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1 INTRODUCTION

We discuss the optimal control problem for which the state is governed by a
semilinear elliptic partial differential equation with a distributed control.
The system reads
—Ay =P i
{ Ay=y"+u, in Q (1.1)

yloa = 0.

Where Q@ C RN (with N > 3) is a bounded region with 8Q smooth. p = {£2
is the critical sobolev exponent.
The cost functional is given by

Ly, u) = G(y) + H(u) (1.2)

We assume that

(Hy) G and H: L?(Q) — R = (—o0, +00] are proper, convex and lower
semicontinuous.

In section 2 , we will see that there is a minimal positive

solution y(z;u) € H{(Q) for each u € BF(0) C L*®(Q) C L3() , where
B (0) is given by

BY(0) = {ue L®(Q)| ||ullo <7 andu(z) >0, ae z€Q} (1.3)
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and r > 0 is a constant given in §2.

Note that here we define y(z;0) = 0 . Thus we may consider u € B (0) as
the control and y(z;u) , the minimal positive solution of (1.1) corresponding
to the state.

We assume

(Hr) LetY be a Banach space with strict convex dual Y* , F : H{(Q) - Y
be continuously Frechet differentiable and Q C Y be a closed and convex subset.

Set

A= {(y(z;u),u) € LE(Q) x L%(Q) |u € B} (0), y(z; u) is the
minimal positive solution of (1.1)
corresponding tou and y(z;0) = 0}

A pair (y,u) € A is called a feasible pair.

Aaa = {(y(z;u),u) € A|F(y(z;u)) C Q}

A pair(y, u) € Agq is called an admissible pair.

Note that F(y) C @ is a kind of state constraint which was given by X.Li
and J.Yong(cf.[3]). For its applications, we refer readers to [2] and [3].

We formulate the optimal control problem as follows

(P) Inf L(y,u) over all (y,u) € Aug

We shall study the necessary conditions for the problem (P) in this paper.

2 THE MINIMAL POSITIVE SOLUTION

We first quote a result of [5] as follows.

Theorem A: For any u € H=1(Q) with ||u||g-» < CyST , problem (2.1)

possesses at least one positive solution y with y £ 0 in Q@ . Where Cy =

= ({5) %3 and S is the best sobolev constant for the embedding H () —

LP(Q).
From Theorem A and the methods of monotone interation we can prove the

existence of minimal positive solution for problem (2.1).

Theorem 2.1 Under the assumption of Theorem A, Problem (2.1) possesses a
unique minimal positive solution y € C*(R) for some o € (0,1) if u € L*°(Q).

In the following we discuss some properties of the minimal positive solution
of (1.1).

Lemma 2.1 Let y(z;u) be the minimal positive solution of (1.1), then the
corresponding eigenvalue problem

{Jarm e are, n @ (21)
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has the first eigenvalue A1(u) > 1 for all u € B} (0) and the corresponding
eigenfunction p; > 0 in Q.
Where

Bf = {ue By (@) | lullmyey < Rou>0 in Q)

and R < CNS%.

Proof: By the standard argument we can prove that the minimum

A, = Inf {/ |Vv|?dz |v e Hé(Q),/ py*H(z;u)vide = 1} (2.2)
Q Q

can be achieved by some function ¢; > 0. Thus eigenvalue problem (2.2) has
a solution (A1, ¢1). Now we prove that Ay > 1.
Indeed, for any u € B} (0) , we can find a function w € Hy'(Q) with

[|w||H0_1 < CNS%, w > u, w# u ae in Q such that problem (2.1) (corre-

sponding to w ) possesses a minimal positive solution y(z;w). Let y(z;u) be
the solution of (2.1), we have

/\1Apyp‘l(m;u)wl[y(m;w)—y(m:U)]dw/npy”'l(w;u)%(y(z;w)-y(r;U))dz

(2.3)
Which gives A; > 1 for all u € Bf;(0). This completes the proof.

Theorem 2.2 Assume u € B} (0) and y(z;u) be a minimal positive solution
of (1.1) corresponding to w. Then for any g(z) € Hy*(Q) , The problem

—Aw = py?~Hz;u)w + g(z
{Jeiagy e 2

has a unique solution w satisfying
llwllmy o) < Clallgzq) (2.5)
for some constant C' > 0.

Proof: By a standard argument and Lemma 2.1, one can get the existence
of the solution of the equation (2.4).

Now we are on the position to prove(2.5).

Let w be the solution of (2.5). Multiplying (2.5) by w and integrating by
parts we have

/|Vw|2dac:/pyp‘l(x;u)wzd:c+/gwd:l:.
Q Q Q

Now Lemma 2.1 implies
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1
(1= )\_1)”“’”?15(9) < C”9||H;‘(n)||w||Hg(n)

< 6““’”?{3((1) + Cfllg”ilo—l(n)'

From Lemma2.1 we can choose ¢ small enough so that (1 — % —€)> A >0
for some constant Ay > 0.
Thus

Ce
lwllzz @y £ _ZHQHHO‘I(D)

This gives (2.5) by taking C = $*.
The uniqueness of the solution for (2.4) comes from (2.5).

Corollary 2.1 Let u € B}(0) and y(z;u) be the minimal solution of (1.1).
Then y(z, u) is continuous in Hy '(Q) with respect to control function u .

Proof: Define
F:H7YQ) x HY(Q) = H7 Q) by
F(u,y) = Ay+y* +u, for (u,y) € Hy'(Q) x HA(Q) (2.6)
From Lemma 2.1 and Theorem 2.2, we know that
Fy(u,y)w = Aw +py* ™" + pyP ™ (23 u)w

is an isomorphism of HE () onto Hy () .
It follows from Implicit Function Theorem that the solution of F(u,y) = 0
near (u,y(z;u)) is given by a continuous curve.

Theorem 2.3 Let u,v € B} (0) and y(z,u),y(z,v) be the minimal positive
solution of (1.1) corresponding to u,v respectively. If u = v in Hy'(Q) and
u — v dosen’t change the sign. Then

lly(z;u) — y(z;9)llay () < Cllv = vllgz1 (q)

for ||u = v||g1(qy small enough.
Where C' is a constant independent of u.

Proof: Without loss of generality, we may assume that u > v , a,e. in Q.
By Remark 2.1 and (1.1) we have

Jo IV (y(z; ) — y(z;v))|? dz
<P Loy (@) (y(esw) - y(e5v) de + fo(u = 0)(y(ziw) — y(e;v)) da

By lemma 2.1, Holder’s inequality and Young’s inequality, we have

(1= x5@y) Ja [V (y(z; v) = y(z;v))* dz
< elly(z;w) =yl o)l o) + Cellu = vllf-1 g
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for any € > 0. Where C¢ is a positive constant depending on ¢ .

Note that A;(u) is the first eigenvalue for the problem (2.2) corresponding
to y(z;u). By corollary 2.1, as u = v in Hy }(Q), y(z;u) — y(z;v) in H}(Q).
Then by (2.3), A1(u) = A1 (v).

Thus, as ||u — v||HO_1(n) small enough, we have

1
(1- MO &1 = Qly(z;u) — y(@; )l m1 () < Cellu — vllg-1(q)

for some ¢€; >0with1—>‘—ll(;5—€1 > 0.
This completes the proof.

3 FINITE CODIMENSIONALITY

In this section, we will give some results relative to finite codimensionality of a
set. For the detail, we refer readers to [3] and [6].

Lemma 3.1 Let Q; and Q2 be subsets of some Banach space X . Let @, be
finite codimensional in X . Then for any a € R\ {0}, B € R,

aQy — Q2 = {az; — fza|z1 € Q1,22 € Q2}
is finite codimensional in X .

Lemma 3.2 Let Q be finite codimensional in X . Let {fo}n>1 C X* with
|fn]l > 6 >0, fn = f € X* in the weak-star topology, and

(faz) > —€a, VZ€EQ, n2>1

when ¢, & 0. Then f #0 .

4 NECESSARY CONDITION FOR OPTIMALITY

In this section, we discuss the necessary conditions for (y*,u*) to be an
optimal pair for (P).

Our basic assumptions are given by (Hy) and (Hf) in §1 .

Let (y*,u*) be optimal for the problem (P).

Consider the variational systems of (1.1) as follows:

{ —“Az=py*P- Nz 4 (v—u)t, z€Q (4.1)
ZI@Q: 0 ’
and
{ —Az:py*(P-l)z-}-(’U—u*)—’ xEQ (4 2)
Zlan =0 '

By Theorem 2.2, for each v € B} (0) , both (4.1) and (4.2) have a unique
solution z(.;v*) and z(.;v™) in H}(R).
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Thus we may define
Rt = {z(;;v%)|v € BF(0), z(.;v") is the solution of (4.1) corresponding to v}

R™ = {z(-;v7) |v € B}(0), z(-;v7)is the solution of (4.2) corresponding to v}

Our another basic assumption which plays a key role in dealing with the
state constraint is as follows:

(Hr) Both F'(y*)R* —Q and F'(y*)R™ — Q have finite codimentionality.

The following results is important for us to introduce our penalty functionals
in the proof of our main Theorem 4.1.

Lemma 4.1 Let H be a Hilbert space, f : H — R be proper convezr and
lower semicontinuous. Suppose that Of (the subdifferential of f ) is locally
bounded at y*. Then there exists a neighborhood O(y*) of y* such that fi(y) —

f(y) uniformly in O(y*), where fy is the reqularization of f (cf. [4], [7]).

Proof: It is trivial from [4] and [7].
Our main results on the necessary condition for (y*,u*) to be an optimal
pair are as follows:

Theorem 4.1 Let (y*, u*) be an optimal pair for P) and (HL), (HF) and (Hg)
hold. Assume that 0G and OH, the subdifferentials of G and H are locally
bounded at y* and u* (in L?(Q)) respectively. Then there erists a triplet

(M ¥,9) €[-1,00 x HY(Q) x Y*, such that (), q) #0,

(6n—-F(y")) <0, VneQ. (4.3)
—AV¥ = py"‘(p—l)‘l’ + da — [Fl(y*)]*q mn Q (4 4)
\I’Iaﬂ = 0) .
where a € 0G(y*)
and
(U +AB,v—u*) <0 forany ve BY(0) (4.5)

Where 3 € OH (u*).
In the case N[F'(y*)]* =0 (i.e. [F'(y*)]* is injective), (X, ¢) # 0.

Proof:  Without lose of generality, assume that
Ly, v")=G(y*)+ H{u*)=0.

Since G and 0H are locally bounded at y* and u* respectively, by lemma
4.1, we obtain that there exist neighborhoods O(y*) and O(u*) of y* and u* in
L%(Q) respectively, such that

G(y) + H(u) > Ga(y) + Hx(u) = G(y) + H(u)
as A—0 uniformlyin y€O(y*) and wue€ O(y*).
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Thus for each € > 0, there exists a d(¢) > 0 ( §(¢) = 0 ase — 0), such that
G(y) + H(u) + € > Gse)(y) + Hs(e)(u) + € > G(y) + H(u) (4.6)

for all (y,u) € O(y*) x O(u*).

Let U = (Bf(0),d) with d(u,v) = ||[u — v||, where the norm is taken in
L%(Q). Then U is a metric space. Note that B (0) C L*(2) C L?(f2) and one
can check easily that BF(0) is closed in L?(2). Thus U is a complete metric
space.

Now we define L, : U — R by

Le(u) = {d3(F (y(v))) + [Gs(e) (y(w)) + Ha(e(u) + €]°}3.

Where dg(w) = Infl|lw — z||, 2 € Q and y = y(z; u) is the unique minimal posi-
tive solution of (1.1) corresponding to u.
By Ekeland’s variational principle , there exists a u¢ € U for each € > 0 such

that

d(u*,u) <+, le: |lut—ufl| <Ve (4.7)
and

Le(u) — Le(u€) > —/ed(u,uf), VYueU. (4.8)

Let v € U, we define
uf = u + p(v — u)*. (4.9)

It’s clear that uj € U and

us —u =p(v—u)t 50 in L®Q) as p— 0t

Let y5 = y5(-; p) be the minimal positive solution of (1.1) corresponding to
u; and z; = y”py
Con81der
_ € €\p—1 ¢ — €Yt
6Az =py )Ptz + (v—u)t, z€Q (4.10)
2¢lan = 0.
We have
—A(2 = 2) = plye) T (2 = 25) = (p(y) T - ap) 2, (4.11)

where af = fo plye +t(ys — yo)P~tdt.
Multlplymg (4.11) by (2¢ — z;) and interating on Q, we obtain (note that
both y¢ and y; are positive)

Ja V(& "'Zp)|2dx—fnp (2 - z5)%de
= Jolp(y —,X]Z_El'( o= )dz
< &la fy,,~y |75 da] ¥ - [zl + 5112 =zl

for any € > 0.
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By Lemma 2.1,
1

C . N(p—1 4
(1= 55 =l = 55l < L[ b= v 15 dal iy,

Taking € small enough s.t. 1 — A% —e<r>0, we have

1 C Np=1) .4
I =5y < 3 U I a1l

Since p = % and y;, — ¥ in H{ (), we have

e b s
[ [ -] <o - v
On the other hand , by Theorem 2.3,

Cy - pll(v — u) L2 (q)
p

< Cs

Y~ ¥
llzgllery = 1= ——Ilm <
p
Thus (4.12) gives us

2
Iz = z5llmy < Callyp — 9l =0 as p—=0.
Thus we obtain
v, =y +pz°+po(l) in H(Q)

Next we estimate Gy(e)(y5) — Gs(e)(v°) and Hs(e)(up) — He(e) (u).
Clearly, we have
Gy (¥S)~G(e)(¥* . .
Gea)=Gualv) = (G (), 25) + Solllys — v¥llz2)
= (Gs(¢)(¥°), z;) +o(l), as p—0

and
Hs(e u; —Hyey(u (7 € €
el F0 ) - (g (u), (v - u)F) +o(1), as p—0
We have
Ls € _Le €
Lew) = L) 5 all(w - u)*laa > —veM.

p
It’s clear that

Le(uj) = Le(u®) + o(1) in L?(Q) as p—07.

One can check that L¢(u€) # 0 for € small enough.

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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So we have

(Gs(e) (W) +Hs (o) (up) +el?
—\/EM < L,(u;)-ll-LJue){ 8(e) ps( )

_[Gase) (y*)+Hs (o) (u)+€)? + d?;(F(yZ))—d?;(F(y‘))}
14

P
Gse) (Y )+Hse)(u®)+er, € . €
— et );;@ig)‘ PGt (v), 79 + (Hao (1), (v = u)?]

+H(2 TP F(ye)¢),

(4.18)

Define

AS = G&(e)(yc)l‘igi;e)(ue) +¢ € [0’ 1]’ € M (4.19)

Then

~VEM < X§[(Go() (y), 2) + (Hi(e) (u), (v = u) )] + (g%, F(3°)°).

(4.20)
Since Y* is strictly convex, we have
ASI2 + [lg€ll3- = 1 (4:21)
and
(¢ n—F(y)) <0 Vneq (4.22)
In order to pass to the limits for ¢ — 0%,
We first consider equation as follows:
- = *)p—1 —u*)t
{ Az_ p(y )P lz+ (v—u*)t, z€Q (4.23)
zlan = 0
which has a unique solution z in H}(f2), by Theorem 2.2.
By the similar arguments in (4.12) and (4.13), We have
2¢ = z inH(Q). (4.24)
Consider {G(;(f)(ye)}oo and {HJ(E)(UE)}5>0.
By a standard argument in [4], one can get easily that
Gg(.e)(y‘) — a € 0G(y*) weaklyin L%(Q) and (4.25)

Hsey(u€) > B € OH(u*) weakly in  L2(R).

Next, by the hypothese (HF) , we have F'(y¢) — F'(y*) in L(H}(Q);Y) .
Thus (4.24) implies

A5 [(Giae) (4°), 2) + (Hie) (u), (v = u) )]+ (4.26)
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Vv e U and n € Q , and 6. — 0 uniformlyon v € U as ¢ = 0% .

Now since F'(y*)R* — @Q is finite codimensional in Y , by Lemma 3.2 and
(4.21), we can assume (relabelling if necessary) that (A§,¢¢) — (Mo,q) # 0
weakly in R x Y*.

Thus, by taking the limits for ¢ — 0 , we obtain

Ao[(e, 2) + (B, (v = u*)F)] + (g, F'(y")z —n+ F(y*)) >0

forall veU and neqQ (4.27)

Note that z depends on v .
After some simple calculations, we obtain

0> (¥ + A3, (v—u")t), YveU

Similarly, by taking consideration of u§ = u® + p(v — u€)~ , we obtain
0> (T +A8,(v—u*)"), YveU

Thus
(T+M0,v—u")<0, veU

If (\,¥) =0, then by (4.4), we have [F'(y*)]*¢ = 0. Thus in the case where
N[F'(y*)]* = {0}, we must have (A, ¥) # 0
This completes the proof.
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