
15
Deadlines are termination

I. J. Hayes
Department of Computer Science and Electrical Engineering, and
Software Verification Research Centre, The University of Queensland
Brisbane, 4072, Australia (ianh@csee.uq.edu.au).

M. Utting
Department of Computer Science, School of Computing and Mathematical
Sciences, The University of Waikato
Private Bag 3105, Hamilton, New Zealand (marku@cs.waikato.ac.nz}.

Abstract
We have recent.ly extended the sequential refinement calculus to handle real-time
programs. A novel deadline command allows execution time limits to be expressed
in a high-level language. The calculus allows refinenwut steps that. separate timing
constraints from non-timing requirenwnt.s. Rules are provided for handling timing
constraints, but. the refinement of components implementing non-timing require­
meuts is essentially the same as in the standard refinement calculus.

In this paper, we present a new refinement rule for loops t.hat does not require
a variant for termination, but uses a deadline command instead. To illustrate the
calculus and the new loop introduction rule, we present an example refinement of a
program that calculates the size of a kiwifruit from the time it takes to pass through
a light beam.

Keywords
Real-time, refinement, deadlines, termination

1 INTRODUCTION

Formal correctness techniques for real-time programs are less well-developed than
those for non-real-time programs, yet the need for them is certainly no less, given
that many safety-critical embedded systems involve real-time requirements.

Our goal is to provide a method for the stepwise refinement of sequential, real-time
programs from real-time specifications. We follow the refinement calculus approach
(Back 1980, Morgan 1994) of devising a wide-spectrum language that encompasses
both real-time programs and real-time specifications, and the spect.rum in between.
To meet this goal, we have found it desirable to:

• use a specification notation which represents variables &; traces (funct.ions over

Programming Concepts and Methods D. Gries, & W-P. de Roever (Eds.)
© 1998 IFIP. Published by Chapman & Hall

Deadlines are termination 187

time (real numbers)), so that timing requirements can be expressed, including
properties of variables whose values change over time.

• distinguish between external inputs, that are not under the direct control of the
program, and external outputs and local variables that are.

• add a deadline command to our high-level programming language to allow timing
requirements to be recorded during development.

• delay the discharging of timing requirements (e.g., deadline commands) until
after compilation, when the detailed properties of the target machine can be
taken into account.

In a previous paper (Hayes & Utting 1997 a), we developed a calculus for refin­
ing an individual real-time process to sequential code. That work was based on the
foundations developed by Utting & Fidge (1996), but extended them by introducing
a deadline command, which greatly simplifies the treatment of timing constraints.
Scct.ion 2 give:; an overview of this calculus, its real-time, wide-spectrum language
and the mechanism for dealing with real-time constraints in the target code. The
motivation for our work comes from the real-time refinement calculus of Mahony
(Hl92), which allows not only the specification of real-time systems, but the refine­
ment of a specification into a set of truly parallel processes. Our work complements
Mahony's by allowing individual processes to be refined to sequential code.

In this paper, we use the calculus to develop a program that calculates the size
of a single kiwifruit from the time it takes to pass through a light beam. Section 3
specifies the requirements, and Sections 4 and 5 show how they can be refined into
a real-time program. The timing analysis of the program is discussed in Section 6.

The example illustrates the main features and difficulties of the calculus. In order
to develop the obvious program for the task, we needed to develop a novel loop
introduction law, that does not require a variant for termination, but uses a fixed
time deadline instead.

2 THE SEQUENTIAL REAL-TIME REFINEMENT CALCULUS

An obvious difference between our calculus and the standard refinement calculus is
that our calculus has a special variable, r, that represents the current time. Each
command advances r to reflect the passage of time.

\Ve distinguish between three types of variables: external inputs, external outputs
and local variables. Input variables correspond to input device registers. They are
not under the control of the program, but may be read via a special command.
Output variables correspond to output device registers. They are under the control
of the program, but differ from local variables in that changes to output variables are
externally visible. We write real-time specification commands as * v: [A , E], where

• v is a list of variables that may be modified by the command. These variables
must be a subset of the outputs and local variables of the program, (variables that

188 Programming Concepts and Methods

correspond to external inputs are read-only). Since r is modified by almost every
command, it is implicitly in the frame of every command and is not explicitly
included in the frame.

• A is a predicate that gives the assumptions the command may make about the
variables. Within A, T refers to the time that the command starts execution, but
A may also explicitly reference the value of variables at other times.

• E is a predicate that gives the effect that the command is to achieve by modifying
the variables in the frame. Within E, To and T refer to the time that the command
starts and finishes execution, respectively.

A key change from the standard refinement calculus is our treatment of variables;
tlwy <tre modelled as functions from time to their value at that time. This allows a
real-time specification command to constrain not only the final value of variables,
but also their values aL other times. Given a variable v, its value at time t is written
as t>{l). However, to recover the look and feel of the standard refinement calculus, we
follow the convention that an unindexed variable t> in a predicate means v(r), and Vo
mea11s I'(ro). The semantics of the spccificat.ion command are given in Appendix 1.

The basic refinement rules from the standard refinement calculus carry over into
our calculus (Hayes & Utting 1997b), although some have additional side-conditions
t.o restrict the times at which predicates refer to variables (these side-conditions
arc satisfied trivially for untimed predicates that use the v and Vo convention de­
scribed above). We use an extended target language that includes several real-time
commands, such as:

• gettime(x) ~r *X: [true, x E [ro ... T]].
This puts a timestamp {an approximation tor) into the variable :c. The notation
[ro ... T] stands for the closed interval from the start time of the command, To, to
the finish time, r.

• read(e, x) ~r *X: [true, z E eO [ro ... r] D].
This copies a snapshot of an external input e into the local variable x. The
notation eO [r0 ••• r] 0 stands for the set of values of the input variable e over the
time interval [ro ... r].

• delay until D ~r *:[true, T 2:: D].
This is similar to the delay-until command in many programming languages. The
delay command finishes execution at or after the (absolute) time D.

• deadline D ~f *:[true, To= T 1\ T $ D].
The deadline command is novel to our approach and allows t.iming constraints to
be expressed abstractly in the extended programming language (H~yes & Utting
1991 a). It. takes no time and must terminate at or before time D. Hence, it requires
t.he preceding portion of the program to be complete by time D.

• idle ~r *:[true, To :5 T].
The idle command may take time but does not change any variables. Note that
external inputs may change during the time it takes to execute.

Deadlines are termination 189

The presence of deadline commands means that a separate program analysis is
required to guarantee that the deadlines will be met by the machine code gener­
ated for the program by a compiler. If the program analysis cannot guarantee that
a deadline will be met, the program is rejected. Note that it is important to anal­
yse timing after compilation, because no analysis of the higher-level program can
take into account low-level aspects such as register allocation and code optimisation
within a compiler, or instruction pipelining and cache memories within processors,
which together can significantly affect the timing characteristics of a program.

3 ON MEASURING THE SIZE OF A KIWIFRUIT

Imagine that a single kiwifruit is moving along on a corl\'eyor belt and goes through
a light h<•am sensor tha.t. is connect.cd into an embl'dded microcomputer. A program
on t.he microcomputer polls the boolean sensor stat.us and uses a real-time clock to
determine the approximate start and end times of when the light beam is broken.
When the kiwifruit breaks the light beam the sensor rises (to true) and after the
kiwifruit passes the light beam is re-established and the sensor falls (to false). From
those times, and the known speed of the conveyor belt, the size of the kiwifruit can
be computed.

The following declarations define the environment in which our program will be
used. As well as documenting the type of variables representing physical quantities,
we also document their units (Hayes & Mahony 1995). Variables of type time are in
units of nanoseconds.

d de{ / const spee = 10m s
def 0 const react = 1 0 J.L s

-- The speed of the conveyor belt

-- Desired reaction time after the kiwifruit passes

The sensor is an external input to the program. It is derived from the light beam
detecting hardware. Its value over time is not under the control of the program, but
the program does make assumptions about the behaviour of the input sensor.

input sensor : lE
var size : 11:1 nm -- Returned size of the kiwifruit in nanometres

The logical constants rises and falls are introduced solely for specification purposes.
They denote, respectively, the exact time at which the sensor rises and falls. Logical
constants may not be used in the final program, except in assertions and deadlines.

con rises ,falls: time
. def l const mmsep = ms -- Minimum separation between rises and falls

-- Corresponds to length of 10 mm

The program may assume that the rise time precedes the fall time by m.insep.

* { rises + minsep ~ falls} (l)

Because (1) does not refer to any variablt•s moditled by t.ltc program, it may be

190 Programming Concepts and Methods

assumed to hold throughout the program. To avoid cluttering the specification and
the refinement below, we state (1) once here and assume it where needed. Logically
it could be conjoined to the assumption of the specification (2) below and passed
through the refinement as necessary. The sensor detects (is true) when the light
beam is interrupted by the passing kiwifruit.

SENSOR(r) (V l: (r ... fall.s + react]• sensor(t) =true<=> t E [rises ... falls])

The top level specification is:

. [T < rises T < fall,s + react]
~<sl:e: si0VSOR(r) 'si; E speed* (falls- rises)± 1 nun (2)

4 REFINEMENT OF THE KIWIFRUIT SIZER

A pp('l]dix 1 provides a summary of refinement laws used within this paper.
A,; a first refinement step, it is useful to separate out the initial time assumption,

T ~ rises, and the final deadline requirement, T ~ falls+ react, so that we may
concentrate on implementing the remaining functionality.

(2)

r;;:; Law 6 (separate assumption); Law 10 (separate deadline)

*" { T ~ rises} ;

size: [SENSOR(r), size E speed (falls- rises)± lmm];

deadline falls+ react

(3)

The assertion and deadline become part of the final program, and we are left to
refine the specification command (3).

The next refinement step is obvious- we want to split the program into three parts:
the first. two will determine the rise and fall times and the third part computes the
size output. We introduce a constant err as an error bound on the time to detect
the change in the sensor. We leave the actual value of err to be determined later,
but at this stage we require that it is less than both minsep and react, so that the
sensor is stable for at least a period of err after it changes.

const err E { t : time I t ~ minsep 1\ t ~ react} (4)

Local variables riset and fallt are used to communicate the approximations to the
rise and fall times between the parts. When introducing a local variable one cannot
assume that the allocation and deallocation of the local variable take no time. Hence,
an assumption that held immediately before the allocation of a local variable, may
not hold immediately after the allocation. However, during the allocation of a new
variable the other program variables (not including the external inputs) are stable
and time can only increase. A predicate that remains true un'der these circumstances

Deadlines are termination 191

is referred to as being idle-stable. It is invariant over the execution of an idle com­
mand. The predicate SENSOR(r) is idle-stable. It states a property that holds at
every instant of time from T up to falls+ react. Hence, SENSOR(x) also holds for
all values of x later than T.

The time taken for the allocation and deallocation of variables may also affect the
effect of a specification command. In (3) the effect only refers to constants and the
program variable size. Because size is stable during the deallocation of the variables,
the effect will still be true after the deallocation. Note that we follow Morgan's (1994)
convention of using a <J symbol to mark the specification statement that is refined
next - the context of that statement becomes the context of the next refinement.

(:J)

!:::;: Law ll (introduce variable)

l[var risct,Jallt: time:
"i~c, risct,fal/1: [SL::NSOR(r), ;;i.:c E speed (falls- rises)± l mm] <l

ll
!:::;: Law 9 (simple sequential composition) x 2; Law 5 (remove from frame) x 3

. [. SENSOR(r)]
*mel: 5ENSOR(r), . t [. .) ;

n~e E r·zses ... rzses + err
(5)

f. ill· [SENSOR(T) riset E [rises ... rises + err)] .
* a · riset E [rises ... rises+ err]' fallt E [falls ... falls+ err) '

(6)

. [riset E [rises ... rises + err] . d (fi ll .) ± 1] * stze: fallt E [falls ... falls + err) ' szze E spee * a s - rzses mm (7)

The refinement of (5) is more interesting. The goal is to determine the time at
which the light beam sensor rises. Our first step is to massage the specification to
reflect this more specific goal. Firstly, the effect SENSOR(r) is immediate from the
assumption because SENSOR(r) is an idle-stable predicate that does not refer to
the variable in the frame, riset. Secondly, we weaken the a.'isumption so that. we only
consider the rising phase of the signal.

(5)

!:::;: Law 4 (strengthen effect); Law 3 (weaken assumption)

. [V t : [r ... rises+ err]• . [. . l] * rzset: (t) t . < t, rzset E rzses ... rzses +err sensor = .rue ¢:> rzses _ .
(8)

We make use of the following definition which is written to allow detection of either
a rising edge (the new sensor value we are required to detect, srqd, is true), or a
falling edgt> change (srqd =false).

CFING(chngs, srqd) ~r V t: [r ... chngs + err]• sensor(t) = srqd ¢:> chngs ~ t

To refine the detection of the rise of the sensor, we make use of a procedure,

192 Programming Concepts and Methods

detecLchng. The first step is a refinement equivalence (Q).

(8)

g * riset: [CHNG(rises, true) , riset E [rises ... rises+ err]]

!;;;; parametrized procedure

detecLchng(rises, true, riset)

The procedure detecLchng can be used to detect either a rising or falling edge of
the sensor value depending on the parameter srqd, which is the required new value
of the sensor.

procdctccLchng(conchngs: time; valuesrqd: IE;; resultchngt: time) ~r
* clmgt: [Cl/NG(clmgs, srqd), chngt E [chngs ... chngs +err]] (U)

Ucforc giviug a refinement of d(dccLchng (Section .5) we complete the refinement of
the program. Detecting the falling edge also makes use of the procedure dctecLchng.

(li)

!;;;; Law 4 (strengthen effect); Law 3 (weaken assumption)

* fallt: [CHNG(Jalls, false) , fallt E [falls ... falls+ err]]

!;;;; detecLchng(falls, false, fallt)

Once both the rise time and the fall time have been determined, the size of the
kiwifruit can be calculated.

(7)

!;;;; Law 7 (assignment)

size := speed * (!alit - riset)

The units of the right side expression are (m Is)* ns = nm, which matches the units
of size. The proof obligation for the last step is

speed * (Jallt - r·iset) E speed * (falls - rises) ± 1 mm = fallt - riset E (falls - rises) ± (1 mm I speed)
~ from the assumptions on riset and fallt

[falls - (rises + err) ... (falls + err) - rises] ~ (falls - rises) ± (1 nun I speed) = (falls - rises) ± err ~ (falls - rises) ± (1 mm /speed)
=err~ (1 mm/ speed)
=:err~ 100 JlS

5 REFINEMENT OF DETECTION OF A SENSOR CHANGE

The following code is the implementation of detecLchng (the refinement to this code
follows shortly). Note that. this code is similar t.o what a programmer would write
for this task, except that deadline commands have been added to make the timing

Deadlines are termination

requirements of the program explicit.

proc detecLchng(con chngs :time; value srqd: IE; result chngt :time) [;

I[var sens : lE ;

ll

read(sensor, sens);

deadline chngs + en· ;

*do .~ens # srqd -+

od;

read{ sensor, sens);

deadline chngs + err

get time(clmgt) ;

deadline cllTigs + err

193

Aside: The above code corresponds to what is usually referred to as busy waiting.
In the current context we are assuming a single sequential process, and hence busy
waiting is acceptable. It would also be acceptable to include a (sampling) delay in
the above code, provided the delay time is sufficiently short to allow the program to
meet its deadlines. \Ve have not done so here.

The final deadline ensures that the captured change time is within its allowable
error bounds. Given the last deadline, the first two deadlines seem redundant, but
they are essential for the correct operation of the program. The final deadline com­
mand will not be reached by the program if the loop does not terminate, and if
the deadline is not reached, it does not have to be met. Consider the case where
we want to detect the rise of the sensor. Without the first deadline the initial code
could take so long that the first read command completely misses the period when
the sensor is true. (This is unlikely in practice, but not excluded by the meanings we
have given to the programming constructs.) If the first read completely misses the
sensor when it is raised, then the loop will not be guaranteed to terminate, because
our assumptions only guarantee one period when the sensor is raised. Hence the final
deadline may never be reached. The deadline within the loop has a similar purpose.
It guarantees that the body of the loop will not take so long that the read of the
sensor misses the raised period of the sensor. Again, if the raised period were missed
the loop would not be guarant.eed to terminate, and the final deadline would not
be reached. As we shall see shortly, the refinement process needs to introduce the
deadlines in order to guarantee that the specification will be met. In addition, the
deadline within the loop is also used to guarantee its termination.

Before continuing, we invite the reader to informally analyse this code (e.g., unroll
the loop once or twice) to determine the longest path through the code that can be
executed from time chng.~ to the gettime command. Note how the analysis depends
on consequences of ClfNG(chngs, srqd), such as the shape of the sensor waveform.
Our real-time calculus enables us to make these implicit. timing assumptions and

194 Programming Concepts and Methods

invariants explicit, so that we can provide an invariant for the loop and so that the
timing analysis phase has a manageable task. With these goals in mind, it turns out
(after several attempts!) that a suitable loop invariant is:

!NV ~f CHNG(chngs, srqd) 1\ (sens = srqd => chngs ~ r)

The first step is to introduce a local variable, sens, that is used to capture the
sensor's values.

(9)

r;;;; Law 11 (introduce variable)

\[var sens : IE;

1<: dmgt. sws: [CliNG(chngs, srqd) . rhngt E (dmgs ... l"hngs + err]] (10)

ll
Next we ,;et up a loop that searche,; for the change of the sensor and then we

capt.me the time. The introduction of the loop makes use of the following law,

that docs not have a conventional variant to show termination. Our semantics of
t.hc loop guarantees that each iteration takes a minimum amount of time, due for
example to loop overheads and guard evaluation. Termination is guaranteed by the
fact. that time increa~es by at least that minimum amount on each iteration, and
every iteration of the body of the loop is bounded by the same constant time limit.
Th<' time limit, L, is required to be frame-stable with respect to the frame, i, of the

loop. That guarantees that L will remain invariant (stable) during the execution of
the loop. If L does not refer to variables in the frame, or r, or external inputs, then
it is frame-stable.

Law 1 (iteration with deadline) Given an idle-stable invariant property, !NV,

a deadline expression L, which is frame-stable with respect to the frame i, and an

idle-stable expression G, where none of G, L and !NV contain references to To or

zero-subscripted variables,

*i: [INV 1\ T ~ L . .., G 1\ !NV] r;;;; *doG-+ *i: [G 1\ !NV, /NV 1\ T ~ L] od

The semantics of loops and the proof of this law are contained in Appendix 2. Before
introducing the loop, we separate the initialisation, loop, and final capture of the
change time.

(10)

r;;;; Law 9 (s.imple sequential composition) x 2; Law 5 (remove from frame)

* sens: [CliNG(clmgs, srqd). !NV 1\ T ~ chngs +err];

* sens: [!NV 1\ T ~ chngs + err, [;VV 1\ sens = srqd] ;

* chngt: [IN\' 1\ scns = .~rqd, chngt E (chngs ... ch11gs + errl]

X 3

(11)

(12)

(13)

The initialisation establishes the loop invariant. In the se<ond refinement step below,
because of the assumption. if the value sensed is equal to st·qd then the completion

Deadlines are termination 195

time of the command must be after chngs. If the sensed value is not equal to srqd
the completion time may be either before or after chngs, but that does not matter.

(11)

!;;;; Law 4 (strengthen effect)

[V t : [r ... chngs + er1·) • sens = srqd ::::} chngs < r] •em· -
· sensor(t) = srqd <=> chngs :5 t ' T :5 chngs + err

!;;;; Law 4 (strengthen effect)

* sens: [V t: [r ... chngs + err)• sensE sensorO [r0 •.• r) D]
sensor(t) = srqd <=> chngs :5 t ' T :5 chngs + err

!;;;; Law 3 (weaken assumption); Law 10 (separate deadline); Definition of read

read(sensor, scns); deadlinec/mgs + er1·

Now we can int rodun~ the loop.

(12)

!;;;; Law 1 (iteration with deadline)

*do sens f:. sqrd-+

•sens: [sens f:. srqd A. /NV, /NV A. T :5 chngs +err]
od

!;;;; Law 3 (weaken assumption)

* sens: [CHNG(clings, srqd), /NV A. T :5 chngs +err]
!;;;; as for the refinement of (11)

read(sensor, sens); deadlinechngs +err

<I

On termination the change of the sensor has been detected. It only remains to
capture the current time, before the allowed error bound.

(13)

!;;;; Law 3 (weaken assumption)

•chngt: [chngs :5 r, chngt E [chngs ... chngs +err)]
!;;;; Law 4 (strengthen effect)

* chngt: [chngs :5 T, chngt E (ro ... r) A. T :5 chngs +err]
!;;;; Law 10 (separate deadline); Law 3 (weaken assumption); Definition.of gettime

get time(chngt) ; deadline chngs + err

The final program, with the procedure detecLchng inlined is shown in Figure 1.

6 TIMING ANALYSIS

The final phase is to determine the time constraints on paths through the code in
order to guarantee that all deadlines will be met. For each deadline command we

196 Programming Concepts and Methods

A : * { T ::::; rises} ;

j[var riset,jallt: time;

I[var sens : Jffi;

]j;

read(sensor, sens);

B : deadline rises + err;

*do invariant CHNG(rises, true) 1\ (sens =true::} rises::::; r)

sens :f true -+

read(sensor, sens);

C : deadline r·ises + err

od;

gettime riset;

/J : deadline rises + err·

I[var seu.~ : IPD;

]I;

read(sensor, sens);

E: deadline falls+ err;

*do invariant CHNG(falls, false) 1\ (sens =false::} falls::::; r)

.sens :f false-+

read(sensor, sens);

F: deadlinefalls +err

od;

get time fallt;

G: deadline falls+ err

si::e := speed * (fallt - riset)

H: deadlinefalls +react

Figure 1 Final program with the procedure inlined.

consider the paths through the program that terminate at the deadline. For each
such path we need to determine a time constraint on the execution time of the path
that guarantees that the deadline will be met. Grundon, Hayes & Fidge (1998) have
formalised the details of timing path analysis, but here we present a brief overview
of the process for the program in Figure l.

The first path we consider is A-B, which has a start time before• rises and must

•To simplify prcsPntation, 'before' is taken to mean 'no later than' throughout this section.

Deadlines are termination 197

complete before rises+ err. That gives a time constraint for the path of err. Both
path A-C, which enters the loop on the first iteration, and path A-D, which does
not enter the loop at all, have the same constraint. of err.

The path starting at A that enters the loop for the first iteration is not the only
path that ends at C. The other possibilities come from the repetition of the loop.
These paths require some intricate reasoning to determine suitable time constraints.
Our goal is t.o determine timing constraints on paths· through the code that guarantee
that the deadline at point C is reached before its deadline of rises+ 1'1'1'. Because
the deadline is within the loop body, we know on entry to the loop that sens is false,
which implies that the previous read must have commenced before time rises. Hence
our constraint is that the path from the previous read, around the loop through the
current read, and finishing at. t.he deadline at. (~. must. take time less than rises +
err- nscs = CIT.

There arc paths from D to E, F and G. All start no later than rist.~ + err and
must. complete before falls+ o-r. That gives t.h<·m a time constraint of falls- rise.~.

However, we are guaranteed by (l) that falls- rises 2: minsep, and hence we can
usc minsq1 as our time constraint.

The remainder of the paths for calculating the fall time of the sensor arc similar
to those for calculating the rise. We do not discuss them in detail here.

The final path that we consider is G-H. It has a start time before falls+ err and
must complete before falls+ react. This gives a time constraint of react -err. The
specification gives react as 100 11s, and our refinement requires that err :::; 100 ps.
The constant err appears in the constraints of many paths. It can be chosen up to
the limit of 10011 s so that the paths can meet their timing constraints.

Provided we can show that the machine code generated for each of the above paths
satisfies the corresponding time constraint, then we can guarantee all deadlines will
be met. There has been considerable research in the real-time community on timing
analysis of such machine code sequences (Lim et al. 1995).

7 CONCLUSIONS

The main advantage of the sequential real-time refinement calculus presented here
is that, to developers, it appears to be a straightforward extension of the standard
refinement calculus. Although it has a different underlying semantics. most of the
standard refinement laws carry over, and the real-time extended programming lan­
guage is a superset of the standard target language. ln practice, a development in
the real-time calculus is similar to standard rcfinemeut calculus development, but
with the addition of steps to separate out timing constraints and reline them into
real-time language constructs.

However, even with this strong connection to t.he :<randard calculus. our experi­
ence so far suggests that programs that rely heavily on timing behaviour for their
correctness are quite challenging to develop in our calculus. Finding loop invariants
and sequential composition intermediate predica.t<·s seems more difficult than in the
standard calculus. We suspect that this is partly because we have had more ex-

198 Programming Concepts and Methods

perience with the standard calculus, and partly because real-time programming is
intrinsically difficult. Certainly the timing analysis phase is an additional require­
ment with its own intricacies. Anyway, it is exciting to have a calculus that allows
the subtle aspects of real-time programs to be formally proved, just as the standard
calculus "dots the i's and crosses the t's" of ordinary sequential programming.

REFERENCES

13ack, ll.-.1. (1980) Correctness preserving program refinements: Proof theory and
applications. Tract 131, Mathematisch Centrum, Amsterdam.

Crundon, S., Hayes, I. .J. & Fidge, C .. J. (l!J98) Timing constraint analysis, in C. Mc­

Donald, eel., ·Computer Science '!)8: Proc. 21st Australasian Computer Sci­
<'nce Couf. (ACSC'U8), Perth, 1 fi Feb.', Springer-Verlag, pp. 575--586.

lla.yes. I. J. & ~l'lahony, IJ. P. (UJ%) 'Using units of measurement in formal ::;pecifi­
eations'. Formal Aspects of Computing 7(3), 329-347.

llaye:s, I. & lJtting. :\!. (1U!J7a) Coercing real-time refinement: A transmitter, in
D .. J. Duke & A. S. Evans, eds, 'OCS-FACS Northern Formal .Methods Work­
shop', Electronic Workshops in Computing, Springer Verlag. URL http://
www.springer.co.ukjewicjworkshops/NFM96/.

I!ayes, I. & lJtting, M. (1997b) A sequential real-time refinement calculus. Tech­
nical Report UQ-SVRC-97-33, Software Verification Research Centre, The
University of Queensland, lJR.L http:/ jsvrc.it.uq.edu.au.

Lim, S.-S., Bae, Y. H., Jang, G. T., Rhee, B.-D., Min, S. L., Park, C. Y., Shin, H.,
Park, I<., .Moon, S.-M. & Kim, C. S. (1995) 'An accurate worst case timing
analysis for RISC processors'. IEEE Trans. on Software Eng. 21(7), 593-604.

1\lahony, B. P. (1992) The Specification and Refinement of Timed Processes. PhD

thesis, Department of Computer Science, The University of Queensland.
Morgan, C. (1994) Programming from Specifications. second edn, Prentice Hall.
Utting. l\L & Fidge, C. (1996) A real-time refinement calculus that changes only

time, in He Jifeng, ed., 'Proc. 7th BCS/FACS Refinement Workshop', Elec­
tronic Workshops in Computing, Springer. URL http:/ (www.springer.co.uk/
eWiC/Workshops/7RW.html.

Ut.ting, M. & Fidge, C. J. (1997) Refinement of infeasible real-time programs, in

'Proc. Formal Methods Pacific '97', Discrete Mathematics and Theoretical
Computer Science, Springer, \Vellington, New Zealand, pp. 243-262.

APPENDIX 1 LAWS FOR LANGUAGE CONSTRUCTS

The following laws are extracted from an earlier paper (Hayes & Utting 1997 b)
that gives the semantics of the real-t.ime language constructs, as well as a more
comprehensive set. of laws.

Deadlines are termination 199

Unindexed variables in predicates and expressions In a predicate, unindexed
variables of the form v stand for v(T), and variables ofthe form Vo stand for v(To). We
introduce the notation R@ (To, T) to stand for the predicate R with every unindexed
occurrence of a variable, v, replaced by v(T) and every occurrence of Vo replaced
by v(To). Note that R may contain explicit indexed references to variables at times
other than Tj these are not affected by the '@' operator. The operator '@' has a
lower precedence than all the normal logical operators, but a higher precedence
thau '::::' aud ':::7'. For predicates, such as assumptions, that do not contain any
zero-subscripted variables, we use the notation P@ T. If there are no occurrences
of To or zero-subscripted variables in P then P@ (To, T):::: P@ T. The operator'@'
distributes over logical operators.

Specifications The assumptions of a specification command determine the range
of possible va.lues of variables over time, as well as the start time of the command.
The effect further constrains the values of variables over time, as well as constraining
the finish time of the <·omrnand. Program variables (local variables and outputs) not
in l.he frame of a spN:ification are slable over its execution. Given a variable, v, and
a set. of times. S,

stable(v, S) ~r (V t, u: S • v(t) = v(u))

The meaning of a specification command is given with respect to a given environ­
ment, where an environment just records the variables (inputs, outputs and local
variables) that. are in scope. We use p to stand for an environment, and p to stand
for the program variables (outputs and local variables) within p. The meaning func­
tion, Mp, gives the meaning of a real-time construct in environment pin terms of a
predicate transformer determined by a standard refinement calculus construct.

Definition 2 (specification) A specification command, *X: [P, R], is well formed
in an environment, p, provided (i) the frame, x, is a t•ector of program variables
(outputs and local variables), (ii) P is a predicate involving the variables in the
environment plus T, and (iii) R is a predicate involving variables in the environment
plr1s r0 , T and ::ero-subscri!Jled versions of r•ariables in the environment. The meaning
of a well-formed specification command is given by the following

.·\lip (*.i!: [P, R]} ~r T: [P@ r, R@ (ro, r) A To$ T A stable(p \ x, [ro ... T])]

where p \ x stands for the program variables, p, with any elements in the frame x
removed.

Note that r. unlike other variables, is not itself a function of time. The frame, .i!,
of the real-time command does not appt>a.r in the frame of the equivalent standard
command. Instead, those program variables that are not in the frame are constrained
to be stable for its duration, and the program variables in the frame are only con­
strained by the effect of the specification, H. [n the assumption and effect of a
spf'citicat.ion command it is pt>rmissible to include both explicitly indexed references

200 Programming Concepts and Methods

and unindexed references to the same variable. For more details on the encoding of
real-time specifications the reader is referred to Utting & Fidge (1997).

The refinement rules for weakening an assumption and strengthening an effect
carry over to the real-time refinement calculus.

Law 3 (weaken assumption) Provided P@ T ~ P'@ T,

*i.': [P, R] ~ *i: [P', R].

When applying this law we can use the fact that from P ~ P' one can deduce that
P@ T =7 P'@ T. That gives a special case of the law for dealing with properties that
are not time dependent.

Law 4 (strengthen effect) Given an environment, p; provided

(I'@ To) A (ll'@ (To, T)) A To:=::; T A stable(p \ i, [To ... T])::::;. R r,Q! (r0 , r)

then

where p \ i stands for the program variables (Local variables and outputs) of the
environment p, minus the variables in the frame, i.

In the case where the properties are not time dependent, a special case of the proviso
is, Po A R' ~ R, where Po stands for the predicate P with all occurrences of T

replaced by To, and all unindexed occurrences of every variable, v, that is in the
frame or is an external input, replaced, by Vo·

Law 5 (remove from frame) Given disjoint vectors of program variables, x and
v,

*X, v: [P,R]!;; *v: [P,R]

Assertions Assertions may state assumptions about the variables at the point at
which they occur. Hence in an assertion, * {A}, an unindexed reference to a variable,
v, is interpreted as v(T). Assertions can also state assumptions about the value of
variables at other times by using explicit indices. Assertions take no time, and hence
there is no need for To or zero-subscripted variables, within assertions.

Law 6 (separate assumption)

*i: [U A P,R] g *{ U}; *x: [P, R]

Assignment As the evaluation of the expressions in an assignment takes t-ime, we
require that the expressions in assignments are idle-stable (time-indepc>ndent.).

Deadlines are termination 201

Law 7 {assignment) Given an environment, p, a frame, i, such that i is con­
tained in the program variables, p, and a veCtor, iJ, of idle-stable expressions, pro­
vided

(P@ To) 1\ (i@ T) = (D@ To) 1\ To ::; T 1\ stable(p \ i, [To .•. Tj) =? R@ (To, T)

!.hen

*x:[P,R] ~i:=D.

If the properties do not involve time then the following special case of the proviso
can be used: Po 1\ i = Do=? R.

Lo_qical constants Note that logical constants are not implicit functions of time.

Law 8 (logical constant) Providt::d (3 u: 1' • P@ T) and u does not occur in C
or the vari(lbles in the environment,

C g I[con u: T • * { P}; C]I

Refinement to a sequential composition The refinement of a specification com­
mand to a sequential composition of specification commands follows the same ap­
proach as in the standard refinement calculus. One must devise an intermediate
predicate Q that holds on termination of the first component, and hence also for
the assumption of the second component. Because we have assumed that there is no
time delay between the execution of the two commands, T in the effect of the first
component refers to the same time as T in the assumptions ofthe second component.

Law 9 (simple sequential composition) Provided Q and R do not involve To or
zero-subscripted variables,

*x: [P, R) ~ *i: [P, Q]; *X: (Q, R]

A timing deadline in the effect of a specification command may be separated out
into a deadline command.

Law 10 {separate deadline) Provided D is a time-valued expression, which may
include references to logical COnstants but no references to To or zero-subscripted
variables,

*x: [P, R 1\T::; D)~ *x: [P,R]; deadline D

Local variables The definition of a local variable block in the real-time language
involves expanding the environnwnt for the command within the block. The allo­
cation and deallocation of local variables may take time. Hence we need stability
requirements on the assumption and effect in the variable introduction law.

202 Programming Concepts and Methods

Law 11 (introduce variable) Given an environment, p, such that v does not oc­
cur in the variables of p (and hence does not occur free within P or R or in x),
provided T is nonempty, P is idle-stable and R is both pre- and post-idle-stable,
then

*X: [P, R] g I[var v: T • *V, i: [P, R] Jl

A predicate R is pre-idle-stable (post-idle-stable) if when R is used as an effect of a
specification command, the specification command can be prefixed (postfixed) by an
idle command and the result is a refinement of the original specification command
(Hayes & Otting 1997b).

APPENDIX 2 ITERATION

We distinguish between the real-time iteration command (*do) and the standard
if.cration command (do) within this section and use the latter in the definition of
the former as a way of reusing its predicate transformer.

The guard of an iteration is required to be idle-st.able so that it is stable during
its evaluation. To account for the delay to evaluate the guard an idle command with
a minimum execution time (dl} is used,

idle~dl ~r *:[true, T- To ~ ell]
and to account for exiting the loop, an idle command with a maximum execution
time (d2) is used,

idle$d2 ~f *:(true, T- To ~ d2]

Of course, both dl and d2 are dependent on the implementation, but our definition
does not rely on the particular values of these, just that such constants exist. To
allow for the case when the guard is initially false, an idle is added after the loop
to allow the loop to take some time in this case.

Definition 12 (iteration) Given an environment, p, and an idle-stable expression,
G, which does not contain references to To or zero-subscripted variables,

de£ Mp (*do G-+ Cod) =
idl, d2: Time I dl > 0 Ad:! > 0 •

do G@ T-+ J\4, (idle~d 1 ; C: idle$d2) od o.M, (idle)

where 'I' is generalised nondeterministic choice and 'o' is standard sequential com­
position.

The following loop introduction rule does not make use of a conventional variant
to show termination. Instead it makes use of a fixed deadline that. dot•s not change
during the execution of the loop. When combined with the inevitable progress of
time due to execution of the loop, this has the same effect. as a variant.

Deadlines are termination 203

Law 13 (iteration timing with deadline) Given an idle-stable invariant prop­
erty, INV, a deadline expression, L, which is frame-stable with respect to the frame
.1!, idle-stable expressions G and D, and an environment, p, where none of G, D, L
and INV contain references to To or zero-subscripted variables,

*.1!: [INV I\ D = T $ L,....., G I\ INV'j
I;;; *do G-+ *X: [G I\ !NV', !NV' I\ T $ L] od

where INV' ~!NV I\ D $ T I\ stable(p \ i, [D ... T]).

Proof Our first step is to introduce the idle command at the end of Definition 12
(iteration). The introduction relies on, G I\ !NV' being post-idle-stable.

*X: [IN\! I\ D = T $ L,....., G I\ !NV']
g Law 9 (simple sequential composition); Definition of idle

*J': [!NV I\ D = T $ L,-. G 1\lNV']; idle

We now proceed to refine the first component using the standard refinement calculus
laws. To emphasise this we use the s-subscripted 'I;;; .• ' to stand for refinement in the
standard calculus.

Mp (*i: [INV I\ D = T$ L,• G I\ INV'])

g, Definition 2 (specification}

T: [IN V I\ D = T $ L @ T, ~ G I\ IN V 1 @ (To, T) I\ To $ T I\ stable (p \ i, [To ... T])]

I;;;, definition of INV'; strengthen postcondition; weaken precondition; choice

~ dl, d2: Time I dl > 0 I\ d2 > 0 •

T: [INV' I\ T $ L + d2@ T, • G I\ INV' I\ T $ L + d2@ T]

I;;;, Standard iteration with variant l Lt~i-r J
do G@T-+

[., INV' I\ T < L + d2 @ T I\]
T: G I\ INV I\ T $ L+ d2@ T, l L±~i-r (< l Lt~21-ro J

od

I;;;, definition of !NV'; weaken precondition; strengthen with To $ T

doG@ T-+

od

T: [c I\ !NV'@ T, !NV' I\ To+ dl ~ T_$ L+ d2@ (To,T)]
To $ T I\ stable(p \ x, [To ... T])

g, Definition 2 (specification)

do G@ T-+ Mp (*i: [G I\ /NV', INV' I\ To+ dl $ T $ L + d2]) od

<l

We now concentrate on the body of the loop. The following step relies on the fact
that G I\ /NV' is idle-stable, and that /NV' is both pre- and post-idle-stable.

*i: [G I\ /NV', INV' I\ To+ d1 $ r $ L + d2]

204 Programming Concepts and Methods

!:;;;; Law 9 (simple sequential composition) x 2; Definitions of idles
idle~dli *X: [G 1\INV',INV' I\ r:::; L]; idle:5d2

Combining the above together we get,

d1, d2 : Time I d1 > 0 I\ d2 > 0 •
do G@ T--+ Mp (idle~dli *X: [G I\ /NV', iNV' I\ T :=:; L]; idle::;d2)
od oMp (idle)

Q. Definition 12 (iteration)
Mp (*doG--+ *X: [G 1\INV', /NV' I\ r:::; L] od)

0

A simpler rule for iteration docs not. involve all timing aspects.

Law 1 (iteration with deadline) Given an idle-stable invariant property, /NV,
a daulline eJ:pre.~.~ion /,, which is fmme-.~table with respect to the frame x, and an
idle-stable expl'ession G, where none of G, L and !NV contain references to To O!'

::em-subsc1·ipted variables,

*i: [/Nl' I\ r:::; L,.., G I\ lNF] !:;;;; *do G--+ *X: [G I\ INF, /NV I\ r:::; L] od

Proof We let /NV' ~r /NV I\ D :=:; T I\ stable(p \ x, [D ... r]), where D is fresh,
and make use of Law 13 (iteration timing with deadline).

*X: [/NV I\ T :::; L, .., G I\ /NV]
!:;;;; Law 8 (logical constant); Law 6 (separate assumption); Law 4 (strengthen effect)

I[conD: Time • *X: [INV I\ D = T :=:; L,• G I\ /NV'] 11
g Law 13 (iteration timing with deadline)

I[con D: Time • *do G--+ *X: (G 1\INV', INF' I\ r:::; L] od 11
g Equivalent effect by Law 4 (strengthen effect); Law 3 (weaken assumption)

I[conD: Time • *do G--+ *X: (G 1\INV, /NV I\ T :=:; L] od 11
g Law 8 (logical constant)

*do G--+ *i: [G I\ /NV, /NV I\ r :=:; L] od

0

BIOGRAPHIES

Ian Hayes received his PhD from the University of New South Wales, Australia in
1983. He has been on the a(·ademic staff of the University of Queensland since 1985,
and is an a.-;sociated academic of the Software Verification Research Centre there.

Mark Utting received his PhD from the University of New South Wales in 1992.
He then worked at the Software Verification Research Centre in Brisbane, developing
the Ergo theorem prover and this real-time refinement calculus. In late 1996 he
became a lecturer at. Waikato University, and is now enjoying teaching programming
languages and formal methods there. He is married to Lynda and they have four
young children and a cat ..

