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We consider in this paper the stabilization problem of a class of linear boundary 
control systems of parabolic type by means of feedback control. Our boundary 
control system with state u = u(t, ·) is described by the differential equation: 

au 
at+ Cu = 0, 

M 

TU = 
k=l 

u(O, x) = ua(x). (1.1) 

Here, fk (t) denote control inputs; hk actuators on the boundary; and (£, r) 
a system oflinear differential operators in a bounded domain Q with the 
boundary r consisting of a finite number of smooth components of (m- 1)­
dimension. Actually, let C denote a uniformly elliptic differential operator of 
order 2 in Q defined by 

where a;j(x) = aj;(x) for 1 i, j m, x E ll. Associated with C is the 
boundary operator r defined by 

au 
TU = + (1 - -a- = + (1 L..J Uij 

v i,j=l J 

for arbitrary values of the coupling parameter a. 
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where a(e) denotes a smooth function on r, satisfying 0 :::;; a(e) :::;; 1, and 
(v1(e), ... , vm(O) the unit outer normal at f r. The inner products m 
L2 (Q) and L2 (F) are denoted by(-, -)n and(-, ·)r, respectively. 

The output of the system (1.1) is given by 

(u, wk)n, 1:::;; k:::;; N, wk c L2 (D). (1.2) 

By feeding the output back into fk (t) 's, our task is to choose suitable feedback 
parameters so that the state u(t, ·) decays exponentially as t -t oo for every 
initial state u0 . Stabilization results for (1.1) in the literature are limited to the 
case where a(e) = 1 (the Dirichlet boundary) or the case where 0 :::;; < 1 
(the generalized Neumann boundary), e.g., [1, 3, 7]: The stabilization has been 
achieved, mainly due to the fact that the structure of the fractional powers of 
the associated elliptic operator Lis entirely known [2, 5, 8]. In the generalized 
Neumann case, for example, set x(t) = L;; 114-'u(t, ·), 0 < f < 1/4 for a large 
c > 0, where Lc = L +c. Then x(t) satisfies the differential equation with the 
homogeneous boundary condition [7]: 

d M 
d; + Lx = L !k x(O) = L;;l/4-'uo, 

k=l 

where 9k f H 2 (D) denote the unique solutions to the boundary value problems: 
(L+c)gk = 0 in il, rgk = hk on r, 1:::;; k:::;; M [4]. Thus the control enters the 
equation as a distributed input in this transformed equation. This has made 
the problem considerably easy. The above transform works just like an integral 
transform which makes the state u smoother in space variables. 

Our boundary condition is partly of the Dirichlet type on the set F1 = 
c F; a(e) = 1} :f. 0 and partly of the generalized Neumann type on r \ F1 . 

Unfortunately the structure of with this boundary condition is not well 
known at present in the context of the fractional Sobolev spaces. Thus the 
above approach seems no more available in our problem. The objective of this 
paper is to develop an alternative approach to the stabilization. By introducing 
an algebraic transform T, the whole stabilization procedure is of an algebraic 
nature as the title shows. 

A compensator is a differential equation in J:Rl written by 

dv N N 

dt + B1v = L(u, wk)n + L(v, (k)Jii TJk, v(O) = v0. (1.3) 
k=l k=l 

Here, the matrix B1; the vectors ek, (k, T/k; Pk appearing just below; and 
the dimension £ are the parameters to be determined. By setting fk (t) = 
(v, Pk)Jii, 1:::;; k:::;; N, equations (1.1) and (1.3) become a closed loop system. 

2 PRELIMINARY RESULTS 

Let us begin with reviewing the well known spectral properties of(£, r). Set 

Lu = £u, 'D(L) = {u c C 2 (D) n C 1 (D); £u c L2 (D), ru = 0}. (2.1) 
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The closure of L in L2 (il), denoted by L, is self adjoint and has a compact 
resolvent ( >. - L) - 1. Thus there is a set of eigenpairs { .>.;, <,Oij} such that [ 4] 

(i) u(L) = {>.1,.>.2, ... }, -oo < .>.1 < .>.2 < · · · <.>.;<···-too; 

(ii) (.>.;- L)<,Oij = 0, i?;: 1, 1 j m; (< oo); and 

(iii) the set {<,O;j} forms a complete orthonormal system for L 2(il). 

For >. in p( L) and h in C2+w (F), the boundary value problem 

().- £)u = 0 in Q, TU = h on F (2.2) 

admits a unique solution u € C2 (Q) n C1 (G) such that .Cu is in L2(il). The so­
lution u is denoted by N"Ah. Set C =- Pk)n N_chk, where Pk f L 2 (il) 
are to be given later in (3.15). If>. is in p(L +C) n p(L), the problem 

(). - .c - C) u = 0 in Q' TU = h on r (2.3) 

also admits a unique solution u € C 2 (Q) n C1 (Q) such that .Cu is in L2 (Q). 
The solution is denoted by N(>.)h. 

3 MAIN RESULT 

Let us consider the feedback control system 

8u M 
Ft + .Cu = 0, ru = L(v, hk(e), u(O, x) = u0 (x) £ L2 (Q), 

k=1 

dv - - - L 
dt + B1 v = Wk)n ek + v(O) = Vo . 

k=1 k=1 
(3.1) 

Associated with (3.1) is an auxiliary feedback control system described by 

8u M 
ot + .Cu = 0, ru = L(v, Pk)n hk(e), u(O, x) = u0 (x) f L2 (il), 

k=1 

+ Bv = f)u, Wk)n ek + t(v, (k)n T/k, v(O) = Vo € L2 (Q). (3·2) 
k=1 k=1 

Here, the differential equation for vis the one in L2 (il), and 

M 

B = L- 2), LcPk)n N_chk, 'D(B) = 'D(L), (3.3) 
k=1 

where Lc = L + c, c > -.>.1; hk £ C2+w(r); and Pk c 'D(L), 1 k M. Set 

J. ((N h ) k -t 1, ... , M) 
Y'c = -c k, Pi n ; . I 1 M . 

J + ' ... ' 
(3.4) 
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Here, the vectors pj 's will be determined by the stabilization problem for B. 
We may assume with no loss of generality that (1-<Pc)- 1 exists. The actuators 
hk's in (3.1) are then defined by 

(3.5) 

Define the matrices H; of size m; x M and W; of size m; x N by 

H· _ k-+ 1, ... , M) 
' - •1 ' j .j. 1, ... , m; ' 

d UT ( k k-+ 1, ... , N) an vv i = wij ; . .j. 1 . , J , ... ,m, (3.6) 

respectively, where 

hk I h Oi.pij) 
iJ = \ k, 'Pij- -a;- r' 

Our main result is stated as follows: 

Theorem 3.1. Suppose that >.1 < · · · < AI :::; 0 < AJ+1, and that 

rank H; =rank W; = m;, 1:::; i:::; I. (3.7) 

Then, for any 0 < >. < AI+1, there exist parameters Pk 's, 's, (k 's and TJk 's 
such that every solution to (3.2) with u 0 , v0 f L 2 ( il) satisfies the estimate 

llu(t, ·)II+ llv(t, ·)II:::; const e-At{lluoll + llvoll}, t 0. (3.8) 

Eqn. (3.2) is reduced to (3.1) with some integer£, which admits a unique genuine 
solution (u(t, x), v(t)) for every (u 0 , v0 ) f L 2 (il) x JRl such that .Cu is bounded 
in (t 1 ,t2 ) x il, 0 < "t1 < "t 2 . Every solution to (3.1) satisfies the estimate 

llu(t, ·)II+ lv(t)lt:::; const e->.t{lluall + lvoli}, t 0. (3.9) 

Outline of the proof: First Step (Operator T). Let us consider the oper­
ator B in (3.3) and determine Pk 's in it. Assumption (3.7) implies that 

rank ((N-chk, 'Pij)n ; k. -+.).1
1• .. · 'M) = rankH; = m;, 1:::; i:::; I. J , ... ,m, 

Let PI denote the projection operator mapping L 2 ( il) onto span { 'Pij; 1 :::; i :::; 
I, 1 :::; j :::; mi}. According to the pole assignment theory of finite dimension 
[10], (see also [9]), there exist Pk's in PIL2 (il) such that u(B) is contained in 
{ >. f C; Re >. >.I+d· The analytic semigroup e-tB thus satisfies the estimate 

Let us introduce the algebraic transform Tin .C(L2 (il)) by 

M 

p = Tu = u- L)u, Pk)n N_chk. 
k=1 

(3.10) 

(3.11) 



BOUNDARY CONTROL SYSTEMS 123 

The operator Tis injective, and r- 1 c .C(L2 (f.?)) is expressed by 

u = T- 1p = p + [N-ch1 ... N_chM](1- <Pc)- 1 (p, P)n, (3.12) 

where p denotes the transpose of (p1 , ... , PM). Set 

(k = (T- 1)*wk = wk, TJk = -6, 1 k N. (3.13) 

Here, ek 's are to be determined in the Second Step. Then, p - v satisfies 

a(p- v) I- Opk) 
at +B(p-v)= av N_chk 

j,k=1 r 
N 

- L(P- v, wk)n (3.14) 
k=1 

M 

r(p- v) =- L(P- v, Pk)n hk, (p- v)(O, ·)=Po- vo, 
k=1 

M 
where we have formally set B = .C - Lk=1 ( ·, LcPk} n N -chk. 

Second Step (Operator K). We introduce the operator k by 

ky =By- t (y, Pi}n \ hj, Pk- N_chk 
j,k=1 r 
M 

= .Cy- L(Y, flk}n N_chk, where (3.15) 
k=1 

Proposition 3.2. The operator k admits the closure J{ which is densely 

defined in L2 (f.?). There exists a sector L-a = {.A - a f C; Bo iarg ..\I 
1l'}, 0 < Bo < 1l' /2, a f JRl.l, such that the resolvent of J{ is expressed in L-a as 

(..\ _ K)-1 = (..\ _ Ko)-1 

- [N(..\)h1 ... N(..\)hM](1 + <P(..\))- 1((..\- K 0 )-l_, P}n, 

where K 0 = L- (·, flk)n N_chk, V(K0 ) = V(L), and 

<1>(..\) = ((N(..\)hk, Pi}n; kj 7/'.·.·.·,·::) . 
Proposition 3.3. The operator T is an isomorphism which maps V(L) 

onto V(K). Furthermore, f{ is similar to L, that is, 

T- 1 KT = L, TV(L) = V(K). (3.16) 
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Associated with (3.14) is the differential equation for y = p- v in L2 (D): 

N 

y(O)=Yo=po-va. (3.17) 
k=l 

Set z = T- 1y. Then, by Proposition 3.3, (3.17) is equivalent to 

z(O) = zo. 

(Determination of 's) In view of the assumption (3.7) and the above 
equation for z' there exist 's in PI L2 (D) and thus 's in C 2 (D) n C 1 (D) 
such that the following estimate holds: 

Third Step (Equation for p and v). The differential equation for y and v is 
the one in the product space L2 (D) x L2 (D): 

(3.19) 

The operator -F- G generates an analytic semigroup. The equation for p (= 
y + v) and vis written as, by setting A= S(F + G)S- 1 with S = i), 

!!_ (p) +A (p) = (0) , (p(O)) = (Po). 
dt v v 0 v(O) v0 

(3.20) 

Proposition 3.4. The operator A is expressed by 

M 

Bv- 'L,(P- v, wk)n 
k=l 

D(A) = { p-vc D(K), v c D(B)}. 
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Fourth Step (Stabilization). The decay estimates (3.10) and (3.18) imply 
that, for any A'; .A < A' < AJ+I, 

lle-tAII.c(£2(n)x£2(.fl))::;;; conste->.'t, t 0. (3.21) 

This establishes the decay estimate (3.8), since u =r-Ip. 
In order to obtain a finite-dimensional compensator, let us add a small per­

turbation IIn to (3.20) to obtain the equation: 

! +(A+ IIn) = = where (3.22) 

0 

N 

IIn = {; ((p- v, wk)n (1- Pn)ek- (v, (1- Pn)wk)n Pnek) 

M 

+ L(v, LcPk)n (1- Pn)N-chk 
k=I 

Since O!n = IIIInll.c(£2(n)x£2(n))-+ 0 as n-+ oo, we see that, for a large n 

lle-t(A+.li,.) ll.c(£2(.rl) x£2(.fl)) ::;;; canst e( ->.'+a,.)t ::;;; canst e->.t, t 0. (3.23) 

Set VI (t) = Pn v(t) for such ann. If vo belongs to PnL2 (il), then (p(t), VI (t)) 
is a solution to (3.22). In other words, v(t) remains in the finite-dimensional 
subspace PnL2 (il) as long as the initial state vo belongs to PnL2(il). 

Last Step (Regularity of u and v). Henceforth we assume that v0 belongs to 
PnL2 (il) in (3.22) so that v(t) remains in PnL2 (il). It is shown -via a result 
in [6]- that the solution p(t, x) in (3.22) is in C2(il) n CI(Q) for > 0 and 
.Cp(t, x) is bounded in (ti, t2) x il, 0 < < and is a genuine solution to 
the initial-boundary value problem: 

8p 1- 8pk) at + Bp- L....J (p- v, Pi)n \ hj, Pk- av N_chk = 0, 
j,k=I r 

M 

rp =- L(P- v, Pk)n hk, p(O, x) = Po(x). 
(3.24) 

k=I 

Let us derive the equation for u = r-Ip and v. By applying Green's formula 
to a term of B, the equation for pis rewritten as 

8p 8p 
Bt + .CcP- L.....i(.Ccp, Pk)n N_chk- cp = Bt + T.Ccp- cp = 0. 

k=I 

Note that .Ccp = .Ccu by (3.11). As for the boundary condition, we see that 

M 

ru =[hi ... hM](l- 4ic)-I(p, P)n -[hi ... hM](p- v, P)n = L(v, Pk)n hk. 
k=I 
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Thus (u, v) satisfies the differential equation 

M 

TU = 2)v, Pk)n hk, 
k=l 

dv M 
dt + Lv- L)v, LcPk)n PnN-chk (3.25) 

k=l 
N N 

- 2)u, wk)n + L:(v, Pnwk)n = 0, v(O) = vo f PnL2 (fl). 
k=l k=l 

Recall that the state of the compensator v(t), t 0 in (3.25) remains in 
PnL 2 (fl). Thus eqn. (3.25) is equivalent to (3.1) with f = dim PnL 2 (fl) = 
m 1 + · · · + mn. The decay estimate (3.9) will be now clear. The uniqueness 
of solutions to (3.25) is also clear, since (3.25) is finally transformed to (3.22). 
This finishes the proof of Theorem 3.1. Q.E.D. 
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