique minimal positive solution y E C"'(O) for some a E (0, 1) ifu E L""(O). 

In the following we discuss some properties of the minimal positive solution 
of (1.1). 

Lemma 2.1 Let y(x;u) be the minimal positive solution of {1.1}, then the 
corresponding eigenvalue problem 

{ -D.<p = .Ap[y(x; u)]P-l<p, 
<p E HJ-(0) 

m n 
(2.1) 



OPTIMAL CONTROL PROBLEMS OF AN ELLIPTIC EQUATION 135 

has the first eigenvalue ..X1(u) > 1 for all u E and the corresponding 
eigenfunction 'P1 > 0 in n. 

Where 

Proof: By the standard argument we can prove that the minimum 

can be achieved by some function 'P1 > 0. Thus eigenvalue problem (2.2) has 
a solution (..X1, cp1). Now we prove that ..X1 > 1. 

Indeed, for any u E , we can find a function w E H01(0) with 
llwiiH.;-1 :S CNS!:f, W 2 u, W ;:j:. U a.e. in 0 such that problem (2.1) (corre­
sponding tow) possesses a minimal positive solution y(x; w). Let y(:c; u) be 
the solution of (2.1), we have 

..X1 l pyP- 1 (x; u)cp1 [y(:c; w) - y(:c : u)]d:c l pyP- 1 (:c; u)cp1 (y(:c; w)- y(x; u)) dx 

(2.3) 
Which gives ..X1 > 1 for all u E (0). This completes the proof. 

Theorem 2.2 Assume u E (0) and y(x; u) be a minimal positive solution 
of {1.1} corresponding to u. Then for any g(x) E H01 (0) , The problem 

{ = pyP- 1 (x; u)w + g(x) 
wE HJ(O) 

has a unique solution w satisfying 

for some constant C > 0. 

(2.4) 

(2.5) 

Proof: By a standard argument and Lemma 2.1, one can get the existence 
of the solution of the equation (2.4). 

Now we are on the position to prove(2.5). 
Let w be the solution of (2.5). Multiplying (2.5) by w and integrating by 

parts we have 

fo1V'wl 2 dx = l pyP- 1 (x; u)w 2 dx + l gw dx. 

Now Lemma 2.1 implies 
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1 2 
(1- ,\1 )jjwjjHJ(O) :S Cl!gi!H;;-'(n)l!wi!HJ(O) 

:S cjjw!I1-J(O) + 
From Lemma2.1 we can choose f small enough so that (1- }, - <) 2: >.2 > 0 

for some constant >.2 > 0. 
Thus 

::; llgiiH;;- 1 (0) 

This gives (2.5) by taking C = 
The uniqueness of the solution for (2.4) comes from (2.5). 

Corollary 2.1 Let u E B"Ji(O) and y(x; u) be the minimal solution of (1.1). 
Then y(x, u) is continuous in H01(0.) with respect to control function u . 

Proof: Define 

F: H01(0.) x HJ(O.)-+ H01(0.) by 

F(u, y) = t::.y + '!/ + u, for (u, y) E H01 (0.) x HJ(O.) (2.6) 

From Lemma 2.1 and Theorem 2.2, we know that 

Fy(u,y)w = l::.w+p'!/- 1 +py1'- 1 (x;u)w 

is an isomorphism of HJ (0.) onto H 01 (0.) . 
It follows from Implicit Function Theorem that the solution of F(u, y) = 0 

near (u, y(x; u)) is given by a continuous curve. 

Theorem 2.3 Let u,v E B"Ji(O) and y(x,u),y(x,v) be the minimal positive 
solution of (1.1) coTTesponding to u, v respectively. If u -+ v in H01(0.) and 
u- v dosen't change the sign. Then 

l!y(x; u)- y(x; ::; Cl!u- vi!H;;-'(O)' 

for l!u- small enough. 
Where C is a constant independent of u. 

Proof: Without loss of generality, we may assume that u 2: v , a,e. in 0.. 
By Remark 2.1 and (1.1) we have 

fo !V'(y(x; u)- y(x; v))!2 dx 
::; p f0 yP- 1 (x; u)(y(x; u)- y(x; v)) 2 dx + J0 (u- v)(y(x; u) - y(x; v)) dx 

By lemma 2.1, Holder's inequality and Young's inequality, we have 

(1- du)) fo j\i'(y(x; u)- y(x; v))!2 dx 

::; <l!y(x; u)- y(x; + C,l!u-
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for any f > 0. Where C< is a positive constant depending on f . 

Note that >.l(u) is the first eigenvalue for the problem (2.2) corresponding 
to y(x; u). By corollary 2.1, as u -tv in H0 1(0), y(x; u) -t y(x; v) in HJ(O). 
Then by (2.3), >.1(u) -t >.l(v). 

Thus, as llu- viiHQ"'(n) small enough, we have 

for some f 1 > 0 with 1- >..(u) - E1 > 0. 
This completes the proof. 

3 FINITE CODIMENSIONALITY 

In this section, we will give some results relative to finite codimensionality of a 
set. For the detail, we refer readers to [3] and [6]. 

Lemma 3.1 Let Ql and Q2 be subsets of some Banach space X . Let Q1 be 
finite codimensional in X . Then for any a E R \ {0}, f3 E R, 

is finite codimensional in X . 

Lemma 3.2 Let Q be finite codimensional in X 0 Let Un}n>l c x· with 
lin I 0 > 0, In -t f E x· in the weak-star topology, and -

when En -t 0 . Then f f:. 0 . 

4 NECESSARY CONDITION FOR OPTIMALITY 

In this section, we discuss the necessary conditions for (y*, u*) to be an 
optimal pair for (P). 

Our basic assumptions are given by (HL) and (HF) in §1 . 
Let (y*, u*) be optimal for the problem (P). 
Consider the variational systems of (1.1) as follows: 

{ -ilz = py•(p-l)z + (v- u•)+, xEO 
zlan = 0 

and 

{ -ilz = py•(p-l)z + (v- u•)-, xEO 
zlan = 0 

(4.1) 

(4.2) 

By Theorem 2.2, for each v E Bt(O) , both (4.1) and (4.2) have a unique 
solution z(.; v+) and z(.; v-) in HJ(O). 
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Thus we may define 

R+ = { z( .; v+) lv E Bt (0), z(.; v+) is the solution of ( 4.1) corresponding to v} 

R- = { z(- ; v-) I v E Bt (0), z( · ; v- )is the solution of ( 4.2) corresponding to v} 

Our another basic assumption which plays a key role in dealing with the 
state constraint is as follows: 

(HR) Both F'(y*)R+- Q and F'(y* )R-- Q have finite codimentionality. 
The following results is important for us to introduce our penalty functionals 

in the proof of our main Theorem 4.1. 

Lemma 4.1 Let H be a Hilbert space, f : H -+ R be proper convex and 
lower semicontinuous. Suppose that 8 f (the subdifferential of f ) is locally 
bounded at y•. Then there exists a neighborhood O(y*) of y• such that f>.. (y) -+ 
f(y) uniformly in O(y*), where f>. is the regularization off (cf. [4], [7]). 

Proof: It is trivial from [4] and [7]. 
Our main results on the necessary condition for (y*, u*) to be an optimal 

pair are as follows: 

Theorem 4.1 Let (y*, u*) be an optimal pair for P) and (HL), (Hp) and (HR) 
hold. Assume that 8G and 8H, the subdifferentials of G and H are locally 
bounded at y• and u* (in L 2 (0)) respectively. Then there exists a triplet 

(>.,'f/;,q) E [-1,0] x HJ(n) x Y*, such that (>.,q) =F 0, 

(q, TJ- F(y*)) 0, VTJ E Q. 

{ = py•(p-l)IIJ +>.a- [F'(y*)]*q 
lilian= 0, 

where a E 8G(y*) 
and 

in n 

(Ill+ >.,B, v- u*) 0 for any v E Bt(O) 

Where ,BE 8H(u*). 
In the case N[F'(y*)]* = 0 (i.e. [F'(y*)]* is injective), (>., 'f/;) =F 0. 

Proof: Without lose of generality, assume that 

L(y*, u*) = G(y*) + H(u*) = 0. 

(4.3) 

( 4.4) 

(4.5) 

Since 8G and 8H are locally bounded at y• and u• respectively, by lemma 
4.1, we obtain that there exist neighborhoods O(y*) and O(u*) of y• and u• in 
L2 (0) respectively, such that 

G(y) + H(u) 2:: G>-.(Y) + H>-.(u)-+ G(y) + H(u) 
as >.-+ 0 uniformly in y E O(y*) and u E O(y*). 
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Thus for each f > 0, there exists a J(c) > 0 ( J(c)--+ 0 asc--+ 0), such that 

G(y) + H(u) + c Go(•)(Y) + Ho(•)(u) + c > G(y) + H(u) (4.6) 

for all (y, u) E O(y*) x O(u*). 
Let U = (B;!"(O),d) with d(u,v) = llu- vii, where the norm is taken in 

L 2 (0). Then U is a metric space. Note that B;!"(O) C L 00 (0) C L 2 (0) and one 
can check easily that B;!"(O) is closed in L 2 (0). Thus U is a complete metric 
space. 

Now we define L, : U --+ R by 

Where dq(w) = zll, z E Q andy= y(x; u) is the unique minimal posi­
tive solution of ( 1.1) corresponding to u. 

By Ekeland's variational principle , there exists au' E U for each f > 0 such 
that 

d( u•, u') :S y'f, i.e. : llu* - u'll :S v'f (4.7) 

and 
L,(u)- L,(u') -y'fd(u, u'), 'VuE U. (4.8) 

Let v E U, we define 
(4.9) 

It's clear that E U and 

in L00 (0) as p--+0+. 

Let ::: ( · ; be the minimal positive solution of ( 1.1) corresponding to 
f d f - y;-y• 

uP an zP = --. 
Consider P 

We have 

{ -Llz' = p(y')P- 1z' + (v- u')+, 
z'lan = 0. 

(4.10) 

-Ll(z'- z;)- p(y,)P- 1(z'- z;) = (p(y')P- 1 - (4.11) 

where = J: p[y' + - y')]P- 1 dt. 
Multiplying (4.11) by (z'- and interating on n, we obtain (note that 

both y' and are positive) 

for any f > 0. 



140 

By Lemma 2.1, 

(1- ,1 - c)llz•- :S y•(<p2-
1

> dx]Jt;. 
,...1 o n o 

Taking E small enough s.t. 1 - }, - E :S r > 0, we have 

II • .112 1 c[jl • .IN(p-1) d l4 II .112 
Z - ZP H' :S - · -2 Yp - y 2 X N · zp H' 

o r n o 

Since p = and -+ y• in HJ (Q), we have 

4 

[l y•((p2-l) J N:::; c1 y•11;i 2 

On the other hand , by Theorem 2.3, 

Thus (4.12) gives us 

2 

liz•- :S C4 y•11;;.l' -+ 0 as P-+ 0. 

Thus we obtain 

= y• + pz• + po(1) in HJ(O) 

Next we estimate Ga(•)(y•) and Ha(•)(u•). 
Clearly, we have 

and 

= (Ga(•)(y•), + y•IIL 2 ) 

= (Ga(•)(y•), + o(1), as p-+ 0 

We have 

( 4.12) 

(4.13) 

(4.14) 

L (u•) L (u•) 
• p - • > -vlfll(v- u•)+IIP > -J(M. (4.16) 

p - -

It's clear that 

= L.(u•) + o(1) m L2 (Q) as p-+ o+. (4.17) 

One can check that L.(u•) f- 0 forE small enough. 
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So we have 

(4.18) 

Define 

>..< _ Go(<)(y<) + Ho(<)(u<) + t 
0 - L<(u<) E [0, 1], 

f dq(F(y<))e< 
q = Le(u<) (4.19) 

Then 

-...fiM >.M(Go(<)(Y<), z<) + (Ho(<)(u'), (v- u<)+)] + (q', F'(y')z<). 

Since Y* is strictly convex, we have 

and 

(q<,1J_ F(y')) 0 'V1J E Q 

In order to pass to the limits for t--+ o+, 
We first consider equation as follows: 

{ 
ziao = 0 

which has a unique solution z in HJ(O), by Theorem 2.2. 
By the similar arguments in (4.12) and (4.13), We have 

z<--+ z inHJ(O). 

Consider { Go(<)(y')}<>D and { Ho(<)( u<)}<>D. 
By a standard argument in [4], one can get easily that 

Go(<)(Y')--+ a E 8G(y*) weakly in L2 (0) and 
Ho(•)(u<)--+ (3 E 8H(u*) weakly in L2(0). 

( 4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

Next, by the hypothese (HF) , we have F'(y<)--+ F'(y*) in L(HJ(O); Y) . 
Thus (4.24) implies 

>.0[(Go(<)(Y'), z') + (Ho(•)(u<), (v- u')+)]+ 
(q<, F'(y*)z -11 + F(y*))?: -8<, 

(4.26) 
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Vv E U and TJ E Q , and(),-+ 0 uniformly on v E U as t-+ o+ . 
Now since F'(y*)R+- Q is finite codimensional in Y , by Lemma 3.2 and 

(4.21), we can assume (relabelling if necessary) that (.Xg, q') -+ (.X0 , q) =/= 0 
weakly in R x Y*. 

Thus, by taking the limits for f -+ 0 , we obtain 

Ao[(a, z) + (!3, (v- u*)+)] + (q, F'(y*)z- TJ + F(y*)) 0 
for all v E U and TJ E Q 

Note that z depends on v . 
After some simple calculations, we obtain 

0 (w + .X/3, (v- u*)+), Vv E U 

(4.27) 

Similarly, by taking consideration of = u' + p(v- u')- , we obtain 

0 (w + .X/3, (v- u*)-), Vv E U 

Thus 
(w + .X/3, v - u*) :::; 0, v E U 

If (.X, w) = 0, then by (4.4), we have [F'(y*)]*q = 0. Thus in the case where 
N[F'(y*)]* = {0}, we must have (A, w) =/= 0 

This completes the proof. 
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