
13
Refinement types for specification

E. Denney
LFCS, Department of Computer Science, University of Edinburgh
Kings Buildings, Edinburgh EH9 3JZ, Scotland
Tel. : +44 131 650 5151
Fax: +44 131 667 7209
Email: ewd@dcs. ed. ac. uk

Abstract
We develop a theory of program specification using the notion of refinement type.
This provides a notion of structured specification, useful for verification and pro­
gram development. We axiomatise the satisfaction of specifications by programs as a
generalised typing relation and give rules for refining specifications. A per semantics
based on Henkin models is given, for which the system is proven to be sound and
complete.

Keywords
Specification, refinement, verification, type theory, Henkin models

1 INTRODUCTION

We address the question of what is a suitable notion of specification for a program­
ming language, where the properties of interest can be expressed using some given
program logic. In particular, we restrict our attention to those languages which can be
studied using typed lambda calculi, that is, typed functional programming languages.

A number of possibilities can be considered. One is to say that a specification is
a type in some expressive type theory. This is the approach taken by Luo (1991) for
example. An integer square root function might be specified as the existential type
3f: nat-+ nat . (f n) 2 = n V (f n)2 + 1 = n, where the logic is encoded
in the type theory. The problem is that this only works for an intuitionistic logic.
Classical logics are more common for specification, and cannot easily be encoded in
type theories. Also, programming languages generally have a simple type system of
their own, and this must somehow be related to the specification type theory.

Another possibility is to say that a specification is just a proposition of the pro­
gram logic with a distinguished free variable. Our square root example would be
the proposition (f n) 2 = n V (f n) 2 + 1 = n, where f is a free variable of
type nat -+ nat. This is the approach traditionally taken by the program refinement
community, and Morgan (1994) describes a refinement calculus based on the use of
first-order predicate logic.

Programming Concepts and Methods D. Gries, & W-P. de Roever (Eds.)
© 1998 IFIP. Published by Chapman & Hall

Refinement types for specification 149

However, this approach has a number of shortcomings, which we illustrate with
an example below. The main point is that for compositional verification and program
development it is better to put more structure on specifications.

In this paper, we suggest a third possibility, a combination of the program logic
with the type theory of the programming language known as refinement types. The
notion of refinement type has been studied extensively in program analysis (under
different names) and there are many different systems, depending on the area of
interest. The general idea is to have two levels - an underlying level of program
types, and a more expressive level of program properties, which are then treated
like types. For us, this more expressive level will be the specifications. Hence we
can exploit type-theoretic structure in our specifications, but do not need to do any
encoding.

We describe a verification calculus based on the simply-typed lambda calculus
with products (A x-t) and some ground types such as nat and bool. The satisfaction
of specifications by programs is axiomatised as a generalised typing relation. We do
this by viewing specifications as refinements of an underlying type, expressed us­
ing the program logic. We use typed classical predicate logic as program logic here,
and axiomatise an ordering on the refinement types, to be viewed as an increase
in information, or refinement of specifications. We give a simple set-theoretic inter­
pretation of the calculus. The main result of the paper is soundness and completeness
with respect to this class of models.

In Section 2 we consider a simple example of specifying and verifying a program
in order to motivate the features of our calculus. We then give the syntax and rules
of the calculus in Section 3. In Section 4 we return to the example. Section 5 gives
the semantics and proofs of soundness and completeness. Finally, we make some
conclusions in Section 6.

Related Work
There have been a number of papers in the 'non-standard type system as program

logic' paradigm. Nielson & Nielson (1988) and (Burn 1992) axiomatise consequence
relations on properties as a form of refinement. Pfenning, who introduced the term
"refinement type", used them to express properties ofmini-ML programs (Freeman
& Pfenning 1991).

There have been various approaches by type theorists to combining logic and
types. Feferman's (1985) system of variable types extends A x-t with subset types,
though equality does not depend on the type, as it does here. Refinement can be
defined in the logic, and is not explicitly axiomatised. Other type-theoretic approaches
include (Aspinall1995, Aspinall & Compagnoni 1996), which differ from the present
work in being concerned with subtyping type families. Dependency there is at the
level of types themselves, whereas we only allow dependent structure at the refine­
ment type level.

The deliverables approach (Burstall & McK.inna 1992, McK.inna 1992) is to con­
sider a program paired with its proof of correctness. We are similarly motivated in
wanting to structure specifications using program types, but differ in taking proof

150 Programming Concepts and Methods

existence as more important than the proof itself - terms do not need an explicit
witness to satisfy a refinement type. Our calculus could be regarded as an internal
language for deliverables.

The work ofLuo (1991) presents an encoding of specifications and 'specification
morphisms' (corresponding to our terms) in an expressive type theory. Our work
provides a more direct analysis of the concept of specification. The existential form
of Martin-LOf's type theory with subset types in (Nordstrom, Petersson & Smith
1990) is similar. The work of Hayashi (1994) is also related.

The program refinement community has traditionally used unstructured specifica­
tions. For example, Morgan (1994) describes a refinement calculus based on the use
of propositions of first order predicate logic.

2 EXAMPLE

Let us consider specifying division by 2 on the naturals and verifying that a program
satisfies the specification. We will take the simply-typed lambda calculus and clas­
sical first-order predicate logic as simple programming and specification languages
respectively. We will use an applied .).X-7 theory extended with a constant for it­
eration over the naturals, where natiter z f n computes the n-th iterate fn(z).
As a first approximation to specifications we use propositions with a distinguished
free variable, which we write as (x : r)P where Tis the type of the variable x in
proposition P.

A program di v2 which implements division on the naturals is

div2 = >.n: nat. 1f1 (div2' n): nat~ nat

where this uses the auxiliary function

div2' = natiter (0,0) (>.p: nat x nat. (1f2P,1fiP+ 1))

Now this can be specified as

div2_spec =(!:nat~ nat) "'n: nat. n = 2 * f(n) V n = 2 * f(n) + 1

We want to axiomatise a satisfaction relation sat between programs (closed terms)
and specifications, so that we can prove

div2 sat div2_spec

One simple way of doing this is to say that t sat (x : r)P is just taken to be a
notation for a typing and a proposition, with the rule that t sat (x : r)P when t: T

and P[tfx]. This example reduces then to proving

'Vn: nat . n = 2 * div2(n) V n = 2 * div2{n) + 1

Now, our specification language is rather cumbersome as it stands, so let us intro­
duce dependent products and functions as abbreviations

Ex:(x:u)P(Y : r)Q for (z :a x r)P[7riZ/x]l\ Q[7riZ/x, 1r2z/y]

Refinement types for specification 151

Ilx:(x:u)P(Y : r)Q for (f : a-+ r)'Vx :a . P :J Q[fxfy]
The dependent function Ilx:(x:u)P(Y : r)Q specifies some function which for all
x : a such that P, returns a y : T such that Q. This has combined the two quantific­
ations in (f : a -+ r)'Vx : a . P :J Q[fxjy], which we read as some f :a-+ T

such that for all x : a, if P then Q[fxfy]. If we allow ourself the further abbrevi­
ation of viewing types as trivial specifications, so that for example, nat can stand for
(x: nat)true, then we can write our specification more compactly as

div2_spec = Iln:nat(m: nat)n = 2 * m V n = 2 * m + 1

Now, using our abbreviations, the following rule is admissible from our definition of
sat

n: nat f- 1r1 (div2' n) sat (m: nat)n = 2 * m V n = 2 * m + 1

A.n: nat.1r1 (div2' n) sat IIn:nat(m: nat)n = 2 * m V n = 2 * m + 1

where we understand the sequent n : nat t- t sat ¢to mean for all closed t' : nat,
t[t' fn] sat ¢[t' fn]. In general then, we want to consider satisfaction in an arbitrary
context. Note the similarity to a typing rule. In fact, not only are l: and II useful
structuring devices for specifications, they are also useful for proofs, as specifications
of programs often tend to be most naturally expressed and proved in a 'shape' similar
to the program.

For example, the program di v2 is an abstraction and the specification di v2_spec
is of the form Ilx:cf>tP· The rule directly reflects a natural proof that div2 satisfies
di v2_spec. Similarly, the auxiliary function di v2' has specification

div2'_spec = IIn:natl:(m:nat)n""2mVn=2m+1(m' : nat)m + m' = n

The proof of this, in turn, involves showing that a pair satisfies a product specifica­
tion, and an abstraction satisfies a functional specification (as above). We also have
to use induction to show that an iteration satisfies some specification parameterised
on the naturals. We consider this example more fully in Section 4.

A significant benefit in writing specification in this more structured form is con­
ceptual - it is preferable to structure specifications in such a way that it aids under­
standing of both specification and program. Then the task of comprehension need
not be duplicated unnecessarily for specification and program. Also, separate checks
of well-formedness (i.e. type-checking here) and correctness, will involve some du­
plication of effort, so it is better to combine types and correctness properties. Though
we will not consider it here, in order to be the basis of a useful program development
methodology, it helps for our specifications and proofs to reflect the structure of the
programs. We do not throw away the original rule that t satisfies (x : r)P when t: r
and P[t/x], however, since not all specifications can be given in a structured form.

There is one final aspect of specifications which we must consider- equality. The
kind of specifications with which we are concerned here are those which specify the
input-output characteristics of programs. We are only interested in programs up to
extensional equality. The alternative, in a type-theoretic setting, is to use an inten­
sional equality and distinguish programs on the basis of syntactic form. This would
be unnatural here however, so we view specifications as coming equipped with a

152 Programming Concepts and Methods

partial equivalence relation (per), which acts as an equality. A per is a symmetric
and transitive relation on the set of terms at the type, or equivalently, an equivalence
relation on a subset of terms at the type.

For example, the specification Ill:nonemptylist(n : nat)Min(n, l) where the pro­
position Min(n, l) says that n is the minimum element in list l, is a refinement type
over type list -t nat. We want to regard functions/, f' : list -t nat as equal
solutions of this specification if they give the same results for nonempty lists. Any
program satisfying this specification must be defined on the empty list, but we are
not interested in the value it takes there.

Now, we would attain some conceptual simplicity if specifications were to sub­
sume types, satisfaction to subsume typing, and equality at a specification to sub­
sume the usual equality at a type (which is often left implicit). For example, we use
(n: nat)true in place of nat, and En:(n:nat)true(b: bool)true for nat X bool.
At this point, we must cease to regard Ilx:(z:u)P(Y : r)Q as an abbreviation, since
we want it to have a different equality from (! : a -t r)Vx :a . P ::J Q[fxfy].
We believe it is misleading to regard specifications as types, though, and refer to the
specifications of this idealised specification language as refinement types. Equality is
given by a per over the underlying type.

A specification therefore, is a refinement type, and consists of a type r, together
with a per c/J over r. We take a program in this calculus to be an equivalence class of
a per cp. The alternative would be to take a program as an element of the domain of a
per, but this would be unnatural because we would then be distinguishing programs
beyond extensional equality.

We use a notation for the equivalence classes of pers, by allowing refinement
types on the variables in abstractions. For example, >.n : even.n is a class in the
per even -t nat but not nat -t nat, and >.n : nat.n is a class in both even -t nat
and nat -t nat. The equality t =,p t' says that t and t' are the same equivalence
class of per cp.

For refinement types cp and c/J' over the same underlying type, we want to consider
refinements c/J [;;;; c/J', to be though of semantically as per inclusion (i.e. equality at
c/J' implies equality at cp). We use the square [;;;; symbol to indicate an information
ordering- the refinement of specifications. Note that this convention for refinement
is the opposite direction to the usual subtyping relation.

3 THE CALCULUS

3.1 Syntax

The idea is that we construct a theory of refinement types on top of an underlying
>. x-+ theory and a first -order logic theory. This is generated from a signature of types,
constants and predicate symbols (in the underlying theory) and axioms (in the full
theory). The well-formedness conditions on axioms will be explained in Section 3.3
below.

Refinement types for specification 153

Definition 1 A signature consists of a finite collection of ground types "f, n-ary con­
stants k, each ofwhich is assigned some sort 7 1 , ..• , 7n --t 7, and n-ary predicates
F, which are assigned a sequence of types 71, ... , 7 n. indicated by
F : pred 71, ... , 7 n· There are two forms of axiom. We write propositional ax­
ioms as Ax[> r 1- P and require that r 1- P wf. Axioms on the constants are given
in the form Ax [> r 1- k : ¢1' ... ' <Pn --+ '1/J, for constant k with sort 71' ... ' 7 n --+ 7,
and such that r 1- <Pi : Ref 7i, r 1- '1/J : Ref 7.

Note that the sorting k : 7 --t 7 1 and axiom k : <P --t '1/J do not say that unary constant
k is a well-formed term without the necessary number of arguments. Fort : 7, we
havek(t) :71,andift:¢thenk(t) :'1/J.

Although we do not have arbitrary refinement types as primitive in a signature, we
get much the same expressiveness using primitive predicate symbols. For example,
with the ground type nat, we could have predicate even : pred nat, and then
overload even for the refinement type (n: nat)even(n).

For ground type bool, we can have constants true: bool, false: bool and
condr : bool, 7, 7 --t 7, for each type 7. The axiom schema for conditionals can be
given as condr : P + P', (x : ¢)P :::) Q[x], (y : ¢)P' :::) Q[y] --t (z : ¢)Q[z], where
P + P' abbreviates (b : bool)b = true :::) P 1\ b = false :::) P'.

The raw expressions of the language are given by a mutual recursion over refine­
ment types, terms, propositions and contexts :

</J ::= 1 I 'Y I Ex:rt></J' I Ilx:rt></J' I (x : </J)P

t ::=X I k(t1, ... , tn) I * I (t, t'} I >.x: </J.t I 1I"i(t) I tt'

P ::=false I P:::) P' I Vx: </J.P I F(t1, ... , tn) I t =¢ t' I <P [; ¢'

r::=(} 1 r,x:¢ 1 r,P
Conceptually, it is simpler not to distinguish types and refinement types as syn­

tactic categories. Refinement types should be viewed as being refinements of under­
lying types, so for example, if <Pis a refinement of (we will just say 'over') a, and
'1/J is over 7, then Ex:rt>'l/J is over a x 7. Formally however, types are just refinement
types with no logical information, that is, not containing any propositions. We use a
and 7 as metavariables for types.

There is a unique (up to equality) term* of unit type 1. The meaning of the other
refinement types in terms of satisfaction is that (t, t'} satisfies Ex:rt>'l/J when t satisfies
<P and t' satisfies '1/J[t/x]; term t satisfies Ilx:rt>'l/J when for every t' satisfying¢, tt' is
well-formed and satisfies '1/J[t' fx]; and t satisfies (x : ¢)P when it satisfies <P and the
proposition P[tfx] holds.

We think of terms of the calculus as being simple specifications of terms in the
underlying >. x -t. We will refer to terms of>. x-+ as total terms. Terms of the calculus
uniquely specify total terms up to equality at some refinement type. Terms have their
usual meaning in the lambda calculus, except that an abstraction >.x : ¢.t should be

154 Programming Concepts and Methods

thought of as a simple specification of terms AX : a.t' such that for all t" which
satisfy¢, t'[t" lx] satisfies t[t" lx].

For example, An : even.n specifies total terms of type nat -+ nat which are
the identity on even arguments. The application (Ax : ¢.t)t11 is only well-formed for
arguments t" which satisfy ¢ so behaviour outwith ¢ is not constrained. Note that
this means that although even -+ even is a refinement of the type nat -+ nat, the
term An : even.n does not itself have type nat -+ nat. Intuitively, we can say that
a term t has refinement type ¢ if its behaviour 'at ¢' is uniquely determined, that is,
any two total terms which satisfy t are themselves equal at ¢.

Remark 2 Our choice of first-order classical logic is only significant insofar as it is
an example of what we might call an extensional logic. We make essential use of the
fact that for all terms t, t' and propositions P, if t is extensionally equal to t' (which,
in general, may coincide with the equality of the logic, if it has one, but otherwise
can be defined as a logical relation), then P[t I x J holds if and only if P[t' I x] does. In
other words, we require Leibniz and observational equality to coincide. It does not
matter whether the logic is classical or intuitionistic.

This can be contrasted with, say, the use of an intensional logic such as the modal
J.t-calculus, where terms are viewed as transition systems through their reduction
sequences.

3.2 Judgements

The judgements of the calculus are

fi-t:¢ fi-P

where the atomic propositions are r 1- t =t/1 t' and f 1- ¢ ~ ¢'. Equality and refine­
ment are not separate judgement classes from the other propositions. All judgements
are made in a context r of variable assumptions x : ¢ and propositions P. There are
also mutually dependent well-formedness judgements

1- r wf r 1- ¢:Ref T r 1- p wf

We say that a term tis well-formed in context r when there exists a refinement
type¢ such that r 1- t : ¢.Note that¢ need not be unique, though the underlying type
is unique. We understand r 1- t : ¢ to mean that for all the variables in the context
r, if they satisfy the relevant refinement types, then the term t has refinement type ¢.
Sometimes we write f 1- t, t' : ¢for f 1- t : ¢ and r 1- t : ¢'.

The well-formedness judgement for refinement types, r 1- ¢ : Ref T' says that
refinement type¢ in context r is over the type T. We abbreviate¢: Ref T as¢ wf
when the type T is not significant.

Refinement types for specification 155

3.3 Rules of the Calculus

Rather than give an exhaustive listing of all the rules of the calculus, we restrict the
discussion to a subset of the rules and refer the interested reader to (Denney 1997)
and (Denney 1998) for more details.

One distinctive feature of the calculus is the mutual dependencies of the different
syntactic categories, and hence of the different judgement classes. Refinement types
can contain propositions, which can contain terms, and these in turn can contain
refinement types in the abstractions.

First we describe the well-formedness rules, starting with contexts. The empty
context is well-formed, and there are two rules for extending an existing context.

r f- 4> wf
-------- xd r f-f,x:Q>wf "F-

r f- p wf
f- r,P wf

The well-formedness rules for refinement types essentially involve stripping off
the logic while checking that everything fits together correctly. For example,

f f- t/> : Ref a f, X : t/> f- t/J : Ref T f f- t/> : Ref T f, X : t/> f- P wf
r f- llx:,Pt/J :Ref a--t T r f- (x : t/>)P: Ref T

There are checks on the well-formedness of the context for the base cases so as to
ensure that all provable judgements are well-formed.

f- r wf r f-f- r wf ('Y ground type)
'Y: Ref 'Y f f- 1: Ref 1

Similar conditions are made for the base cases of the other judgement classes.
It is straightforward to formulate well-formedness rules for propositions. We select

two rules for discussion.

ff-t:Q> ff-t':t/>
r f- t =.p t' wf

f f- t/> : Ref T f f- t/>' : Ref T

r f- 4> !;;; 4>' wf

For t =.p t' to be well-formed we require that t and t' both have refinement type
,P. The appeal to refinement typing is why well-formedness involves logical reason­
ing, and this propagates through the well-formedness rules for the other syntactic
categories. Similarly, the refinement 4> !;;; 4>' is only well-formed when 4> and 4>' are
over the same type.

The refinement typing rules are the natural generalisations of the usual typing rules
for the simply-typed lambda calculus with products. For example, the introduction
rules for abstractions and pairs are

r,x:,Pf-t:tj; r f- t: 4> r f- t': tf;[t/x] r,x: 4> f- tj; wf

r f- (t, t') : 'Ex:.pt/J

and the corresponding elimination rules are

r f- t : llx:.pt/J r f- t' : 4>

r f- tt' : t/J[t' 1 x]
r f- t : 'Ex:,Pt/J

r f- 1r1(t): 4>

156 Programming Concepts and Methods

Where the calculus differs from Ax-+ is in the logical reasoning which pervades
the rules. This is evident in the rule for forming terms with a constant, where well­
formedness uses a logical axiom

r f- ti : ¢i
(Ax 1> r f- k : rP1 , ... , rPn --+ '1/J)

We have the obvious introduction rule for proving that a term inhabits a refinement
type, and a weakening rule:

r f- t: ¢ r f- P[tfx]
r f- t : (x : ¢)P

r f- t : ¢' r f- ¢ c ¢'
ff-t:¢

We do not include an elimination rule (allowing us to conclude that t : ¢ from
t : (x : ¢)P) as primitive, since this follows from the weakening rule and the re­
finement rules which we give below.

One further rule is

r f- t =<t> t'
ff-t:¢

Inferring a refinement typing from an equality may seem strange, but it saves us a few
rules. The reason for this is that in proving refinement typings and equalities we need
to be able to combine assumptions on subterms. Since equalities are subscripted with
a refinement type, the rule lets us use equality rules to prove a refinement typing. For
example, the congruence rule for abstractions is

r f- ¢' ~;;;; ¢ r, x : ¢ f- t =..p t'

r f- AX : ¢.t =nz,.p'I/J AX : ¢'.t'

which lets us prove that An : even.n =even-+even An : nat.n, and so we can infer
that An : nat.n : even--+ even.

The 'fJ rules for abstractions and pairs have unconventional hypotheses, enabling
us to combine logical and typing assumptions.

f, X : cp f- tx : '1/J
_ ____:.__.:___ _ ___:__ X d t
r f- AX : ¢.tx =nz,.p'I/J t 'F

r f- 1T'1(t): ¢ r f- 1T'2(t): '¢[1T'1(t)jx]

r f- (1!'1 (t), 1l'2(t)) =r.z,.p'I/J t

The usual hypothesis for the abstraction rule would be f f- t : Ilx:¢'¢· The following
example makes essential use of this rule.

f: nat--+ nat, 't:/x: nat.even(fx), n: nat f- fn: nat
f: nat--+ nat, 't:/x: nat.even(fx), n: nat f- even(fn)

f: nat--+ nat, 't:/x: nat.even(fx), n: nat f- fn: even _ __:_ ____ __:_ _____ ...:..:...___.:...;_ ___ __:_ _____ (.\-1)-EQ)

f: nat--+ nat, 't:/x: nat.even(fx) f- f =nat-+even An: nat.fn

f :nat --+nat, Vx : nat.even(fx) f- f :nat --+ even

Similar examples can be given making use of the 'fJ rule for pairs.
The refinement rules are of two kinds- 'structural' and logical. The obvious struc-

Refinement types for specification 157

tural rules are

f-- r wf
rf--1!;;;1

r f-- ¢ !;;; ¢' r, x : ¢ f-- '1/J !;;; '1/J'

r f-- 'Y:.x:,P't/J!;;; 'Y:.x:,P''t/J'

r f-- ¢' !;;; ¢ r, x : ¢ f-- '1/J !;;; '1/J'

r f-- Ilx:,P't/J !;;; Ilx:,P1't/J 1

The interesting rules, however, are for refinement involving propositions. We must
say when an arbitrary refinement type is a refinement of a type with a proposition,
and when it refines to one.

rf--¢!;;;'1/J r,x:'t/Jf--P
r f-- (x: ¢)P!;;; 'ljJ

r,x:'ljJ,Qf--x:¢
r f-- ¢!;;; (x: '1/J)Q

The only other refinement rule is transitivity of refinement.
Finally, there are the rules of the logic. As the idea behind the calculus is that the

logic should be orthogonal to the rules of the calculus, we do not list most of the
(standard) rules of our example logic, typed classical first-order logic, but just indic­
ate where refinement types are involved. One point is that the contexts are different
from the usual formulation. This is made clear by the two introduction rules

r,Pf--Q
rf--P::::>Q

r,x: ¢f-- p
r f--Vx: ¢.P

We need a refinement typing for the V-elimination rule

r f-- Vx : ¢.P r f-- t : ¢

r f-- P[t/x]

and refinement typings are also used to infer propositions with the rules

r f-- t =q, t' r,x: ¢ f-- P wf r f-- P[t/x] r f-- t: (x: ¢)P

r f-- P[t' /x] r f-- P[t/x]

4 DIVISION BY 2 REVISITED

As an illustration of how refinement types can provide a useful proof technique, we
give the division by 2 example from the introduction again.

First, we give the inference rules for primitive and well-founded recursion over
naturals, which combine the typing rules for recursion constants with the induction
rules, into a single refinement typing. The sort is

natrec: T, (nat--+ T--+ -r),nat--+ T

and the axiom schemas are (for each¢)

r f-- n :nat r f-- t : ¢[0] r f-- t' : IIn:nat¢[n] --+ ¢[succ n]
r f-- natrec t t' n : ¢[n]

r f-- t: ¢[0] r f-- t' : lln:nat¢[n]--+ ¢[succ n]

r f-- natrec t t' 0 =q,[o] t

158 Programming Concepts and Methods

r f- t : ¢[0) r f- t' : IIn:nat</l[n) ---+ ¢[succ n]
r f- natrec t t' (succ n) =q,(succ n] t' n (natrec t t' n)

The axiom can also be expressed in the standard form of Definition 1. We define
iteration from the more general recursion, as

natiter t t' n = natrec t (.Ax: nat.t') n

where x <f. t'.
The program is

div2 =.An: nat.1r1 (div21 n)

div2' = natiter (0,0) (.Xp: nat x nat.(7r2P,7riP+ 1))

We prove that it satisfies the specification

div2: IIn:nat(m: nat)n =2m V n =2m+ 1

div2': IIn:nati::(m:nat)n=2mVn=2m+l(m': nat)m + m' = n

In fact, there is little of interest in the main part of the proof. Since refinement types
explicitly indicate the structure of the specification, this enables much of the proof
to be carried out in a syntax-directed fashion. This would be useful for automation.

Write ¢[n) as an abbreviation for I::m:(m:nat)n=2mvn=2m+l (m' : nat)m + m' = n.

see below
n: nat,p: ¢[n) f-(7r2P,7riP + 1): ¢(n + 1) n: natf-natxnat I; ¢[n)

(0, 0) : ¢[0) n: nat f- .Xp: nat x nat.(1r2p, 1r1p + 1) : ¢[n) ---+ ¢[n + 1)

n :nat f- nati ter (0, 0) (.Xp: nat x nat.(1r2p, 7riP + 1)) n :
I:;(m:nat)n=2mVn=2m+l(m' : nat)m + m' = n

.An: nat.natiter (0,0) (.Xp: nat x nat.(7r2P,7riP+ 1)) n :
IIn:nati::(m:nat)n=2mVn=2m+l(m' : nat)m + m' = n

The proof continues with

n : nat, n = 21r1P V n = 27riP + 1, 1r1P + 1r2P = n
f-n+1=2~pVn+1=2~p+1

n: nat,p: ¢[n) f- n + 1 = 21r2p V n + 1 = 21r2p + 1

n: nat,p: ¢[n) f- 7r2P: (m: nat)n + 1 =2m V n + 1 =2m+ 1

The remainder of the proof is arithmetic reasoning. In practice, we would use a
theorem prover here.

5 MODELS

We give interpretations of the calculus in general models, known as Henkin models
(Henkin 1950), with additional per structure. As is usual in concrete models of ap­
plied lambda calculi, we must consider such general models in order to get complete­
ness. The per structure is to account for stratified equalities at different refinement
types.

We define Henkin models in two stages. First, to each type cr (not just ground

Refinement types for specification 159

types) we ascribe the set A17 , and to each constant k : r1, ... , Tn --+ r, an element
Const(k) in the set AT1 x ... XTn -tT. An applicative structure (with products) is a tuple

({A17 }, {Projr•T}, {Proj~'T}, {App17'T}, Const)

with families of projection and application maps. In addition, we require a function
Pred which interprets predicates

Pred(F) ~ AT1 x ... XTn, for F: pred Tt, ... , Tn

Now, a Henkin Model is an applicative structure with two additional conditions,
namely, that it is extensional, and that it satisfies the environment model condition.
See (Mitchell 1996) for details. It is extensionality which allows us to interpret ab­
stractions, pairs and the unit uniquely, up to equality in the appropriate per, and the
environment model condition which gives enough elements in the model.

We do not have A 17 x T = A 17 x AT in general, but have an isomorphism mediated
by the projection functions, Projr•T: AuxT--+ A 17 , and Proj~'T: AuxT--+ AT. In
general, Au-+T is embedded in A17 --+AT, but not equal.

A Henkin model models an applied theory when all constants and predicates are
given an interpretation, and each axiom is true in the model, as defined below.

The idea is that refinement types over type a are interpreted as pers over A17 •

Ground types are interpreted as the identity per over their set. It is easy to see that,
in fact, all types are interpreted as identities.

Now, expressions are all interpreted in context, so we must first define environ­
ments g for context r, written g F= r. where g is a tuple of elements in the domains
of the pers for the refinement types in r. We define this recursively with the inter­
pretation of refinement types and propositions. For per R, we write a E R to mean
aRa.

()F=()

(g,a) F= f,x: ¢ wheng F= f and a E [f f- ¢](g)

g F= r, P when g F= r and g E [f f- P]

For g, g' F= r we define equality of environments in the obvious way, as simultaneous
equality of elements in the corresponding per, written g [f] g'.

To avoid questions of coherence, we interpret raw terms*, and so raw propositions
and refinement types too. The notation r f- E indicates raw expression E in context
r.

Now as mentioned above, refinement types are interpreted as pers over the asso­
ciated type. The interpretation is given in Figure 1. The unit and ground types are
interpreted as identities; the product and function refinement types are interpreted as
the expected combination ofpers, and (x: ¢)Pis interpreted as the restriction of¢
to the elements for which P holds.

There is an apparent asymmetry in the definition of the product per for 'Ex:cf>¢. but

•In fact, only well-structured terms are given an interpretation. For example, (.>..n: even.n)* does not
have a well-defined interpretation, but (.>..n : even.n)3 does, even though it is not syntactically well­
formed.

160 Programming Concepts and Methods

a[fl-l](g)a' {:::::::} a,a'EA1

[fi-1/J]=R [f,x:</JI-1/J]=S

f [r 1- llx:¢1/l](g) f' {:::::::} for all a Rg a', App(f, a) S(g, a) App(f', a')

[r 1- 1/J] = R [r, x : <P 1- P] =A
a [r 1- (x : <jJ)P](g) a' {:::::::} a Rg a', (g, a) E A, (g, a') E A

a [r 1- 'Y](g) a' {:::::::} a, a' E A"Y and a= a'

Figure 1 Interpretation of refinement types

in fact, if ljJ is a well-formed refinement type in context r, then the soundness result
below states that if g[f]g' we have [r 1- 1/J](g) = [r 1- 1/J](g').

The raw term in context r 1- t is interpreted in environment g F= r as a subset
(its 'total realizers') of Au. This is given in Figure 2. The idea is that terms are

[r 1- <P] = R
[r,x: 1/J,f' 1- x](g,a,g') ={a' I a' Rg a}

[r 1- ti] = mi
[f 1- k(t1, ... ,tnH(g) = {App{Const{k),(al,····an)) I ai E mi(g)}

[r 1- *](g) = A1

[r 1- t] = m [r 1- t'] = m'

[r 1- (t,t')](g) ={a E Auxr I Proj~'r(a) E mg,Proj~'r(a) E m'g}
[f,x:ljJI-t]=m

[r 1- .Xx : ljJ.t](g) = {! E Au~r I for all a E [r 1- 1/J](g) . App(f, a) E m(g, a)}

[r 1- t] = m

[r 1- 1r1(t)](g) = {Proj~'r(a) I a E mg}

[r 1- t] = m
[r 1- 1r2(t)](g) = {Proj~'r(a) I a E mg}

[r 1- t] = m [r 1- t'] = m'

[r 1- tt'](g) = {App(f,a) If E mg,a E m'g}

Figure 2 Interpretation of terms

Refinement types for specification 161

interpreted as morphisms of pers, that is, maps of equivalence classes, and so the
interpretation of a variable is a map from an element to its equivalence class (in the
relevant refinement type). It is because of the refinement type in abstractions that
we interpret terms as sets rather than as single elements. For example, >.n : even.n
is interpreted as the set of elements in Anat-+nat which are the identity for even
arguments. In Figure 3 we give the interpretation of propositions. We interpret a raw
proposition in context r 1- p as the set of environments g I= r in which p holds.

[r 1- falseD = 0

[r 1- p ::> Pl = {g I= r I g ¢ [r 1- PD or g E [r 1- P']}

[r 1- Vx: ¢.PD = {g I= r I 'ria E [r 1- ¢](g). (g,a) E [r,x: ¢1- P]}
[r 1- ti] = mi

[r 1- F(tl, ... 'tn)] = {g I= r IVai E mig . (al' ... 'an) E Pred(F)}
[r 1- t] = m [r 1- t'] = m' [r 1- ¢] = R

[r 1- t =<t> t'] = {g I= r I 'ria E mg . Va' E m' g . a Rg a'}
[r 1- ¢] = R [r 1- ¢'] = R'

[r 1- ¢ !;;; ¢'] = {g 1= r 1 Rg 2 R' g}

Figure 3 Interpretation of propositions

We may now say what the semantic analogues of the judgements are. Define
r I= t : ¢ when (for all models A) for all g [r] g', for all a E [r 1- t] (g) and
a' E [r 1- tD(g'), we have a [r 1- ¢D(g) a'. In other words, the interpretation is
unique up to the equality of the per. We say that r I= P when [r 1- P] = {g I g I= r}.
In particular, the refinement r I= </J ~ ¢' is valid when for all g I= r, there is an in­
clusion of pers [r 1- ¢'](g) ~ [r 1- ¢](g). We definer I= ¢ wf to mean : for all
g [r] g', [r 1- ¢](g) = [r 1- ¢](g'), and r I= P wf to mean: for all g [r] g',
g E [r 1- P] {::::? g' E [r 1- Pl

5.1 Soundness and Completeness

Having given the meaning to the expressions of the calculus via an interpretation, we
must verify that this respects the inference rules, that is, the calculus is sound with
respect to the intended interpretation. A consequence of this is that since we can give
nontrivial models the calculus is consistent.

Theorem 3 (Soundness) IJr 1- t : ¢then r I= t : ¢, ijr 1- ¢ wf then r I= ¢ wf, if
r 1- P wf then r I= P wf, and ijr 1- P then r I= P.

Proof" Simultaneous induction over all derivations. The soundness of ,8-reduction
and \;/-elimination is by a substitution-lemma. I

162 Programming Concepts and Methods

A more challenging question is whether the calculus is in any sense complete,
that is, if a particular judgement holds in all the models (of the relevant signature)
then it is provable. In fact, the calculus is also complete, with a couple of provisos.
Firstly, due to the way in which well-formedness is combined with satisfying logical
properties, we must assume that the judgement is well-formed. This is because it is
possible for non well-formed terms to have a unique interpretation, and so, semantic­
ally, have a refinement type. For example, (.An : even.*)3 is interpreted as the unique
inhabitant of unit type, but cannot be typed in the system.

The second point arises with higher-order terms, and is due to the calculus requir­
ing arguments to an abstraction to have the refinement type on the abstraction, but the
model just needing equality of arguments at that refinement type to give equal res­
ults. For example, .Af : nat -t nat.3 has the refinement type (even -t nat) -t nat
in the model, but not in the calculus.

What we can show, however, is that if a term in context, r 1-- t, has refinement type
¢ in the model, then there exists a term t' which does have refinement type ¢, such
that r I= t =q, t'. We write this as r 1-- t ~ ¢.

Theorem 4 (Completeness) For r 1-- P wf, ijr I= P then r 1-- P. For r 1-- ¢ wf, if
r I= t : ¢ then r 1-- t ~ ¢.

Proof" Although we do not have minimal term models (due to having propositional
assumptions), we can still use a term model construction to prove completeness,
by using a slight generalisation of the standard 'consistency implies satisfiability'
argument.

First we generalise consistency and satisfiability from sets of closed propositions
to arbitrary contexts. Say that context r is consistent, when r 1' false, and satis­
fiable, when there exists a model A and environment gin A such that g I= A r. In
the case that r is a context of closed propositions, these reduce to the usual defini­
tions of consistency and satisfiability. Now we want to show that r I= P => r 1-- P,
so suppose r 1' P. Then r, -,pis consistent and so, by assumption, is satisfiable.
Hence r .It P.

Let r be a consistent context. We sketch the construction of a model A and envir­
onment g I= A r.

1. Let A = { P I r 1-- P wf}. Construct a maximal consistent Henkin theory D. such
that {PI r 1-- P} ~D.~ A.
A Henkin* theory T, is a collection of sentences closed under derivation, such
that if the proposition 3x : ifJ.P is in T, then P[tfx] is in T for some t : ¢.
The construction of the Henkin theory involves adding constants cq,,P : r, and ax­
ioms cq,,P : ¢, P[cq,,P]. for each refinement type r 1-- ¢:Ref r, and propositions
r 1-- P wf, for each 3x: ifJ.P in T.

• These have nothing to do with Henkin models.

Refinement types for specification 163

The existence of maximal consistent Henkin extensions follows using a standard
argument from Zorn's Lemma. See (van Dalen 1994) for details. Note that for all
r f- P wf exactly one of P, -,p is in 6..

2. Let r 00 be a set of infinitely many declarations x : <P for each closed inhabited </J,
i.e. for which there exists at such that f- t : </J. This is so that we can construct a
model from open terms.

3. Define a family oflogical equivalence relations, Rt._ (-,_)for each type r, on open
terms of>. X-+ with type T, { t I r 00 f- t : T }. as Rt,. (t, t') {::::::::} 6-oo f- t =r t'.

4. Define Ar as the set of equivalence classes with respect toR of open terms in T,

and construct a Henkin model, A, by interpreting constants syntactically. Interpret
predicates F: pred r1, ... , Tn as {[(t1, ... , tn))l F(h, ... , tn) E 6.}.

5. The set 6. gives rise to an environment for r in A. For every X : <P E r there is
a proposition x =q,' t E 6., where t is closed, and <P' is a closed instantiation of
</J. Define the corresponding element in the environment as 9x = [ujT, where u is
any total realizer oft (which must exist).

6. For r f- P wf, prove that g E [r f- P] {::::::::} 6.00 f- P {::::::::} 6. f- P. To
prove the first equivalence we directly characterise the interpretation of terms and
refinement types in the term model, A. The second equivalence is because for
each x : <P E r 00 , x ¢ P and <P is inhabited.
Hence A models 6., and so it models r. I

Now since first-order logic, the simply-typed lambda calculus, and the refinement
types calculus are all complete for the class of Henkin models, we have

Corollary 5 The calculus is a conservative extension of>. x-+: If r f- t =r t' is a
well-formed equation in >. x-+, then it is provable in >. x-+, if and only if it is provable
in the calculus of refinement types.

Corollary 6 The calculus is a conservative extension of first-order logic : If
r f- P wf does not contain any refinement types, then it is provable in first-order
logic, if and only if it is provable in the calculus of refinement types.

The significance of these corollaries is that we are free to use the specification
language for proving program equivalences and for reasoning about programs us­
ing the program logic, in the knowledge that it faithfully reflects the equality in the
underlying programming language, and proofs in the program logic.

6 CONCLUSIONS

We have described the refinement type methodology of specification. This is a way of
combining the type system of a programming language with a program logic to give
a specification language. This is an alternative to approaches which rely on encoding
a logic into an expressive type theory; and those which simply use a program logic.

164 Programming Concepts and Methods

The two-level nature of the calculus suggests the construction of a modular tool
in which checking program correctness is a combination of type checking and the­
orem proving. The modularity would come from constructing a 'specification check­
er' from an existing theorem prover and a type checker, for the program logic and
programming language respectively. Indeed, this is similar to what is done in the
interactive proof development systems, Nuprl and PVS.

The calculus could provide a foundation for other specification based formalisms.
In the proof that di v2 satisfied its specification we used the proof for di v2'. There
is an implicit element of refinement here. We envisage separate extensions to trans­
formation and refinement calculi, and an embedding in a calculus of full program
annotations.

Although we have given a refinement relation </> [;;;; ¢/ on specifications, this does
not constitute a full refinement calculus (such as in (Morgan 1994)). The idea there
is to internalise specifications into programs and consider a refinement relation on
mixtures of specification and program. This is carried out in the author's forthcoming
PhD thesis. The structure imposed on specifications would help to partially automate
verification and derivation.

By extending the type system of >. x-+ to refinement types, we gain a simple no­
tion of program annotation, where variables on abstractions are labelled with logical
information. The ability to express information within a program context is useful.
Program reasoning and manipulation often requires facts which are true at some
local program point. For example, if it is known that variable n must be within cer­
tain bounds, then a programmer (or compiler) may be able to perform some partial
evaluation or optimisation.

The ability to express equality at a refinement type is useful in program transform­
ation. For example, we might want to transform a function of type nat -t nat, with
the prescription "maintain value on evens, and improve on odds (in some way)". We
can express (part of) this by saying that the terms are equal at the refinement type
even-t nat.

This account of specifications which brings equality to the fore should be espe­
cially useful in data refinement, where it is natural to consider different equalities at
the abstract and concrete types.

We believe that the principles outlined here are general enough to be applied to
structures other than those traditionally studied - data flow diagrams for example.
Since the logic is arbitrary (up to a point) we are not constrained by the type theory.
It would be an interesting line of research to see how type-theoretic and semantic
ideas could help there.

Acknowledgements
This work has benefited from discussions with my supervisors - Gordon Plotkin,

John Power and Marcelo Fiore. Conversations with Alex Bunkenburg, Healfdene
Goguen and James McKinna have also been useful. The presentation has been im­
proved by numero!l> suggestions from the anonymous referees.

Refinement types for specification 165

The author was supported by a postgraduate research studentship from the Engin­
eering and Physical Sciences Research Council while carrying out this research.

REFERENCES

Aspinall, D. (1995) Subtyping with singleton types, in 'Proceedings of Computer
Science Logic '94', Vol. 933 of LNCS.

Aspinall, D. & Compagnoni, A. (1996) Subtyping dependent types, in 'Proceedings
of the eleventh IEEE Symposium on Logic in Computer Science'.

Burn, G. L. (1992) A logical framework for program analysis, in J. Launchbury &
P. Sansom, eds, 'Proceedings of the 1992 Glasgow Functional Programming
Workshop', Springer-Verlag Workshops in Computer Science series, pp. 30-
42.

Burstall, R. & McKinna, J. (1992) Deliverables: A categorical approach to program
development in type theory, in 'Mathematical Foundations of Computer Sci­
ence : 18th International Symposium', Vol. 711 of Lecture Notes in Com­
puter Science, pp. 32-67. An earlier version appeared as LFCS Technical
Report ECS-LFCS-92-242.

Denney, E. (1997) Refining Refinement Types, in 'Informal Proceedings of Types
Workshop on Subtyping, Inheritance and Modular Development of Proofs',
University of Durham.

Denney, E. (1998) A General Theory of Program Refinement. PhD thesis, Depart­
ment of Computer Science, University of Edinburgh. Forthcoming.

Feferman, S. (1985) A theory of variable types, in 'Proceedings of the Fifth Latin
American Symposium on Mathematical Logic', Vol. 19 of Revista Colombi­
ana de Matematicas.

Freeman, T. & Pfenning, F. (1991) Refinement types for ML, in 'Proceedings of the
SIGPLAN'91 Symposium on Language Design and Implementation', ACM
Press, pp. 268-277.

Hayashi, S. (1994) Logic of refinement types, in 'Types for Proofs and programs',
Vol. 806 of Lecture Notes in Computer Science, Springer Verlag.

Henkin, L. (1950) Completeness in the theory of types. Journal of Symbolic Logic
15(2), 81-91.

Luo, Z. (1991) Program specification and data refinement in type theory. LFCS Tech­
nical Report ECS-LFCS-90-131, Department of Computer Science, Uni­
versity of Edinburgh.

McKinna, J. (1992) Deliverables: A Categorical Approach to Program Development
in Type Theory. PhD thesis, Department of Computer Science, University of
Edinburgh.

Mitchell, J. (1996) Foundations for Programming Languages, Foundations of Com­
puting Series, MIT Press.

Morgan, C. (1994) Programming from Specifications. Prentice Hall.
Nielson, H. & Nielson, F. (1988) Automatic binding time analysis for a typed A­

calculus, in 'Proceedings of the Fifteenth Annual ACM Symposium on Prin-

166 Programming Concepts and Methods

ciples of Programming Languages'.
Nordstrom, B., Petersson, K. & Smith, J. M. (1990) Programming in Martin-Lof's

Type Theory. Vol. 7 of Monographs on Computer Science, Oxford University
Press.

van Dalen, D. (1994) Logic and Structure. Springer-Verlag.

BIOGRAPHY

Ewen Denney is a final year PhD student at the Laboratory for the Foundations
of Computer Science in Edinburgh University, under the supervision of Professor
Gordon Plotkin and Doctor Marcelo Fiore. His research is on the theory of pro­
gram refinement, with an aim to characterising the logical and semantic structures
involved. He holds a Masters Degree from Imperial College and a Bachelors from
the University of Glasgow.

