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Abstract 
We introduce a framework to study stochastic systems, i.e. systems in which 
the time of occurrence of activities is a general random variable. We intro­
duce and discuss in depth a stochastic process algebra (named Q) adequate to 
specify and analyse those systems. In order to give semantics to Q, we also in­

troduce a model that is an extension of traditional automata with clocks which 
are basically random variables: the stochastic automata model. We show that 
this model and Q are equally expressive. Although stochastic automata are 
adequate to analyse systems since they are finite objects, they are still too 

·coarse to serve as concrete semantic objects. Therefore, we introduce a type of 
probabilistic transition system that can deal with arbitrary probability spaces. 
In addition, we give a finite axiomatisation for Q that is sound for the several 
semantic notions we deal with, and complete for the finest of them. Moreover, 
an expansion law is straightforwardly derived. 

Keywords 
Stochastic process algebras, stochastic automata, probabilistic transition sys­
tems, probabilistic bisimulations, real-time systems. 

1 INTRODUCTION 

In the world of performance modelling, many models have been defined to 
analyse and simulate systems such as queuing networks, stochastic Petri-nets, 
or generalised semi-Markov processes. It has been argued many times that, 
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with these models, the difficulty of the design and analysis of a system grows 
rapidly with the size and complexity of the system itself. 

In the last few years, this phenomenon has drawn the attention of many 
researchers into extending process algebras with stochastic and real-time fea­
tures [16, 11, 13, 4, 6, 5, ... ]. The so called stochastic process algebras consid­
erably simplify the tractability of complex systems because, in this framework, 
systems do not need to be modelled as a whole, but as a composition of small 
subsystems. Another advantage is that stochastic process algebras not only 
allow to study the performance of a system, but also its functionality. 

In this article, we have a three-folded purpose: we discuss a probabilistic 
transition system model based on general distributions, we introduce a stochas­
tic automata model which borrows ideas from both timed automata [2, 14] and 
generalised semi-Markov processes (GSMP, for short) [26, 10], and finally we 
introduce and discuss in depth a stochastic process algebra. 

Probabilistic transition systems (PTS, for short) have been widely studied 
in the context of discrete probabilities [25, 17, 12, 19, 23, 9, ... ]. However, 
the case with general distributions has received scant attention [13, 22]. In 
the first part of our paper we define probabilistic transition systems that deal 
with any kind of probabilistic spaces, including thus discrete, continuous, and 
singular. This generality allows the specification of real-time systems in which 
time constraints are not necessarily deterministic but dependent on random 
variables. Our definition is basically a generalisation and formalisation of [13]. 

Although PTSs are an adequate framework for the understanding of pro­
cesses with stochastic behaviour, they are highly infinite which makes them 
too difficult to deal with. Therefore, we also introduce the so-called stochas­
tic automata. A stochastic automaton is an automaton extended with clocks. 
Clocks are variables which take some random value which is set according to 
a given probability distribution. Once set, clocks count down, and when they 
reach value zero, they may enable certain transitions in the automaton. We 
define the semantics of stochastic automata in terms of PTSs. In fact, we de­
fine two different kinds of semantics: one when the stochastic automaton is 
regarded as a closed system, i.e., when the system is complete by itself and no 
external interaction is required, and the other when it is regarded as an open 
system, that is, a system that cooperates with the environment or is intended 
to be part of a larger system. Interpretation of stochastic automata as closed 
systems is adequate for the final analysis of the system, e.g. to study the per­
formance or to verify the whole system. Instead, the interpretation as open 
systems is appropriate to study compositionality and to analyse how systems 
behave in contexts. 

Compositionality is a major drawback in many existing models for perfor­
mance analysis such as queuing networks, stochastic Petri nets, or GSMPs, 
specially, in non-Markovian models. On the contrary, stochastic automata of­
fer an appropriate framework to straightforwardly compose systems. In fact, 
because of its simplicity, we use stochastic automata as the underlying seman-
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tics of a stochastic process algebra that allows to express general distributions. 
Actually, the stochastic automata model and the process algebra turn out to 
be equally expressive. In this way, the process algebra can be regarded as alan­
guage to describe stochastic automata. This result closely follows the method­
ology of [7] where a process calculus for timed automata was introduced. Since 
a stochastic automaton can be executed using discrete event simulation tech­
niques, the process algebra is called SPADES standing for stochastic process 
algebra for discrete event simulation, but we just write 0. 

Usually, the semantics of stochastic process algebras such as TIPP [11, 15], 
PEPA [16], and EMPA [4], is defined in terms of extended transition systems, 
which basically associate a distribution function to each transition. However, 
the inherent interleaving characteristic of transition systems demands a careful 
treatment of the definition of parallel composition. In traditional interleaving 
process algebras like CCS [18] the expansion law plays an important role: it 
says how parallel composition can be decomposed in terms of more primitive 
operations, namely, prefixing and non-deterministic choice. Stochastic process 
algebras extend prefixing into aF; P where F is a distribution function which 
determines the probability of the random delay after which the action a can 
happen. In this setting, the expansion law does no longer hold in general. To 
face this problem, the community has come up with different solutions. 

A first proposal, and the most widely accepted, has been to restrict the 
attention to exponential distributions. Their memory less property restores the 
expansion law [16, 15, 4]. Others have faced the general case [11, 13, 20] but the 
underlying semantic object usually becomes cumbersome and infinite, which 
makes it intractable. An alternative solution is to drop the expansion law by 
moving to true concurrency models [6], but for simple recursive processes, their 
semantic representations are infinite. 

We propose a more elegant solution for 0. We separate the stochastic infor­
mation from the action name. (We remark that a similar approach has been 
used in [13].) Instead of writing aF; P, we write ~xFH { XF }t-+a; P). The oper­
ator ~x F ~ . .. sets the clock x F according to the distribution function F, and 
the operation {xF }t-+ ... prevents the prefixing a; P to happen until clock XF 
has expired (i.e., reached value 0). This separation of concerns gives as a result 
a straightforward expansion law, and moreover, it introduces more expressive 
power. We observe that in principle any kind of (continuous, discrete, ... ) dis­
tribution function is allowed in this model, while we maintain a finite semantic 
object in a reasonable way (comparable to regular processes in CCS). 

The paper is organised as follows. Section 2 discusses probabilistic transi­
tion systems and probabilistic bisimilarity for general probability spaces. In 
Section 3, we define the stochastic automata model and study its semantics. 
In Section 4, we discuss 0 in depth including its semantics and axiomatisation. 
We discuss related work and further research in Section 5. 

The complete report of this article, including proofs, rigorous definitions, 
and detailed technicalities, is given in [8]. 
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2 PROBABILISTIC TRANSITION SYSTEMS 

In this section, we introduce the notion of probabilistic transition systems and 
probabilistic bisimulation. 

Preliminaries. Let IN be the set of non-negative integers. Let rn. be the set 
of real numbers and lR>o the set of non-negative reals. For n E IN, let mn 
denote the nth Cartesia~ product of rn.. In particular, ffi.0 ~f {0}. 

A probability space is a structure (0, :F, P) where 0 is a sample space, :F is a 
u-algebra on n, and Pis a probability measure on :F. In this work, we consider 
only probability spaces isomorphic to some Borel space defined in a real hyper­
space, whose coordinates come from independent random variables. We denote 
by 'R(F1, ... , Fn) the probability space (rn.n, B(rn.n), Pn) where B(rn.n) is the 
Borel algebra on rn.n and Pn is the unique probability measure obtained from 
F1 , ... , Fn, a given family of distribution functions. In particular, if n = 0, 'R() 
is the trivial probability space ({0}, {0, {0}}, Po) with Po in the obvious way. 
We refer to (24] for further reading. 

Let P = (0, :F, P) be a probability space. Let V : 0 -t 0' be an injective 

function. We lift V to subsets off! as usual: V(A) ~f {V(a) I a E A} and define 

:F' ~f {V(A) I A E :F}. Now, it is clear that, V(P) ~f (V(O), :F', p 0 v- 1 ) 

is also a probability space. Since V(P) is basically the same probability space 
asP, we say that Vis a decoration and we refer to V(P) as the decoration of 
P according to V. Decoration functions are a key concept in the probabilistic 
part of the stochastic automata semantics. 

Probabilistic transition systems. We introduce a transition system with 
probabilistic information. We allow any kind of probability spaces, includ­
ing continuous distributions. The definition of our model is inspired by [12] 
and [13], although we do not consider explicit timed transitions. 

Definition 1 Let Prob(H) denote the set of probability spaces (0, :F, P) such 
that n ~ H. A probabilistic transition system (PTS for short) is a structure 
T = (:E, :E', uo, C, T, ~)where 

1. :E and :E' are two disjoint sets of states, with the initial state u0 E :E. States 
in :E are called probabilistic and states in :E' are non-deterministic. 

2. C is a set of labels. 
3. T : :E -t Prob(:E') is the probabilistic transition relation. 
4. ~ ~ :E' x C x :E is the labelled (or non-deterministic) transition relation. 

l l l We denote u' ~ u for (u', £, u) E ~. and u' --ft for -.3u. u' ~ u. 0 

Since Tis defined as a (total) function, each probabilistic state has exactly one 
outgoing transition. It can be shown that if Prob(:E') contains only discrete 
probability spaces, PTSs are as expressive as the simple probabilistic automata 
of (23] and strictly more expressive than the class of reactive PTSs [17, 9]. 
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Since our interest is to deal with time information using PTSs, the set of 
labels we will use is C = A x IR2o, where A is a set of action names and 
IR2o is the set of non-negative real numbers, which are intended to denote the 
(relative) time at which an action takes place. We usually denote a(d) instead 
of (a, d) whenever (a, d) E C and it means "action a occurs right after the 
system has been idle for d time units". 

Probabilistic bisimulation. Probabilistic bisimulation was introduced 
in [17] for a class of PTSs dealing only with discrete probability spaces. This 
definition has been adapted in [9, 12, 23] for several variants of PTSs, all of 
them in a discrete probabilistic setting. Bisimulations have also been defined 
in settings where exponential distributions are involved [16, 15, 4]. [13] has de­
fined bisimulation in a continuous setting and [22] used a coalgebraic approach 
for the general setting. In essence, our definition coincides with the one in [13]. 

Definition 2 Let (I:,I:',O'o,C,T,---t) be a PTS. We define the function J.L: 

I; X P(I:') -+ [0, 1] by J.L(O', S) ~f if s n n E :F then P(S n n) else 0, 
provided that T(IT) = (0, :F, P). 

Let R be an equivalence relation on I; U I:' such that if 0'1 R1T2 then either 
0'1, 0'2 E I; or 0'1, 0'2 E I:'. Let I:' I R be the set of equivalence classes in I:' 
induced by R. Then R is a (probabilistic) bisimulation if, whenever 0' 1 R~T2 , for 
all S ~ I:' I R and £ E C, the following transfer properties hold 

1. J.L ( 0'1 , U S) = J.L ( 0'2, U S), if 0'1, O'z E I:; and 
2 e , . 1. e , d , R , .c ' "' 'f "'' . 0'1 ---+ 0'1 1mp 1es 0'2---+ 0'2 an 0'1 0'2, 10r some 0'2 E LJ, 1 0'1, O'z E LJ • 

Two states 0'1 and 0'2 are (probabilistically) bisimilar, notation 0'1 +-+ O'z, if 
there exists a probabilistic bisimulation R with 0'1 RIT2 . Two PTSs Tt and 12 
are bisimilar, notation Tt +-+ 72, if their respective initial states are bisimilar 
on the disjoint union of Tt and 12. 0 

It can be proven that +-+ is the largest probabilistic bisimulation, and hence, 
that it is an equivalence relation. 

Although, the definition of probabilistic bisimulation coincides with the tra­
ditional definitions in the discrete case, e.g. [17, 12, 23], we remark a necessary 
difference. In the discrete case, instead of property 1. above, it suffices to in­
sist that J.L(IT1 ,S) = J.L(IT2,S) where S E I:'IR, i.e., Sis an equivalence class 
instead of a set of equivalence classes. In our case, this would have been too 
weak due to the allowance of, for instance, continuous distribution function. 
For example, consider the PTSs 7i = ({IT},IR,IT,IR,T;,---t), i E {1,2}, where 

d ~ 0', and T1 ( 0') and T2 ( 0') are the probability spaces for a uniform dis­
tribution on [0, 1] and (1, 2], respectively. According to Definition 2, Tt and 
12 are not bisimilar, since they do not agree in their probabilities. However, 
the weaker property of the discrete case would have induced that the identity 
relation is a probabilistic bisimulation since the probability of a point in a 
continuous probability space is always zero. 
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3 THE STOCHASTIC AUTOMATON MODEL 

In this section, we introduce a new automaton model that allows us to rep­
resent processes with stochastic information. The basic idea is borrowed from 
timed automata [2, 14] by combining it with ideas of discrete event systems, 
in particular GSMPs [10, 26]. Besides, we study two different semantic models 
for stochastic automata. 

Stochastic Automata. We first enumerate all the ingredients of a stochas­
tic automaton and then give an example to explain the intuition behind the 
definition. 

Definition 3 A stochastic automaton is a structure (S, so, C, A,-, K, F) 
where: 

e S is a set of locations with s0 E S being the initial location. 
e C is a set of clocks. 
• A is a set of actions 
e - ~ S x (A x SJfin(C)) x S is the set of edges. We denote the edge 

(s, a, C, s') E- by s ~ s' and we say that Cis its trigger set. 
• K : S -+ SJfin (C) is the clock setting function. 
e F : C-+ (IR-+ [0, 1]) assigns to each clock a distribution function such that 

F(x)(t) = 0 fort< 0; we write Fx instead of F(x). 

Notice that each clock x E C is a random variable with distribution Fx. D 

As in [7], the information of which clock should be set is related to the loca­
tions. Clocks are randomly set according to a certain associated distribution 
function and they count down. A clock expires if it has reached the value 0. 
The occurrence of an action is controlled by the expiration of clocks. Thus, 
whenever s ~ s' and the system is in location s, a happens as soon as all 
the clocks in the trigger set C have expired. Immediately afterwards all clocks 
in K(s') are randomly set according to their respective distributions. 

Example 1 Figure 1 represents a switch that controls a light. In the picture, 
circles represent locations, variables enumerated in each location are the clocks 
that are to be set according to the function K, and edges are represented by 
the arrows. The initial location is represented by a small ingoing arrow. The 
distribution function of each clock is given beside the picture. 

The switch may be turned on at any time according to an exponential dis­
tribution with average of 30 minutes, even if the light is still on. It switches 
automatically off exactly 2 minutes after the most recent time the light was 
switched on. Since we considered that exactly 2 minutes must pass before the 
light is turned off, y is a random variable that takes value 2 with probability 
1. Notice that we can easily change the system to consider that clock y is not 
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F.,(t) = 1- e-iot 

{ 0 ift<2 
Fy(t)= 1 ift~2 

on,x 

Figure 1 The switch 

precise and has a drift off units of time. If, for instance, we assume that such 
a drift is uniformly distributed, then y would become a random variable with 
a uniform distribution in [2- f, 2 + €]. D 

Actual behaviour. In this subsection, we define the semantics of stochastic 
automata when it is regarded as a closed system. A closed system is a system 
which is considered complete by itself and no external interaction is needed. In 
this kind of system one not only models the components of the intended system 
but also the environment with which it interacts. In this way, the activity of the 
whole system can take place as soon as it becomes ready to be executed since 
there is no external agent that may delay its execution. That is, closed systems 
respond to the maximal progress property. We refer to this interpretation as 
the actual behaviour. 

First, we introduce some background concepts, then we state which are the 
probabilistic spaces that we use, and finally we define the actual behaviour of 
stochastic automata. 

A valuation is a function v : C -+ JR. Let V be the set of all valuations. If 
dE IR>o, we define v- d by 'Vx E C. (v- d)(x) ~f v(x)- d. For simplicity, 
assume- the set C of clock is totally ordered. Thus, if C ~ C, we write C for 
the ordered form of C and C(i) for its i-th element. Let C ~ C, n = #C, and 
D E IRn. We define v[C t-t D] by 

v[C +-~D](y) ~f { vD(y()i) if y = C(i), for some i E {1, ... , n} 
otherwise 

Let (S, so, C, A,---+-, K:, F) be a stochastic automaton. Let s be a location 
in S and let n = #K:(s). Let v be a valuation in V. Define V~ : IRn -+ 

{s} X v X {1} by V~(lJ) ~f (s, v[K:(s~t-tlJ], 1). Notice that v~ is injective. In 
the next definition we will use the probability space n(Ft, ... , Fn) decorated 
according to some V~. 

Definition 4 Let SA = (S, so, C, A,---+-, K:, F) be a stochastic automaton. 
The interpretation (or the actual behaviour) of SA in a valuation v0 is given 

by the PTS !:,(SA)~ ((SxVx{O}), (SxVx{1}), (so, v0 , 0), AxiR~ 0 , T, ~) 
with T and ~ defined as follows 

P b ~ = (x1, .. . ,xn) 
ro T(s,v,O) = V~(n(F.,., ... ,F.,,)) 
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s a,c s' dEffi>o VxEC.(v-d)(x):SO 

Vd' E [0, d). Vs ~. 3y E C'. (v- d')(y) > 0 

( s, v, 1) ~ ( s' , ( v - d) , 0) 
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We say that an edge s -.:!.4- s' is enabled in a valuation v if it induces a 
non-deterministic transition outgoing from (s, v, 1). In particular, notice that 

s ~ s1 is enabled for any valuation v. D 

Notice that, according to Definition 4, for each location s and valuation v 

there is exactly one probabilistic transition since V~ is injective. So, for any 
stochastic automaton SA and any valuation vo, Ita(SA) is indeed a PTS. 

Rule Prob considers the setting of the clocks. Since the values of the clocks 
are assigned randomly, a probabilistic transition corresponds to this step. No­
tice that this definition relies on the definition of V~ on probability spaces. 
Rule Act explains the case of triggering an edge. So, for the occurrence of an 

action a at time d according to an edge s a,c s', we check that all the clocks 
in the trigger set C have already expired at time d. This part is considered by 
the satisfaction of the predicate Vx E C. (v- d)(x) :::; 0. Moreover, it should 
be the case that no edge was enabled before. That is, any edge must have an 
active (i.e. positive) clock at any valuation "previous" to v- d. In this way, the 
edge is forced to occur as soon as it becomes enabled. So, the maximal progress 

b C' 
is checked by the formula Vd' E [0, d). Vs ....1...+-. 3y E C'. (v- d')(y) > 0. 
For the reader familiar with timed automata [2, 14], we may say that the 

first constraint corresponds to the guard of the edge s -.:!.4- s', and the second 
constraint is the invariant of location s. 

Example 2. To understand the formal se­
mantics, we consider a simple example. Fig­
ure 2 represents an alarm bell that rings ran­
domly between 10 and 11 seconds according 

~ring \:_)Jx 
Figure 2 The alarm bell 

to a uniform distribution. We define clock x to be a random variable with a 
uniform distribution function Fx in the interval [10, 11]. If s is the only location 
of the alarm bell, its PTS is given by 

I;= {(s, Xf--ld, 0) IdE IR} 

T(s,v,O) = V~(R.(Fx)) 

I;' = { (s, Xf--ld, 1) I dE IR} 

ring( d) 
(s, X :=d, 1) ~ (s, X :=d, 0) (if d 2:: 0) 0 

We can extend the definition of probabilistic bisimulation to stochastic au­
tomata as follows. 

Definition 5 Two stochastic automata SA1 and SA 2 are (probabilistically) 
bisimilar, notation SA 1 H SA2 , if, for every valuation v, their interpretations 
are bisimilar, i.e., I,1(SA!) H I,1(SA2 ). D 
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Potential behaviour. In this subsection, we define the behaviour of a 
stochastic automaton as an open system. An open system is a system that 
interacts with its environment. The environment can be a user or another sys­
tem. Basically, an open system is a component of a larger system. When a 
stochastic automaton describes an open system, the semantics given in Def­
inition 4 does not suffice. In an open system, an action that is enabled may 
not be executed until the environment is also ready to execute such an action. 
Therefore, an activity may not take place as soon as it is enabled. This kind 
of behaviour is appropriate to study compositionality. In fact, it turns out 
that probabilistic bisimilarity is not a congruence for some basic operations on 
stochastic automata, such as parallel composition. This has to do with the race 
condition on the branches of the stochastic automata. Fastest branches (i.e. 
branches which are enabled) may be disallowed or slowed down when the sys­
tem is embedded in some context, and therefore, slower branches, which could 
not be executed in isolation, may become enabled in the composed stochastic 
automata. For a discussion of this phenomenon, we refer to Example 4. 

Therefore, we need to consider not only the actual behaviour of a stochastic 
automaton, but also its potential behaviour. The potential behaviour is in prin­
ciple the actual behaviour with a larger non-deterministic transition relation. 
A non-deterministic transition in the potential behaviour represents the fact 
that an edge is potentially executable at any time after it becomes enabled. 

Definition 6 Let SA = (S, s0 , C, A,-, K, F) be a stochastic automaton. 

The potential behaviour of SA in a valuation v0 is defined by the PTS If:o (SA) ~r 
((S x V x {0} ), (S x V x {1} ), (so, v0 , 0), Ax IR>o, T, ~),where Tis defined 
by rule Prob as in Definition 4 and ~ is defined as follows 

s ~ s' dE IR>o Yx E C. (v- d)(x) :S 0 
Pot --------------~~--------~--~~=-

( s, v, 1) ~ ( s' , ( v - d) , 0) 0 

The difference between the actual and the potential behaviour relies on rules 
Act and Pot. To be precise, Pot is the same as rule Act where the constraint 
of maximal progress has been omitted. 

Definition 7 Two stochastic automataSA1 and SA2 are potentially bisimilar, 
notation SA 1 f-+p SA2 , if, for every valuation v, their potential behaviours are 
probabilistically bisimilar, i.e., !/:(SAl)++ I(;(SA2). 0 

The following theorem states that it is always possible to recover the actual 
behaviour from the potential behaviour. 

Theorem 8 Let SA be a stochastic automaton and let If:o(SA) and !:,(SA) 
be its potential and actual behaviour in v0 E V, respectively. The two following 
statements are equivalent 
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1. (s, v, 1) ~ (s1 , v1 , 0) and for all d1 E [0, d), bE A, (s, v, 1) ~ 
2. (s, v, 1) ~ (s 1 , v1 , 0) 

As a consequence, we have that potential bisimulation is strictly finer than 
probabilistic bisimulation. That is, for two stochastic automata SA1 and SA2, 
SA1 Hp SA2 implies SA1 +-t SA2. 

Structural bisimulation. Often, we can check if two stochastic automata 
are equivalent just by inspecting their structure, without the need to study 
their actual or potential behaviour. Thus, we define a stronger notion of equiv­
alence which we call structural bisimulation. We also state that this relation 
is finer than potential bisimulation. 

Definition 9 Let ( S, so, C, A,-, "'' F) be a stochastic automaton. A rela­
tion R ~ S x S is a structural bisimulation if R is symmetric and whenever 
s1 Rs2 , for all a E A, C ~ C, the following transfer properties hold: 

1 ~I • l" 3 I ~ I d IR I . s1 s1 Imp 1es s 2. s2 s2 an s1 s2; 
2. "'(sl) = x:(s2) 

If R is a structural bisimulation such that s1 Rs2 , we denote s1 ~ s2 and we say 
that s1 and s 2 are structurally bisimilar. Two stochastic automata SA1 and 
SA2 are structurally bisimilar, notation SA1 ~ SA2, if their respective initial 
locations are structurally bisimilar on the disjoint union of SA 1 and SA2 . D 

Following standard results on bisimulation, we can prove that ~ is the 
largest structural bisimulation, and moreover, that it is an equivalence relation. 

It is clear that two stochastic automata may be potentially bisimilar but 
not structurally bisimilar. Instead, structural bisimulation implies potential 
bisimulation, and hence probabilistic bisimulation, too. 

Theorem 10 Let SA1 and SA2 be two stochastic automata. If SA1 ~ SA2 
then SA1 fu SA2. 

4 SPADES 

In the following we introduce SPADES, denoted by 0 and standing for stochastic 
process algebra for discrete event simulation. The methodology that we follow 
to define the syntax and the semantics is close to results in [7] where a process 
algebra for timed automata was introduced. 

Syntax. Let A be a set of actions. Let CN be a set of clock names and V:F 
a set of distribution functions. We define C ~ CN x V:F to be the set of clocks. 
We denote xa for (x, G) E C. We define the distribution assignment function 

F: C -t (IR -t [0, 1]) by the second projection, i.e., F(xa) ~f G. 
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Definition 11 Let V be a set of process variables. The syntax of 0 is defined 
according to the following grammar: 

p stop I a; p I C~p I P + P I ~C~p I 
PI lAP I p lLAP I PIAP I p[f] I X 

where C ~Cis finite, a E A, A~ A, f : A-+ A, and X E V. A recursive 
specification E is a set of recursive equations having the form X = p for each 
X E V, where p E 0. Every recursive specification has a distinguished process 
variable called root. 0 

Process stop represents inaction; it is the process that cannot perform any 
action. The intended meaning of a; p (named (action-)prefixing) is that action 
a is immediately enabled and once it is performed the behaviour of pis exhibit. 
C~p is the triggering condition; process p becomes enabled as soon as all the 
clocks in C expire. p + q is the choice; it behaves either as p or q, but not 
both. We remark that the passage of time does not resolve the choice if the 
process is regarded as an open system; if instead it is regarded as a closed 
system, the fastest process is the one to be executed. This last case is known 
as the race condition. The clock setting operation ~C~p sets the clocks in C 
according to their respective distribution function. We choose a LOTOS-like 
parallel composition. Thus, PIIAq executes p and q in parallel, and they are 
synchronised by actions in A. We should remark that synchronisation may 
happen if both processes are ready to do it. We also introduce the operators 
lLA and lA (named left and communication merge respectively) in order to 
finitely axiomatise the parallel composition. Finally, the renaming operation 
p[f] is a process that behaves like p except that actions are renamed by f. 

Example 3 As a simple example, we give the specification of the switch de­
scribed in Example 1. 

Arrival ~xaH xa }~on; Arrival 

Switch0 tr 

Switchon 

System 

on; Switchon 

on; Switchon + ~YK HYK }~off; Switchotr 

Arrivalll{on} Switchotr 

In this case G is an exponential distribution with rate 310 and K is the distri­
bution function that gives probability 1 to the value 2. Process Arrival models 
the arrival of people which occurs exponentially distributed with average of 30 
minutes. Switch models the switch itself which initially is off. Notice that the 
switch is always enabled to accept an "on" and hence no clock controls this 
activity on the switch part of the S;}lstem. Process System describes the whole 
system, allowing people to turn on the switch, i.e., process Arrival and Switch 
should synchronise on the action on. 0 

In the sequel, we need the notion of free and bound clock variables. Let 
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Table 1 Stochastic automata for 0 (X = p E E 

~~:(stop)= 0 ~~:( ~C~p) = C u ~~:(p) ~~:(p + q) = ~~:(p) u ~~:(q) 

~~:(a;p) = 0 ~~:(Ct-+p) = ~~:(p) ~~:(pjjAq) = ~~:(p) U ~~:(q) 

~~:(p[f]) = ~~:(p) ~~:(pllAq) = ~~:(p) U ~~:(q) 

~~:(ck(p)) = 0 ~~:(X)= ~~:(p) ~~:(pjAq) = K(p) U ~~:(q) 

a;p ....!!4- P ..24- I ..24- I p p p p 
a1:A 

p+q-24-pl PIIAq .!!4- P111Ack(q) 
p~pl 

q + p .!!4- PI qJJAP ..24- ck(q)JIAP1 

~C~p~p~ PliAq ..24- P1 11Ack(q) 

p~pl 
..24- I p p 

p[f]~P1 [f] Ct-+p a,cuq,1 pi p .!!4- PI ~I q q 
aEA 

p .!!4- PI p ..24-pl PIJAq a,cuq,1 P11JAq1 

X .!!4-pl ck(p) .!!4- p1 PJAq a,cuq,1 P111Aq' 

p E Q. A clock xis free in p if p has a subterm Ct-+q with x E C that does not 
appear in a context ~C1 ~ ••• with x E C1 • A clock xis bound in p if p has a 
subterm ~C~q such that x E C. We denote by fv(p) and bv(p) the sets of free 
and bound clock variables respectively. 

Semantics. As we already said, compositionality is a major drawback in 
many models for performance analysis, specially in those with the general­
ity of stochastic automata. Instead, stochastic automata can be composed 
straightforwardly. In fact, we use stochastic automata to give semantics to 0 
in a structured operational (i.e., SOS) manner. In order to define the automa­
ton associated to a parallel composition, we need to consider the additional 
operation ck. ck(p) is a process that behaves like p except that no clock is set 

at the very beginning. We denote this extended language by OCk.. The sets of 
free and bounded variables for ck(p) are defined by fv(ck(p)) = fv(p) U x:(p) 
and bv{ck{p)) = bv(p), where x; is defined in Table 1. 

To associate a stochastic automaton to a given term, we need to define the 
different parts of the stochastic automaton. We start by defining the clock 
setting function x; and the set of edges - as the least relations satisfying 
the rules in Table 1. However, not all the processes can have a straightforward 
stochastic automaton as a semantic interpretation. To do so, clock names must 
be considered with care as we see as follows. Consider the process 

_...,.-----·-..,"""~ 

p = ~x;Ha; {~a}t-+{ ~xa, YH~{yH }t-+b; stop)) {1) 

The second occurrence of xa is intended to be bound to the outermost clock 
setting as shown by the grey arrow. Using the rules in Table 1, the following 
stochastic automaton would be obtained 
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~ a, 0 (;;;\ b, {xc, YH LQ 
~~ 

In this sense, xc would be captured by the innermost clock setting as shown 
by the black arrow in (1). Therefore, we consider that clocks are different if 
they are set in different places, although they may have the same name. Clock 
capture may also occur in contexts with summations and parallel composition. 

Capture of variables is a well known problem in languages with variables 
that can be solved by considering terms modulo a-congruence. It is indeed the 
solution that we adopt, although for recursive terms special care is needed. 
However, we would like to characterise processes which have conflict of vari­
ables since it is also relevant for the axiomatisation. In fact, we will see that the 
axiomatisation is sound and complete for structural bisimulation, and hence 
it becomes important that the scope and binding of clocks is correct since this 
relation considers clock names. 

A first approach to characterise processes with conflict of variables could be 
purely syntactic. However, this notion turns out to be too strong. Although 
process p above is problematic, process Pli{a}stop does not introduce any 
problem since its associated stochastic automaton will not have any outgoing 
edge. In fact, it is evidently equivalent to ~xc~stop. 

Therefore, we need a dynamic characterisation of processes which do not 
have conflict of variables. A process p does not have conflict of variables if 

no clock is illegally captured, that is, for every path p = Po ~ p1 ~ 
P2 · · ·Pn-1 ~ Pn, for every subterm q of p;, i E {0, ... , n}, which is not in 
the scope of a prefix, the following conditions holds: 

1. q = C....-+q' implies c n K(q') = 0 
2. q =: q1 + q11 implies K(q') n K(q11 ) = fv(q') n K(q11 ) = K(q1 ) n fv(q 11 ) = 0 
3. q = q'IIAq11 , q'[LAq11 , or q'IAq" implies bv(q')nvar(q") = var(q')nbv(q") = 0 

Definition 12 Let p be a process without conflict of variables. The stochastic 

automaton associated top is defined by [p] ~f (OCil, p, C, A,-+-, K, F), where 
- and r;, are defined in Table 1, and C, A and F are defined as for the 

syntax of Q. D 

The reader is invited to check that the processes of the switch system de­
fined in Example 3 do not have conflict of variables, and that the stochastic 
automaton associated to the process System is the one depicted in Figure 1 
modulo the identification of ck(ck(p)) and ck(p), for all p. 

As we said, the restriction to processes which do not have conflict of variables 
is not an actual problem, since we can always properly rename clocks in any 
(guardedly defined) process to obtain another process which does not have 
conflict of variables. With "properly" we mean that the distribution function 
associated to the clock must be preserved. For instance, p can be a-converted 
into ~xc~(a; {xc}....-+( ~zc, YHHYH }....-+b; stop)). 
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Relating stochastic automata and terms. In the following we study 
the connection between stochastic automata and recursive specifications. We 
show that guarded recursive specifications and finitely branching stochastic 
automata are equally expressive. In order to do so, we need to define the notion 
of guarded specification and finitely branching. A process variable is guarded 
if all its occurrences appear in a context of a prefix. A recursive specification 
E is guarded if X = p E E implies that all variables in p are guarded. A 
stochastic automaton is finitely branching if for every location s, its set of 

outgoing arrows { s ~ s' I a E A, C E C, s' E S} is finite. Now we can state: 

Proposition 13 Let E be a guarded recursive specification with root X. As­
sume E does not have conflict of variables. Then [X] is finitely branching. 

0 has the property of expressing any (finitely branching) stochastic automaton. 
The proof of Theorem 14 follows closely the ideas of a similar theorem in [7]. 

Theorem 14 For every finitely branching stochastic automaton SA there is a 
guarded recursive specification E with root X such that the reachable part of 
SA and the reachable part of [X] are isomorphic. 

Bisimulations in 0. We extend the notion of probabilistic bisimulation, 
potential bisimulation and structural bisimulation to 0 in the obvious way. Let 
p, q E 0. We say that p and q are probabilistically, potentially, or structurally 
bisimilar, if their respective associated stochastic automata are. We use the 
notation p ++ q, p ++p q, and p ~ q, respectively. 

In Section 3, we have already anticipated that probabilistic bisimilarity is 
not a congruence. This is shown by the following example. 

Example 4 ++ is not a congruence for parallel composition. Processes p1 = 
a; stop+ ~xaHxa}~b;stop and P2 =a; stop+ ~xaHxa}~c;stop (b f:. c) 
are probabilistically bisimilar if G(O) = 0, since in both cases, only the action 
a at time 0 can be performed. However, p1 il{a}stop and p2 il{a}stop are not 
bisimilar. In this context, the execution of action a is preempted since there is 
no possible synchronisation, and b or c may happen (at a certain time greater 
than 0). This example is depicted in Figure 3. The reader is invited to check 
that ++ is neither a congruence for the triggering condition. D 

This is precisely the kind of situations that occur when dealing with open 
systems, and hence they justify the introduction of potential bisimulation. The 
next theorem states that ++ p is a congruence for the operations in 0. 

Theorem 15 Let p, q E 0 such that p f±.p q. For any context C[] containing 
the operations stop, a;, C~, ~C~, +, IIA, ll_A, lA, or[!], and such that C[p] 
and C[q] do not have conflict of variables, it holds that C[p] t+p C[q]. 
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Figure 3 Bisimilarity is not a congruence 

Besides, we have the result that structural bisimulation is a congruence for 
all the operations (including ck). 

Theorem 16 Let p, q E r;;lk such that p ~ q. For any context C[ ] containing 
the opemtions stop, a;, C.-+, ~C~, +, IIA, [lA, lA, [!], or ck, it holds that 
C[p] ~ C[q]. 

The proof of Theorem 15 is quite involved since it has to be done in a 
traditional way: a relation is given for each case and it is proven to be a 
potential bisimulation (up to f-tp ). Instead, the proof that ~ is a congruence 
uses the results of [3] since rules in Table 1 can be easily rewritten into path 
format. 

Another important result that we would like to highlight is that proper 
renaming of variables preserves potential bisimulation. It is important indeed 
because it justifies the fact that we can always properly rename clocks to obtain 
processes without conflict of variables as we claimed before. 

Structural axioms. In this paragraph, we give a set of axioms for 0. 
We study the so-called structural axioms. These axioms preserve structural 
bisimulation. We show that they allow to rewrite any (closed) term into a basic 
or normal form. Moreover, we show that parallel composition and renaming 
can be eliminated in favour of the basic operations stop, a;, C.-+, ~C~ and+. 
When convenient, we consider terms modulo a-conversion. 

Axioms in Table 2 can be explained as follows. The choice is commutative 
(Al) and associative (A2). Axiom A3 states a kind of idempotency of + 
and A4 states that stop is the neutral element for+. Axioms Tl-T5 show 
the way in which triggering conditions can be simplified. T3 defines how to 
reduce nested triggering conditions into only one. Axioms T4 and T5 say how 
to move clock settings and summations out of the scope of a guard. Sl says 
that it is irrelevant to set an empty set of clocks. S2 gathers all the clocks 
settings in only one operation and S3 moves clocks settings out of the scope 
of a summation. 

Axioms Rl-R5 define the renaming operation. The way in which they op­
erate is more or less standard in process algebra. 

Axioms PCl and PC2 move clock settings out of the scope of the parallel 
composition. This is necessary because when expanding parallel composition 
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Table 2 Structural axioms for 
p + q = q + p Rl stop[f] = stop 
(p + q) + r = p + (q + r) R2 (a;p)[f] =a; (p[f]) 
a;p + a;p = a;p R3 (Ct-+p)[f] = Ct-+p[f] 
p +stop= p R4 ( ~C~p)[f] = ~C~p[f] 

Ct-+stop = stop 
0t-+p = p 
Ct-+C't-+p = C u C't-+p 
Ct-+~C'~p = ~C'~Ct-+p 
Ct-+(p + q) = Ct-+p + Ct-+q 

~0~p = p 
~c~~c'~p = ~c u c'~p 
~C~p + ~C'~q = ~C u C'~(p + q) 

(~C~p)IIM = ~C~(PIIAq) 
PIIA(~C~q) = ~C~(PIIAq) 
PIIAq = P[LAq + qli_AP + PIAq 

stopli_Aq =stop 
a;pli_Aq =stop 
a;pli_Aq =a; (PIIAq) 
(Ct-+p)lLAq = Ct-+(pli_Aq) 
( ~C~p) li_Aq = ~C~(Pli_Aq) 
pli_A( ~C~q) = ~C~(Pli_M) 
(p + q)u_Ar = (pli_Ar) + (qli_Ar) 

PIAq = qiAP 
stopiAstop =stop 
stopiAa; q =stop 
a;piAb; q =stop 
a;piAa; q =a; (PIIM) 
(Ct-+p)IAq = Ct-+(PIM) 
( ~C~p)IAq = ~C~(PIAq) 
(p + q)IAr = (PIAr) + (qiAr) 

R5 (p + q)[f] = p[f] + q[f] 

if en c' = 0 

if C n fv(q) = C' n fv(p) = 0 

if C n var(q) = 0 
if C n var(p) = 0 
if B'(p) A B'(q) 

if B'(q) 
if B'(q) A a E A 
if B'(q) A a rf_ A 

if C n var(q) = 0 
if C n var(p) = 0 
if B'(r) 

if a rf_ A 
if a E A 

if C n var(q) = 0 
if B'(r) 

B'(stop) 
B'(a;p) UB3 

B'(p) 
B'(Ct-+p) 

UB4 
B'(p) B'(q) 

B'(p + q) 

141 

in terms of summations, we do not want to duplicate clocks. Duplicating clocks 
would transform processes without conflict of variables into (semantically dif­
ferent!) processes with conflict of variables. PC3 decomposes the parallel com­
position in terms of the left merge and the communication merge provided no 
clock setting is wrongly duplicated. LM1-LM7 and CM1-CM8 define the 
left merge and the communication merge respectively. The predicate B' de­
fined by the rules UB1-UB4 encodes information about ck. In fact, for all 
guarded processes such that B'(p) can be proven using axioms UB1-UB4, it 
holds that ck(p) ~ p. We do not want to have ck in our axiomatisation since 
it does not preserve f-+p. 

We observe that idempotency is not generally true in Q. Consider the process 
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p = ~xaHxa}l-ta;stop where G is uniform on [0,2). The probability that a 
occurs in the interval [0, 1) in process p is ~. while in process p + p such 
probability is ~- It follows that p !/±p + p and so they are not related by finer 
bisimulations. Although axiom A3 already states a notion of idempotency a 
more general property is C~-ta; p = C~-ta; p + C~-ta; p which we call A3' and 
can be derived from the axioms A3 and T5. 

Axioms in Table 2 are sound for structural bisimulation. An immediate 
consequence is that they are also sound for potential and probabilistic bisimu­
lation. Besides, it can be easily checked that the axioms preserve the property 
of non-conflict of variables. The side conditions in Table 2 are essential for this 
to hold. 

Theorem 17 Let p, q E 0 such that p = q can be proved from axioms zn 
Table 2. Then we have, 

1. p does not have conflict of variables if and only if neither q does; and 
2. if they do not have conflict of variables, then p ~ q. 

An interesting property that is derived from these axioms is that every term 
can be expressed in a normal form. 

Definition 18 Define the set B ~ 0 of basic terms inductively as follows: 

e stopE B' 
e p E B, C E g:Jfin(C) and a E A =::::} C~-ta;p E B' 
e p, q E B' =::::} p + q E B' 
e p E B' and C E g:Jfin(C) =::::} ~C~p E B 

B' ~ 0 is the set of all terms whose clock settings are all within the scope of 
a prefix construction. (Notice that p E B' implies B'(p).) A basic term has the 
general form (modulo A1, A2, A3' and A4) 

p = ~c~ (l::;EJ C;~-ta;;p;) 

where each p; is a basic term, and I:iEJ q; ~f q1 + · · · + qn for I= { 1, ... , n }. 

In l?articular, l::;E0 q; ~stop. D 

Theorem 19 Let Cf (~ 0) be the set of all finite (or closed) terms, i.e., 
terms which do not contain process variables. For every term p E Oc there is 
a term q E B such that p = q can be proven by means of the basic axioms and 
a-converszon. 

The set of axioms given in Table 2 is complete for structural bisimulation 
on the set oc. Theorem 19 is essential for the proof of completeness. Since 
a-conversion does not imply structural bisimulation, we must ensure that it 
is not used in the proof of Theorem 19. To do so, it is enough to restrict to 
terms without conflict of variables because of Theorem 17. 
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Theorem 20 Let p, q E Cf be two terms without conflict of variables. Suppose 
p = q can be derived from the axioms in Table 2 (but not a-conversion!). Then 
pt:!;q. 

One of the reasons why many approaches to stochastic process algebras stick 
to only exponential distributions [16, 15, 4, ... ] is that general distributions do 
not preserve Milner's expansion law in their models. In other cases, combining 
the expansion law with general distributions lead to infinite and sometimes 
quite complicated models [11, 13, 20]. In our case, the expansion law is inherent 
in the model and the way parallel composition is defined, and can be smoothly 
derived from the axioms as stated by the following theorem. 

Theorem 21 (Expansion Law) Let p, q E 0 such that p = ~C~p' and q = 
~C'~q' with p' = l:C;~a;;p; and q' = I:Cj~bj; qj. Suppose PliAq does not 
have conflict of variables. From the axioms in Table 2 we can derive 

PiiAq = ~CUC'~ ( l:a,(i!AC;~a;;(p;liAq') + l:b;(i!ACj~bi;(p'liAqj) 

) 
For clarity, we did not include the renaming operation. This, however, could 
be done straightforwardly. 

Example 5 The reader is invited to check that, using the axioms, the process 
System of Example 3 can be re-written into the following expression. 

System 

Syson 

Sysoff 

~xaHxa}~on; Syson 

~xa, YK~( {xa}~on; Syson + {YK }~off; Sys0 ff) 

{ xa }~on; Syson 

Its associated stochastic automaton is indeed the one depicted in Figure 1. 0 

5 FURTHER DISCUSSIONS 

Related work. Apart from the Markovian process algebras [16, 15, 4, ... ] , 
some general stochastic process algebras have been introduced. 

TIPP [11] is the earliest approach to the general case. Its syntax has the 
integrated prefix ap; p which in 0 corresponds to ~xpHxF }~a;p. Its seman­
tics is based on labelled transition systems in which transitions are decorated 
with the associated distribution function and, to keep track of the execution 
of parallel processes, a number that indicates how many times an action has 
not been chosen to execute. This number introduces infinite semantic objects, 
even for simple regular processes. [20] has followed a similar approach to give 
semantics to a stochastic extension of the 1r-calculus. In this case transitions 
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are decorated with locality information to keep track which process performed 
it. 

In [13], a process algebra for discrete event simulation is introduced. The 
concerns of randomly setting a timer, expiration of such a timer, and actual 
activity are splitted in a rather similar way to ours. The semantic model is 
similar to our PTSs but with explicit time transitions, and hence semantic 
objects are usually highly infinite. The process algebra includes an urgent and 
a delayable prefixing, so its interpretation combines both views of closed and 
open system. 

[6] studies a semantic for a process algebra similar to TIPP in terms of a 
stochastic extension of event structures. This model seems to be more natural 
to deal with general distributions since activities that are not causally depen­
dent (i.e. concurrent activity) are not related in the model, contrarily of what 
occurs in interleaving based models. However, recursive processes always have 
associated an infinite semantic object. 

A general semi-Markovian process algebra based on EMPA [4] is discussed 
in [5]. Terms in this process algebra have semantics in an interleaving based 
model. Finiteness of the associated semantic object is kept in a reasonable 
way. As a price to pay, the way to give semantics is quite cumbersome and not 
only the transitions are decorated with many information (as for instance the 
locality of the occurrence of an action) but also the states. 

Among the above enumerated stochastic process algebras, [13] is the closest 
to Q. As Q, [13] also allows non-determinism. In all the other cases (including 
the Markovian process algebras), choice is always solved either probabilistically 
or by the race condition. We also mention that none of [11, 20, 6, 5] discusses 
an axiomatic theory for their respective stochastic process algebras. 

Conclusions and further work. We introduced new models to analyse 
stochastic and real-time systems. We discussed in depth a stochastic process 
algebra whose expressivity is richer than existing ones. We showed that this 
process algebra and its underlying semantic model, the stochastic automata, 
are equally expressive. We gave an axiomatisation and we showed that the 
expansion law can be straightforwardly derived from them. Besides, we have 
defined a general probabilistic transition system. We have used it as seman­
tic model of the stochastic automata. In fact, we gave two different ways of 
assigning a PTS to a stochastic automaton, so we may understand systems 
either as closed or open. 

It is worthwhile to notice that 0 is a conservative extension of the basic CCS 
(i.e. the sublanguage containing only prefixing, summation and stop) in both 
semantic and axiomatic sense. Besides, it can be proven that equivalences ++, 
++p, and ~ turn out to be the same in the non-stochastic sublanguage of Q, 
that is, the set of all the terms in which operations ~C~ and Ct-+ do not occur. 

We should remark a couple of works we have already done regarding stochas­
tic automata and discrete event simulation. The first is that the actual be­
haviour of stochastic automata leads to an algorithm for discrete event sim-
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ulation. We use the notion of adversaries or schedulers [25, 23) to resolve 
non-deterministic choices. Since parallel composition of stochastic automata 
can be easily defined (actually, it is the one of 0), the simulation algorithm can 
compose the complete stochastic automaton on the fly, which reduces the state 
space explosion problem. Secondly, we already know that stochastic automata 
properly contain a wide class of GSMPs. We will report in detail about these 
works in the near future. 

From the results reported in this paper and the observations just mentioned, 
we believe that our models are quite suitable to specify and analyse stochastic 
systems and real-time systems. But to go further in this direction many things 
have still to be done. First of all the axiomatisation for Ois not sufficient as it is. 
Axioms for potential bisimulation as well as laws for probabilistic bisimulation 
have to be introduced. A clear example of this need is that terms p, and ~C~p 
are potentially bisimilar provided C n fv(p) = 0. However, equality p = ~C~p 
cannot be proved from the axioms in Table 2, which is reasonable because p 
and ~C~p are not necessarily structurally bisimilar. 

As we pointed out we have a method to simulate stochastic automata (and 
hence terms in 0). However, analytical methods are far more effective to study 
the correctness of a system. Usually errors are events with low probability, so 
the use of simulation may not guarantee that they are not present or that 
their probability is low enough to be considered. Model checking has proven 
to be a powerful tool to verify timed systems. Some early papers like [1) have 
shown the possibility of borrowing ideas from model checking on timed au­
tomata and applying them to stochastic systems. Our work will also address 
the use of model checking on stochastic automata. Besides, we will investigate 
on the possibility of borrowing from analytical methods already used in the 
performance analysis community, so it can be applied to study analytically the 
performance of systems modelled in Q. 
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