
19
Reactive Functional Programming*

R. B. Kieburtz
Oregon Graduate Institute of Science 8 Technology
P.O. Box 91000, Portland, OR 97291-1000 USA dick«<cse.ogi.edu

Abstract

Reactive systems respond to concurrent, possibly unsynchronized streams of input
events. Programming reactive systems is challenging without language support for
event-triggered actions. It is even more challenging to reason about reactive systems.
This paper explores a new conceptual basis for applying functional programming
techniques to the design and formal verification of reactive systems. The mathemat­
ical foundation for this approach is based upon signature coalgebras and derived
proof rules for coinduction. The concepts are illustrated with an example that has
been used with the language Esterel.

Keywords

Reactive systems, programming languages, coalgebras, coinduction, verification

1 INTRODUCTION

Reactive systems are characterized by sequences of history-determined reac­
tions to external events. It is known that a non-strict functional programming
language can provide a suitable linguistic vehicle for programming reactive
systems because streams, modeling temporal sequences of values, can be rep­
resented. It is necessary to represent more than streams, however. Current
reactive programming languages, such as Esterel, Lustre, Signal and State­
charts provide implicit or explicit representations of state, iterative control
structures, and parallel threads of activity. Use of these languages has ad­
vanced the state of the art of designing reactive systems, however, it is not
easy to reason about their properties. For ease of reasoning, we should like
to have a sound programming logic that is expressive over the terms of the
programming language. A principal motivation for this research is to develop
in tandem a programming notation well suited to specifying reactive systems,
and an associated programming logic.

The control structure needed for reactive programs is inherently iterative,
not recursive. The data of interest are infinitary sequences or trees of states,
representing the evolution of systems that may never terminate. We have
searched for an underlying mathematical structure to model reactive systems.
The structure we have found most useful is that of coalgebras, which unfor­
tunately, are not very well understood by most functional programmers.

*The research reported in this paper was supported by the USAF Materiel Command.

Programming Concepts and Methods D. Gries, & W-P. de Roever (Eds.)
© 1998 IFIP. Published by Chapman & Hall

264 Programming Concepts and Methods

Section 2 of the paper introduces the notation and concepts of programming
with coalgebras. Section 3 illustrates application of the concepts to formulate
a non-trivial example that has previously appeared in the literature. This
example is used to illustrate one of the main points of the paper: that a coal­
gebra provides structure for verification of properties as well for an algorithm.
Section 4 presents brief conclusions.

1.1 Iterative functional programming

In the past, several researchers have observed that programming with termi­
nating recursion schemes is algebraic in nature [7, 8, 4, 13, 23, 22]. Results
of this body of research include (1) the discovery that recursion over typed
data structures has a logical counterpart in structural induction and (2) that
the recursion patterns can be captured in higher-order, type-parametric (also
called polytypic) combinators, embedded in a strict functional programming
language. There is a dual to algebraic programming and it leads to another
style of functional programming, which is the topic of this paper.

Process-oriented programs are iterative. They are controlled by tests of their
partial results, driven by external events rather than by the interpretation of
data, and are naturally modeled by coalgebras. Because control is derived to
meet external demand rather than induced by the structure of arguments, a
non-strict evaluation mechanism is needed. The rules of coinduction induced
by codatatypes are logical duals of the familiar rules of structural induction
that are induced by datatype definitions. Dual to the recursive structure of
algebraic programs is the iterative structure of coalgebraic programs, which
can be made manifest by embedding a set of type-parametric combinators in
a non-strict programming language.

Examples of iterative algorithms are common. They include linear and tree­
structured searching, shift-reduce parsing, and both synchronous and asyn­
chronous reactive systems. Before looking at examples, including proof rules,
let's introduce a formalism for expressing coalgebraic programs. The notation
presented in this paper is taken from DUALITY, which is an experimental,
functional language based upon algebras and coalgebras as its fundamental
computational structures. In this paper we shall deal only with the coalge­
braic part. An early version of this language has been implemented and is
described in a technical report [21].

This is by no means the first time that the concepts of iterative control and
synchronous data flow (i.e. streams) have been embedded into a program­
ming notation. These concepts were the basis for the language Lucid [2], and
earlier, in Kahn-McQueen networks (20]. These early language developments
led directly to Lustre (15], a language that has found considerable use for
programming reactive systems. Synchronous data flow techniques have been
further generalized (9] to networks of higher-order typed entities.

Reactive functional programming 265

2 COVARIETIES OF COALGEBRAS

A covariety is a class of coalgebras with a common signature. The archetypical
example is the covariety of stream coalgebras, whose signature is:

cosig Stream(a){type c; strjc: {$shd: a, $stl: c}};

Here Stream is the name of the covariety and str is the name of its single sort,
analogous to a type constructor. It is redundant to name both the covariety
and its single sort, but later we shall see an example that requires a multi­
sorted signature.

Each Stream-coalgebra has a type parameter, a, a carrier type, c, and two
projectors (some authors call these destructors) identified by the symbols $shd
and $stl. Each projector is a total function whose domain is the carrier arid
whose codomain is indicated by the typing given in the signature. A signature
of projectors can be thought of as a generalized record declaration. Binding
a type for the carrier and typed functions for the projectors defines a specific
coalgebra parameterized by the type variable, a.

Every covariety defined in this way contains a final coalgebra which is unique
up to isomorphism [18]. Call the carrier of the final Stream-coalgebra str(a)
and call its projectors Shd and Stl. The finality condition implies that given
any coalgebra of the variety Stream, with bindings { c := t, $shd := J, $stl :=
g}, there is an assignment of the type parameter, a : = t', and a unique map­
ping, h : t-+ str(t'), satisfying the homomorphism condition:

Stl o h =hog

Shdo h = f

The significance of the final coalgebra is that any Stream-coalgebra may be
represented as an infinite sequence of values. Because ofthis property, a stream
is often identified with an infinite list. While that is certainly one way to
encode a stream as data, it is by no means the only way. If we accept that
a stream is codata, then encoding it as data seems unnecessary. A codata
object is defined with methods for observing it, rather than with constructors
for building its representation. Other examples of codata are found in the
intensions of Lucid, which denote suspended, iterative computations, rather
than values.

Every stream is infinite; that is, it is meaningful to iterate the projection
operator Stl on a stream arbitrarily many times, even though there is no way
to witness the entire stream at once. A stream provides a good model for an
incrementally readable input file. The projection Shd yields the value of the
first element of a stream, just as a get operation on an open file produces
a value from it. The projection Stl yields the rest of a stream, but it is not

266 Programming Concepts and Methods

manifested until projections of it are taken. The situation is familiar in non­
strict functional languages.

There are infinitely many access paths to elements of a stream. A path
is expressed by a well-typed composition of the projectors Shd and Stl, i.e.
Shd o Stl o · · · o Stl, for i > 0 . .___,_,___._.. -

i times

2.1 Generators of codata

We say that the carrier of a final coalgebra is a type of codata, meaning
that data values can be gotten from it by projection. Data and codata are
distinguished by the type system of DUALITY. When a sort of a covariety is
used as a type constructor, it designates a type of codata.

If T(a) is a covariety and tis a sort symbol of the signature T, a generator
of sort t is a function with a type c-+ t(a), where the codomain is a type of
codata. To determine a generator, we must specify a coalgebra by naming a
covariety, a type for the carrier and bindings of functions for the projectors.
Coalgebras are first-class objects of DUALITY.

Example 21 : Integer sequences
Declare a Stream coalgebra by:

coalgebra intseq ::::=:: Stream{ c := int; $shd := id, $stl := addl}

where addl :::::: >..n. n + 1. To obtain an expression of type str(int), we can apply
the DUALITY combinator, gen[str], to the coalgebra specification, creating a
generator for this type,

gen[str] intseq : int -+ str(int)

The combinator gen[str] is an instance of a higher-order combinator, gen, spe­
cialized to the sort str of the covariety Stream. The higher-order combinators
in DUALITY substitute for the recursion operator found in conventional func­
tional languages. The generator h :::::: gen[str] intseq is the unique map taking
the coalgebra intseq to a final Stream coalgebra. The homomorphism condition
it satisfies is expressed by the pair of equations:

Shd o h = idint

Stl o h = h o addl

D

Reactive functional programming 267

Other applications of Stream coalgebra generators define pseudo-random num­
ber sequences, sequences of unique identifiers and other enumerated sets.

(a) A proof rule for stream generators
All functional programmers are familiar with proof rules based upon induc­
tion. Somewhat less familiar is the dual rule of coinduction. The possible
observations of a codata object are enumerable composites of a finite basis
of primitive witness functions. The coinduction principle is that the finitely
observable properties of an object completely characterize it, even if the ob­
ject is infinitary [1, 24, 26, 18, 12]. Expositions of coinduction are given by
Paulson [25], Gordon [14], Jacobs and Rutten [19].

To define a proof rule for a stream of elements of type a, generated from
a carrier of type t, let P be a two-place, typed predicate symbol whose ar­
guments range over t and a, respectively. We prefer a two-place predicate
because it can express the input-output relation of a function. Coinduction
extends the domain of the relation to infinitary objects. A proof rule for a
stream of elements is:

xo : t
f: t ~a
g: t~t. Vx: t.P(xo,x)=>P(xo,gx)

P(x0 , x 0) => DP(x0 , gen[str]{c := t; $shd := /, $stl := g} x 0)

We have used a linear temporal operator, D (read as always), as a quantifier
on the predicate P in the consequent of the rule to express that the proposition
P(x0 , x) is asserted for every element, x, of the generated stream.

2.2 Coalgebra homomorphisms define iteration schemes

A compelling reason to consider coalgebras is that coalgebra homomorphisms,
i.e. the structure-preserving maps between coalgebras of a given covariety,
conform directly to an iteration scheme for computation. Thus coalgebras af­
ford a mechanism to prescribe a specific control structure for computation and
to communicate this structure to program analysis and translation software.

For the covariety Stream, the related iteration scheme is linear search. For
more complex covarieties, the iteration schemes are more specialized, including
algorithm schemes such as binary search and shift-reduce parsing.

A coalgebra homomorphism is composed of two parts: a coalgebra speci­
fication, such as intseq in Example 21, and a control that selects among the
projectors of the coalgebra. The body of a control has the form of a conditional
or a case expression. A control and a coalgebra specification are combined by
a DUALITY combinator, cohom, suitably specialized to a sort of the covariety.

268 Programming Concepts and Methods

This forms a limit of the specified coalgebra, determined by the control. It is,
of course, necessary to confirm that such limits exist, in each case.

Example 22 : Sequential search
We shall define a generic sequential search function, give a necessary and
sufficient condition for its termination, and give a hypothetical rule of logic to
conclude a property of a search. Let a be a type, p : a --+ bool and r : a --+ a.
Define a sequential search combinator, while, by

while(p, r) ='= cohom[str]Stream { c := a; $shd := ida, $stl := r}
(.Xx. let u = $shd x in

if •p u then u else $stl x)

The control is expressed as a lambda abstraction enclosed in parentheses. The
expressions on the arms of a conditional (or case expression) that forms the
return expression of the control must be applications of projectors of the coal­
gebraic variety, or as in this example, identifiers bound to such applications
in a local definition. A control expression should not be confused with a func­
tion declaration; in particular, the types of the expressions on the arms of a
conditional or case are not all of a common type.

A function composed with cohom[str] satisfies a set of conditional equations
such as the ones given below for the sequential search combinator:

p x = tt => while(p, r) x = while(p, r) (r x)

p x =if :::} while(p, r) x = ida x

The right-hand sides of the equations are formed by substitution into the
control expression. The bindings of the projectors $shd and $stl are taken
from the coalgebra declaration, and in addition, the defined combinator is
recursively applied to every projector expression whose codomain type has
been specified to be the carrier. In this example, the declaration $stl : c in
the signature dictates that while(p, r) is applied to (r x), gotten from the
binding of $stl. It is not misleading to imagine the combinator expressions
of DUALITY translated in this way into recursive function definitions in a
conventional language. However, the patterns of recursion so obtained are
rigidly constrained to tail recursion.

Of course, it is useful to have a more compact declaration for such a use­
ful combinator as while(_,-) and it is often made a language primitive. We
have used it here as the simplest illustration of coalgebraic program construc­
tion with explicit control. Before leaving the example, we call the reader's
attention to another aspect of the coalgebraic declaration. The declarations
of data transformation and control are separated; each is a first-Class entity in
DUALITY. The data transformation is fully specified by the coalgebra, which

Reactive functional programming 269

could be used in other declarations with a different control. The control spec­
ification could be used with other Stream coalgebras.

3 FINITE-STATE REACTIVE SYSTEMS

Finite-state systems are naturally modeled by multi-sorted coalgebras. The
states of a system correspond to sorts of a coalgebra; the carrier in each sort
is comprised of the state variables, and the projectors in each sort are the
possible transitions from the state that corresponds to the sort. Traditional
functional programming languages have not been easy to use in describing
reactive systems because the sequences of possible reactions often seem to
require complex mutual recursion for their specification. Formulating a reac­
tive system as a coalgebra is more natural because the use of multiple sorts
provides a detailed structure for the specification.

We shall illustrate the technique with an example of a synchronous reactive
system previously used to illustrate programming in Esterel [3].

Example 31 :The Reflex game
The Reflex game is a coin-operated machine on which a player measures the
time constant of her reflexes. After depositing a coin to start the game, she
can depress a Ready button to signify that she is prepared to start a trial.
When she receives a Go signal from the machine, she depresses a Stop button
as quickly as she can. The machine times her response in several trials, then
displays the average response time. There are several illegal moves that must
be accounted for. If the Stop button is depressed after the player is ready
but before Go has been signaled, this action is interpreted as cheating and
terminates the game. If either the Ready or the Stop button is depressed when
it is not expected, a warning bell sounds, but the game is not interrupted. A
coin drop always restarts the game, even when this event occurs during the
progress of a previous game.

The game also depends upon timing signals emitted by a clock. Clock ticks
must be counted to measure the player's latency. Also, the Go signal is emitted
after a randomly determined number of clock ticks following depression of
the Ready button by the player. And if a player fails to respond within a
predetermined interval when a response is expected, the game times out.

The events that the machine must react to are a coin drop, depression of
the Ready and Stop buttons, and ticks of the clock. We assume that these
events never occur exactly simultaneously, or that they can be separated in a
sequence.

Analysis of the Reflex game shows that the machine can be described as
having five major states:

270

quiet,
start,
wait,
react,
end,

Programming Concepts and Methods

*Coin, (time>delay) & (n_trials<Max)
Figure 1-Major states of the Reflex game

when no game is in progress,
when awaiting a Ready event to start a trial,
when the player is awaiting a Go signal from the machine,
when he machine awaits a Stop event,
when the machine pauses to display the response time of the player.

The machine responds to events differently in each of these five states. Some
of the responses are transitions from one state to another. Figure 1 is a state
transition diagram for the reflex game machine.

In the solution of this problem as an Esterel program, the states of the
game are not manifest but are implicit in the control. The control consists of
a nested loop structure, triggered by events, that takes the machine through
the po,ssible sequences of state transitions. Although Esterel provides intuitive
syntax for coding even-driven nested loop structures, it is still challenging to
get them right. This represents the state-of-the-art in programming reactive
systems.

The Reflex game can be modeled by a multi-sorted coalgebra. We associate
a separate sort with each of the major states of the game. In each of these
states, we identify the possible transitions and name them. The reactions in
each state become the projectors of the corresponding sort. The codomain
type of each projector is the carrier that corresponds to the game state to
which the transition leads. No explicit recursion or iteration is involved in
programming the game in this way.

Reactive functional programming 271

The output of the Reflex game will be modeled as a sequence of states. A
state will include state variables and output signals produced by a transition.
However, these are details that will appear in a coalgebra for the game. None
of these details are manifested in a covariety. A signature for the covariety is:

cosig Refiex(a){type q,s,w,r,t;
quietfq {$coin: s, $noop: q},
startfs {$reveal:a, $ready:w, $renew:s, $warn:s, $timeout:q, $tick:s},
wait/w {$reveal: a, $renew: s, $warn: w, $abort: q, $tick: w, $go: r},
react/r {$reveal: a, $react: t, $renew: s, $warn: r, $tick: r, $timeout: q},
end/t {$reveal: a, $warn : t, $renew: s, $tick: t, $tock: s, $finish: q}}

The projectors $reveal do not correspond to state transitions of the game,
but are instead actual projections of the machine state.

The game is specified in terms of a Reftex-coalgebra, binding data trans­
formation functions associated with state transitions to each of the projector
symbols. To determine all trajectories of play, we shall generate a game tree,
which will be codata, of course. To simulate a game, we shall interpret a se­
quence of externally caused events (coin drops, clock ticks and button pushes)
as control for the projectors in each state.

Minor states of the game are determined by the values of three integer­
valued state components. These are packaged as fields of a record type,

record State{ time, totaUime, triaLnumber : int};

Further, there are signals delivered to the actuators that implement the
machine. These unvalued signals can be represented by a set of elements of
an enumerated type,

type Signals =set of [game_over_on I game_over_off I go_on I go_off I
til Lon I tilLoff I ring_bell I bump_random];

There is one integer-valued signal which sends values to the display. The state
components and the signals are conveniently packaged as fields of a record
type. We declare

record Game{ state : State; stgs : Signals; display : int};

It is convenient to define a pair of constants of type Game,

def initial_game = {state:= {time := 0; totaLtime := 0; triaLnumber := 0};
sigs := [game_over_off, go_off, tilLo.ff];
display:= 0};

def tilt_game = { {state := {time := 0; totaLtime := 0; triaLnumber := 0};
sigs := [game_over_on, go_ojJ, tilt_on];
display:= 0};

272 Programming Concepts and Methods

There are also three integer constants, Time_limit, Delay and Max_trials,
and a stream, random, which is a randomly generated sequence of positive
integers of bounded size, supplied by the machine. As a notational abbrevia­
tion, let R E9 {X :== e} denote the record whose fields have the values of the
corresponding fields in the record R, except for field X, which has the value
of e.

The next task is to define a coal.gebra by specifying the projectors of each
sort. These correspond to the possible transitions from each state.

reflex='= coalgebra Reflex { q, s, w, r, t := state;
quiet : {$coin:= >.s. initial_game,

$noop := idaame},
start : {$reveal:= >.s. s.state,

$ready:= >.s. s EB {state EB {time := 0},
sigs := [bump_random]},

$renew:= >.s. initiaLgame,
$warn:= >.s. s EB {sigs := [ring_bell]},
$timeout:= >.s. tilLgame,
$tick:= >.s. s EB {state EB {time := s.state.time + 1}} },

wait : {$reveal:= >.s. s.state,
$renew:= >.s. initiaLgame,
$warn:= >.s. s EB { sigs := [ring_bell]},
$abort:= >.s. tilt_game,
$tick:= >.s. s EB {state EB {time:= s.state.time + 1 }},
$go:= >.s. s EB {state EB {time:= 0}; sigs := [go_on]} },

react : {$reveal:= >.s. s.state,
$react:= >.s. {state := {time:= 0;

totaLtime := s.state.totaUime + s.state.time;
triaLnumber := s.state.triaLnumber+ 1};

sigs := [go_o.ff]; display:= s.state.time },
$renew:= >.s. initiaLgame,
$warn := >.s. s EB { sigs := [ring_bell]},
$tick := >.s. s EB {state EB. {time := s. state. time + 1}},
$timeout:= >.s. tilLgame},

end: {$reveal:= >.s. s.state,
$renew:= >.s. initiaLgame,
$warn:= >.s. s EB { sigs := [ring_bell]},
$tick:= >.s. s EB {state EB {time:= s.state.time + 1} },
$tock := >.s. {state := {time:= 0},

display:= 0},
$finish:= >.s. s EB { sigs := [game_over_on];

display:= s.state.totaUime/ Max_trials}}}

A generator composed from this coalgebra, for instance, gen[quiet] reflex
Game -+ quiet generates, in response to demand, an infinite game tree rooted
on the quiescent game state. Paths in this game tree incorporate all major-

Reactive functional programming 273

state transitions allowed by the rules of the game and in addition, some that
are not allowed, because transitions in the game tree are unconstrained by
conditions on the state variables that govern the progress of an actual game
(i.e. the rules of the game).

To obtain a function that accurately simulates the game, the coalgebra
must be composed with a control that responds to input events and reads
state variables to determine a game path. The control is defined as a cluster
of five expressions, one for each sort, as the game's response to events depends
upon the major state that it occupies.

Since the final result is a stream of game states, the body of each component
of the control has the form of a Stream-generator. The $shd projector defined
in each game state translates each of the possible input events into a state
transition event. In some cases, the translation is conditioned by the elapsed
time recorded in a game state. Here is a definition of the control:

def transition ='=
(quiet: (>.s. gen[str] Stream{ c := str(event);

$shd := >.es. let e = Shd es in
case e of

Coin => $coins
Ready=> $noop s
Stop => $noop s
Tick => $noop s

end
$stl := St/}),

start: (>.s. gen[str] Stream{ c := str(event);
$shd := >.es. let e = Shd es in

case e of
Coin => $renews
Ready => $ready s
Stop => $warn s
Tick => let v = $reveals in

end
$stl := Stl}),

wait: (>.s. gen[str] Stream{c := str(event);

if v. time < Time_limit then $ticks
else $timeout s

$shd := >.es. let e = Shd es in
case e of

Coin => $renews
Ready=> $warns
Stop=> $aborts
Tick => let v = $reveals in

end
$stl := Stl}),

if v. time < random then $ticks
else $gos

274 Programming Concepts and Methods

react: (As. gen[str] Stream{c := str(event);
$shd := Aes. let e = Shd es in

case e of
Coin ::::} $renews
Ready::::} $warn s
Stop ::::} $reacts
Tick ::::} let v = $reveals in

end
$stl := Stl}),

end: (As. gen[str] Stream{c := str(event);

if v.time < Time_limit
then $ticks else $timeout s

$shd := Aes. let e = Shd es in
case e of

Coin ::::} $renews
Ready::::} $warn s
Stop => $warn s
Tick ::::} let v = $reveals in

end
$stl := Stl}))

if v. time < Delay then $ticks
else let v = $reveals in

if v.triaLnumber < Max_trials
then $tocks
else $finish s

A simulator for the Reflex game is the function

cohom[quiet] reflex transition : Game-+ str(event) -+ str(Game).

0

The domain constraints needed for the example of the Reflex game can
be established by structural (Hindley-Milner) type checking. Note that the
simulator is not expected to terminate, in the usual sense, but rather to make
finite progress in response to each external event that it receives.

Programming the Reflex game in terms of coalgebras is straightforward once
the type of the solution and of the component functions has been determined.
The structure of the coalgebra does not allow guesswork.

3.1 A verification logic for the Reflex game simulator

One of the most significant advantages of formulating a finite-state systems
such as the Reflex game simulator as a coalgebra morphism is that the coalge­
braic structure induces a complementary deductive logic in which properties
of the system can be proved by coinduction. As we shall see, the coinduction

Reactive functional programming 275

rules induced by the coalgebraic structure provide a fine-grained decomposi­
tion of proof obligations that must be discharged to establish a conjectured
property. We believe this structure will make verification significantly eas­
ier by removing most of the guesswork. We expect it to be amenable to the
application of automatic proof discovery methods.

Corresponding to each carrier in the coalgebra signature declaration, we
declare a predicate symbol whose interpretation will characterize a specific
property in the major state (or sort) to which the carrier is bound. For the
reflex game example, these will be unary* predicates, each relating an external
event stream and a game state. The game state will be a minor state of the
major state characterized by the predicate.

A coinduction rule for a coalgebra is formulated as a sequent clause. In
the consequent are clauses for each sort of a multi-sorted coalgebra; in the
antecedent are sets of hypotheses for each sort. The hypotheses for a given sort
correspond one-for-one to the projectors defined for that sort. The structure
of a coinduction rule is induced directly by the signature of a coalgebra.

Each clause in the consequent of a coinduction rule extends the interpre­
tation of a predicate to encompass all of the states of the corresponding sort
in a potentially infinite tree or sequence. There will be one such clause for
each sort of a multi-sorted coalgebra, allowing characterization of a property
specified at each of the major states of a finite-state model, throughout all
minor states that are reachable from a given initial state.

Each individual clause of an antecedent implies the transfer of a property
under a projection. For instance, referring to the Reflex game, a clause that
implies the transfer of a property via the transition $ready is:

'Vu: s, es: str(event).S(u) => W($readyu)

where S and W are the predicate symbols associated with sorts s and w,
respectively. Upon substituting the binding for the transition $ready as given
in the declaration of the coalgebra reflex, the clause becomes

'Vu : s, es: str(event). S(u) => W(u EB {state EB {time:= 0}})

When the coinduction rule is for a general coalgebra morphism (a cohom),
each hypothetical implication must be qualified by a guard for the transition
that can be read from the declaration of the control for the morphism. Again
referring to the reflex game, the clause above, extended as a hypothetical
clause for the simulator, becomes

*In this example, the initial state is fixed in each game. More generally, use of a two-place
predicate would allow the simulator to be characterised as a function from an arbitarily
specified initial state to the ensuing behavior.

276 Programming Concepts and Methods

'tu: q, es: str(event). (Shdes =Coin) =l> Q(u) =l> S(initiaLstate)
'tu : q, es : str(event). (Shd es = Ready) =l> Q(u) =l> Q(u)
'tu : q, es : str(event). (Shd es = Stop) =l> Q(u) =l> Q(u)
'tu : q, es : str(event). (Shd es = Tick) =l> Q(u) =l> Q(u)

'tu: s, es: str(event). (Shdes =Coin) =l> S(u) =l> S(initiaLstate)
'tu : s, es: str(event). (Shd es = Ready) =l> S(es, u) =l> W(u E& {state E& {time := 0}})
'tu : s, es: str(event). (Shd es = Stop) =l> S(es, u) =l> S(u E& { sigs := [ring_bell]})
'tu : s, es: str(event). (Shd es = Tick) =l> (u.state.time < Time_limit) =l>

S(u) =l> S(u E& {state E& {time := s.time + 1}})
'tu : s, es : str(event). (Shd es = Tick) =l> (u.state.time?. Time_limit) =l>

S(u) =l> Q(tilLgame)

'tu: w, es: str(event). (Shdes =Coin) =l> W(u) =l> S(initiaLstate)
'tu : w, es: str(event). (Shd es = Ready) =l> W(u) =l> W(u E& { sigs := [ring_bell]})
'tu : w, es : str(event). (Shd es = Stop) =l> W (u) =l> Q(tilt_game)
'tu : w, es: str(event). (Shd es = Tick) =l> (u.state.time < C_random) =l>

W(u) =l> W(u E& {stateE& {time:= s.time+ 1}})
'tu : w, es: str(event). (Shd es = Tick) =l> (u.state.time?. C_random) =l>

W(u) =l> W(u E& {stateE& {time:= 0}; sigs := [go_on]})

'tu: r, es: str(event). (Shd es =Coin) =l> R(u) =l> S(initiaLstate)
'tu : r, es : str(event). (Shd es = Ready) =l> R(u) =l> R(u E& { sigs := [go_on]})
'tu : r, es : str(event). (Shd es = Stop) =l> R(u) =l>

S(u E& {state E& {time := 0;
totaUime := s.state.total..time + s.state.time;
triaLnumber := s.state.triaLnumber+ 1};

signs:= [go_offl; display:= s.state.time})
'tu : r, es: str(event). (Shd es = Tick) =l> (u.state.time < Time_limit) =l>

R(u) =l> R(u E& {state E& {time := u. time+ 1}})
'tu: r, es: str(event). (Shd es =Tick) =l> (u.state.time?. Time_limit) =l>

R(u) =l> Q(tilt_game)
'tu: t, es: str(event). (Shdes =Coin) =l> T(u) =l> S(initial_state)
'tu : t, es : str(event). (Shd es = Ready) =l> T(u) =l> T(u E& { sigs := [ring_bell]})
'tu : t, es : str(event), (Shd es = Stop) =l> T(u) =l> T(u E& { sigs := [ring_bell]})
'tu : t, es : str(event). (Shd es = Tick) =l> (u.state.time < Delay) =l>

T(u) =l> T(u E& {state E& {time := s.time + 1}})
'tu : t, es : str(event). (Shd es = Tick) =l> (u.state. time?. Delay)/\

(u.trial_number< Max_trials) =l>

T(u) =l> S(u E& {state E& {time := 0}
display:= 0}))

'tu : t, es : str(event). (Shd es = Tick) =l> (u.state. time?. Delay)/\
(u.trial_number?. Max_trials) =l>

T(u) =l> Q(u E& {sigs := [game_over_on];
display:= s.state.total.lime/ Max_trials}))

Figure 2-Antecedent clauses for the Reflex coinduction rule

Reactive functional programming 277

't/u: s, es: str(event). (transition.startu (Shdes) = $readyu) =?
S(u) =? W(u EB {state EB {time:= 0}})

Further substituting the guard clause by its binding in the declaration of
transition, the hypothetical implication now relates the transition to the oc­
currence of an external event:

't/u : s, es : str(event). (Shd es = Ready) =? S(u) =? W(u EB {state EB {time := 0}})

This recipe gives us the following coinduction rule for the Reflex game
simulator. The antecedent clauses are given in Figure 2. The consequents are:

'tfuo : Game, es : str[event]. Q(u0) =? DQ(cohom[quiet] reflex transition uo es)
'tfuo : Game, es : str[event]. S(u0) =? OS(cohom[start] reflex transition uo es)
't/u0 : Game, es : str[event]. W(uo) =? OW(cohom[wait] reflex transition uo es)
'tfuo : Game, es: str[event]. R(uo) =? DR(cohom[react] reflex transition uo es)
't/u0 : Game, es: str[event]. T(u 0) =? DT(cohom[end] reflex transition uo es)

The temporal operator D (always) in the consequent formulas expresses
precisely the sense in which the predicate over game states is extended by
coinduction to a predicate over a stream of game states.

The textual extent of this coinduction rule is imposing, but keep in mind
that it is amenable to mechanical calculation from the three parts of the formal
declaration of the Reflex game simulator: the signature, the coalgebra specifi­
cation and the control. When given a conjectured proposition of a property of
the potentially infinite behaviors of the simulator, the rule yields a finite set
of finitary propositions that must be discharged to prove the proposition. It
accomplishes a logical destructuring that is essential to constructing a formal
proof, and it does so in a way that suggests mechanization.

(a) Proving safety properties of the Reflex game
The consequents of the coinduction rule for the Reflex game assert invariant
properties of states of the game. These are its so-called safety properties.

A simple safety property is that in every state, u,

Qt(u)~ C_random :S Time~imit Dela~ < Time_limit
u.state. tlme ::=; Tlme_llmlt

In this clause, the antecedent conditions relate the values of constants of
the Reflex game. Without these relations, the property does not hold. To
prove this property of a game started in the quiescent state, we formulate the
conjectured property as a consequent:

Vuo : Game, es: str[eventJ. (u0 .state.time ::=; Time_limit) =>
D(state.time :S Time_limit)(cohom[quiet] reflex transition u 0 es)

278 Programming Concepts and Methods

for which we seek a proof by Reflex game coinduction.
In the coinduction rule stated in the preceding section, choose Q :::: S ::::

W = R = T = Qt and attempt to discharge each of the antecedents of the
rule. Most of the antecedent clauses discharge trivially, either because they do
not refer to the time parameter explicitly or they set it to zero. There are five
antecedent clauses in which the time parameter is incremented, however. Each
of these clauses is guarded by a condition that time is strictly less than one of
the constants Time_limit, C_random or Delay. Using the antecedent condition
relating the latter two constants to Time_limit, it can be established that the
implicand in each of the clauses is satisfied and the clause can be discharged.
Thus the property is proved to hold for every game state reachable from an
initial state that satisfies the property, by condinduction.

A related safety property that can be established is

Qtt (u) ~ u. state. totaUime :::; M ax_trialH Time_limit

We can also state safety properties consequent to a restriction on the ex­
ternal event stream. For instance we might assert

Vuo: Game, es: str(event).
D (next event# Coin) es =:} Q(u 0) 1\ (uo .state. time= 0) =:}

D (state. time= 0)(cohom[quiet] reflex transition u0 es)

for a game started from the quiescent state. To prove this assertion, we must
infer from the temporal logic assertion, D(next event =f Coin) es, the propo­
sition Ves : str(event). Shd es =f Coin. This derived proposition can then be
used to restrict the domain of antecedent clauses in a proof using the Reflex
game coinduction rule.

Verification logics have also been developed for proving safety properties of
systems specified in Lustre [17, 16] and Esterel [5].

3.2 Liveness properties of the Reflex game

Liveness properties, which assert that a state or state sequence with the prop­
erty is eventually reached in every unfolding of the game, require for their
proof a specific measure of progress. A monotonically increasing count of any
external event can provide a suitable measure, provided that the timing event
occurs almost everywhere in the event stream. Occuring almost everywhere
means that at every point in the stream, the next timing event will occur
after at most a finite number of non-timing events. The almost everywhere
restriction assures that the observation of advancing time is never obscured
by an infinite stream of non-timing events.

In the Reflex game, intuition tells us that the Tick event is a reasonable

Reactive functional programming 279

choice for the timing event. We assume that it occurs almost everywhere
in every possible stream of external events. This assumption is essential; it
cannot be proved from weaker assumptions.

A liveness property we should like to prove is that every game started by
a coin drop eventually terminates. We adopt for our definition of termination
that either (a) the game enters the quiescent state or (b) another coin is·
dropped. Note that we have no direct characterization of the quiescent state
(or any other major state) in terms of the program's state variables. The time
attribute of the game state is only locally monotonic. It is monotonic with
respect to transitions from any state to itself, but is reset to zero on many
transitions from one state to another. Although the attribute triaLnumber is
monotonic throughout all transitions that do not enter the quiescent state,
we cannot use this attribute to characterize the quiescent state, because it is
not incremented immediately upon leaving the quiescent state.

States can be characterized by sets of initial sequences of event streams,
but this is not very convenient. It is more convenient to introduce a pseudo­
variable, game_over: boot, which is set to true when the event game_over_on
is signalled, and to false when game_over_offis signalled. The quiescent state
is then characterized by a true value of game_over.

The liveness property asserting termination can be formally stated as:

Vu 0 : Game, es : str(event). D (next event=/= Coin) es =>
0(state.game_over = true)(cohom[quiet] reflex transition u0 es)

There is an accompanying safety property asserting that once a game termi­
nates, game_over remains false if no more coins are dropped. We shall address
only the liveness property.

The most successful way yet developed to verify temporal properties of a
finite state system uses model checking of temporal logic formulas[ll, 10).
The safety and liveness properties of the Reflex game example can obviously
be verified by symbolic model checking. We describe a variant of the star­
dard technique that uses symbolic inference to check monotonicity properties
of state variables over transition paths. We have not yet implemented this
method.

An ordered, symbolic binary decision diagram (BDD)[6) can be used to con­
struct a proof of aliveness property. Boolean pseudo-variables are introduced
to represent the boolean-typed expressions on which local control decisions are
based. The nodes of the BDD correspond to major states of the Reflex game,
split in cases in which more than one boolean condition controls transitions
from the state. The boolean control expressions for each state are identified
by inspecting the control specification. ·

280

(start)
(wait)
(react)
(end)
(end')

Programming Concepts and Methods

x 1 ~state. time< Time_limit
x2 ~ state. time < C_random
X3 ~ state. time< Time_limit
x4 ~ state. time < Delay
X5 ~ state.triaLnumber < Max_trials

The pseudo-variables are ordered by x1 < x2 < X3 < X4 < X5.

A nondeterministic BDD for the Reflex game is shown in Figure 3(a). Its
nodes correspond to states of the Reflex game, but are labelled in the diagram
by single letters S, W, R, E, E' to save space. The solid arcs indicate tran­
sitions possible when the value of the controlling pseudo-variable is positive;
the dashed arcs represent transitions possible on negative values of the control
variables.

Notice that there are multiple positive (or negative) arcs from some nodes.
This BDD represents a nondeterministic FSA because transitions of the Re­
flex machine also depend upon external events which have not been repre­
sented in the control expressions bound to pseudo-variables. Note also that in
constructing Figure 3(a), transitions that require the Coin event have been
omitted because the Coin event is precluded by the antecedent clause of the
liveness assertion. Nondeterminism allows us to represent with the BDD all
of the transitions possible with event sequences that are restricted only by
the assumptions that Tick events occur almost everywhere and Coin events
are never present. The liveness property that we seek will be proved if we can
show that the BDD of Figure 3(a) can be reduced to the single node, 1.

(a) Reducing a BDD with repeated nodes
We shall describe (informally) how to reduce the BDD of Figure 3(a), which
represents the asserted liveness property of the Reflex game. Notice that this
BDD contains paths from ancestor nodes to leaf nodes that carry the same
labels. We call these repeated nodes. A path from an ancestor to a repeated
node occurrence represents a loop in the state transition diagram. To reduce
the BDD, each of these paths must be shown to be only finitely extensible as
it is elaborated by repeating transitions of the state machine.

To establish that a path to a repeated node is only finitely extensible, we
examine the control expressions bound to the pseudo-variables that label the
arcs of the path. In our example, these expressions are less-than inequalities.
If the value ofthe program variable on the left ofthe inequality grows to reach
the expressed bound after a finite number of repetitions of the path then the
corresponding pseudo-variable will eventually become 0. Sufficient conditions
for this to occur are that the program variable is (1) monotonic with respect
to executions of the transition function corresponding to the path and (2)
increasing almost everywhere in any sequence of repetitions of the path.

Consider the path from the first occurrence of a node labeled W to its
repeated occurrence, controlled by pseudo-variable x2 . The program variable
that appears in the corresponding inequality is state. time. The path controlled
by x2 represents only the transitions $warn and $tick, which are enabled by

I
I
I
I
I
I
I
I
I
I
I
I
I I
I I
I I
I ,'
I I
I I
I I I
I I I
I I I
I 1 ,'
I I I
I I I
I I I
I I I
I I 1

~,,,,,''

(a)

Reactive functional programming

I I
I I
I I
I I
I I
I I
1 I I
1 I I

I ,' ,'
I 1
I I I
I I I
I I I
I I I

I ,' ,'
I I I
I I I
I I I
I I I
I I I
I I I
I I 11 ,,....-""

tff~''
(b)

I
I
I
I
I
I

XJ {([Ready],[$ready,$go])} I
I
I
I
I

I
I
I
I
I
I
I I
I I
I I
I ,'

x3 {([Stop],[$react])}

I I
I I
I I
I I
I I
I ,'
I I
I I
I I
I ,'
I I &t,,,,'' {([],[$tock])}

(c)
Figure 3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I I

I
I

I
I
I
I
I
I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

I

(d)

281

282 Programming Concepts and Methods

external events Ready and Tick, respectively. Inspection of the coalgebra spec­
ification Reflex reveals that a $warn transition does not change state. time,
while a $tick transition increments its value. Thus the path satisfies condition
(1), monotonicity of the program variable. Furthermore, since the Tick event
occurs almost everywhere in an external event stream, the $tick transition will
occur almost everywhere in a sequence of transitions from state W to itself,
thus the path also satisfies condition (2). This argument proves the temporal
assertion <>(x 2 = 0).

This allows the BDD of Figure 3(a) to be reduced by removing the repeated
occurrence of node W and the arc leading to it. Similar reasoning justifies
removal of the repeated occurrence of nodes R, E, and the first repeated
occurrence of node S leaving the BDD depicted in Figure 3{b). The paths not
controlled by a pseudo-variable in this BDD are not of interest and can be
reduced to single arcs.

In Figure 3(c), the arcs have been labelled with sets of the pairs of event se­
quences and corresponding transition actions represented by an interpretation
of the arc in the Reflex coalgebra. The set of transition sequences from the root
node to its repeated occurrence is gotten by taking the cartesian product of the
sequece of set-valued labels. As the labels on individual arcs are all singletons,
so is the composite label, which is {([Ready, Stop], [$ready, $go, $react, $tock])}.

We examine the expressions X1, x3 and x5 in the context of the path transi­
tion sequence. The program variable state. time is not monotonic with respect
to the transition sequence, hence we cannot conclude that repeated extensions
of the path would cause the variables x 1 or x3 to assume zero values. How­
ever, the program variable state. triaLnumber is monotonically increasing over
this transition sequence, thus the arc labeled by xs and the repeated node S
can be eliminated. The resulting BDD, depicted in Figure 3{d), is reducible
to the singleton node 1 as its canonical form. This constitutes a proof of the
conjectured liveness property.

4 CONCLUSIONS

We have introduced a functional programming notation that does not de­
pend upon explicit recursion in definitions but uses instead the structure of
signature coalgebras. The important contributions of this notation and the
mathematical structures that underlie it are:

• It provides a framework in which control and data transformation are sep­
arately specified. A program is specified by the transitions of a finite-state
system.

e All familiar iteration schemes can be modeled by varieties of coalgebras.
e Each variety of coalgebra has associated with it proof rules that virtually

dictate the form of proofs of safety properties of algorithms that conform
to its structure.

Reactive functional programming 283

e Liveness properties can be verified through a hybrid deduction scheme in
which temporal logical inference is used in conjunction with symbolic model
checking.

REFERENCES

[1] Samson Abramsky. A domain equation for bisumulation. Information and
Computation, 92:161-218, 1992.

[2] Edward A. Ashcroft and William W. Wadge. Lucid: A non-procedural lan­
guage with iteration. Communications of the ACM, 20(7):519-526, 1977.

[3) G. Berry and G. Gonthier. The Esterel synchronous programming language:
Design, semantics, implementation. Science Of Computer Programming,
19(2):87-152, 1992.

[4) Richard S. Bird. An introduction to the theory of lists. In M. Broy, editor,
Logic of Programming and Calculi of Discrete Design, volume 36 of NATO
Series F. Springer-Verlag, 1986.

(5) G. Boudol, V. Roy, R. de Simone, and D. Vergamini. Process calculi, from
theory to practice: Verification tools. In Automatic Verification Methods for
Finite State Systems, LNCS 401, pages 1-10. Springer-Verlag, 1990.

[6] R. E. Bryant. Symbolic boolean manipulation with ordered binary decision
diagrams. ACM Computing Surveys, 24(3):293-318, September 1992.

[7] R M. Burstall and P. J. Landin. Programs and their proofs: an algebraic
approach. In Machine Intelligence 4, pages 17-44. Edinburgh University
Press, 1969.

(8) Rod Burstall. Inductively defined functions in functional programming lan­
guages. Journal of Computer and System Sciences, 34(2/3):409-421, 1987.

[9] P. Caspi and M. Pouzet. Synchronous Kahn networks. In Proceedings of
ACM SIGPLAN Internat. Conf. on Functional Programming, pages 226-
238. ACM Press, May 1996.

[10] E. M. Clarke, 0. Grumberg, and D. Long. Verification tools for finite-state con­
current systems. In A Decade of Concurrency: Reflections and Perspectives,
volume 803 of Lecture Notes in Computer Science, pages 124-175. Springer
Verlag, 1992.

[ll) E. A. Emerson and E. M. Clarke. Using branching time temporal logic to
synthesize synchronizations skeletons. Science of Computer Programming,
2:241-266, 1982.

[12] Marcelo P. Fiore. A coinduction principle for recursive data types based on
bisimulation. Information and Computation, 127(2):186-198, 1996.

[13) Peter Freyd. Recursive types reduced to inductive types. In Fifth IEEE Sympo­
sium on Logic in Computer Science, pages 498-507. IEEE Computer Society
Press, 1990.

[14] Andrew Gordon. Bilimilarity as a theory of functional programming. In Pro­
ceedings of 11th Conference on Mathematical Foundations of Programming
Semantics, volume 1 of Electronic Notes in Theoretical Computer Science.
Elsevier, URL: www.pigeon.elsevier.nl/mcs/tcsfpcfvolumel.htm, 1995.

[15] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language Lustre. Proceedings of the IEEE, 79(9):1305-1320,

284 Programming Concepts and Methods

1991.
[16] N. Halbwachs, J.-C. Fernandez, and A. Bouajjanni. An executable temporal

logic to express safety properties and its connection with the language Lus­
tre. In Sixth International Symp. on Lucid and Intensional Programming,
ISLIP'93, Quebec City, Canada, April 1993. Universite Laval.

[17) N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real­
time systems by means of the synchronous data-flow programming language
lustre. IEEE Transactions on Software Engineering, 18(9), 1992.

[18] Bart Jacobs. Mongruences and cofree coalgebras. In Algebraic Methodology
and Software Technology- AMAST'95, volume 936 of Lecture Notes in Com­
puter Science, pages 245-260. Springer Verlag, 1995.

[19] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.
EA CTS Bulletin, 62:222-259, 1997.

[20) Gilles Kahn. The semantics of a simple language for parallel programming. In
IFIP'74 Congress. North Holland, 1974.

[21) Richard B. Kieburtz and Jeffrey Lewis. Algebraic Design Language­
Preliminary definition. Technical report, Pacific Software Research Center,
Oregon Graduate Institute of Science & Technology, January 1994.

[22] Richard B. Kieburtz and Jeffrey Lewis. Programming with algebras. In Ad­
vanced Functional Programming, volume 925 of Lecture Notes in Computer
Science, pages 267-307. Springer Verlag, 1995.

[23) Erik Meijer, Maarten Fokkinga, and Ross Paterson. FUnctional programming
with bananas, lenses, envelopes and barbed wire. In Proc. of 5th ACM Conf.
on Functional Programming Languages and Computer Architecture, volume
523 of Lecture Notes in Computer Science, pages 124-144. Springer-Verlag,
August 1991.

[24) Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoret­
ical Computer Science, 87:209-220, 1992.

[25) Lawrence C. Paulson. Mechanizing coinduction and corecursion in higher-order
logic. Journal of Logic and Computation, 7(2):175-204, 1997.

[26] Andrew Pitts. A coinduction principle for recursively defined domains. The­
oretical Computer Science, 124(2):195-219, 1994.

About the Author
Richard B. Kieburtz is Professor of Computer Science and Engineering

at the Oregon Graduate Institute. His research interests are in the areas of
functional programming; formal methods for specification and construction of
software; verification and its application to hardware and software systems.

