
12
An Algebraic Approach to the
Specification of Stochastic
Systems (Extended Abstract)
P. R. D'Argenio1 ~ J.-P. Katoen2 , and E. Brinksma1

1 Dept. of Computer Science. University of Twente.
P. O.Box 217. 7500 AE Enschede. The Netherlands.
{dargenio,brinksma}@cs.utwente.nl

2 Lehrstuhl fur Informatik VII. University of Erlangen-Niirnberg.
Martensstrasse 3. D-91058 Erlangen. Germany.
katoen@informatik.uni-erlangen.de

Abstract
We introduce a framework to study stochastic systems, i.e. systems in which
the time of occurrence of activities is a general random variable. We intro­
duce and discuss in depth a stochastic process algebra (named Q) adequate to
specify and analyse those systems. In order to give semantics to Q, we also in­

troduce a model that is an extension of traditional automata with clocks which
are basically random variables: the stochastic automata model. We show that
this model and Q are equally expressive. Although stochastic automata are
adequate to analyse systems since they are finite objects, they are still too

·coarse to serve as concrete semantic objects. Therefore, we introduce a type of
probabilistic transition system that can deal with arbitrary probability spaces.
In addition, we give a finite axiomatisation for Q that is sound for the several
semantic notions we deal with, and complete for the finest of them. Moreover,
an expansion law is straightforwardly derived.

Keywords
Stochastic process algebras, stochastic automata, probabilistic transition sys­
tems, probabilistic bisimulations, real-time systems.

1 INTRODUCTION

In the world of performance modelling, many models have been defined to
analyse and simulate systems such as queuing networks, stochastic Petri-nets,
or generalised semi-Markov processes. It has been argued many times that,

*Supported by the NWO/SION project 612-33-006.

Programming Concepts and Methods D. Gries, & W-P. de Roever (Eds.)
© 1998 IFIP. Published by Chapman & Hall

Algebraic approach to stochastic systems specification 127

with these models, the difficulty of the design and analysis of a system grows
rapidly with the size and complexity of the system itself.

In the last few years, this phenomenon has drawn the attention of many
researchers into extending process algebras with stochastic and real-time fea­
tures [16, 11, 13, 4, 6, 5, ...]. The so called stochastic process algebras consid­
erably simplify the tractability of complex systems because, in this framework,
systems do not need to be modelled as a whole, but as a composition of small
subsystems. Another advantage is that stochastic process algebras not only
allow to study the performance of a system, but also its functionality.

In this article, we have a three-folded purpose: we discuss a probabilistic
transition system model based on general distributions, we introduce a stochas­
tic automata model which borrows ideas from both timed automata [2, 14] and
generalised semi-Markov processes (GSMP, for short) [26, 10], and finally we
introduce and discuss in depth a stochastic process algebra.

Probabilistic transition systems (PTS, for short) have been widely studied
in the context of discrete probabilities [25, 17, 12, 19, 23, 9, ...]. However,
the case with general distributions has received scant attention [13, 22]. In
the first part of our paper we define probabilistic transition systems that deal
with any kind of probabilistic spaces, including thus discrete, continuous, and
singular. This generality allows the specification of real-time systems in which
time constraints are not necessarily deterministic but dependent on random
variables. Our definition is basically a generalisation and formalisation of [13].

Although PTSs are an adequate framework for the understanding of pro­
cesses with stochastic behaviour, they are highly infinite which makes them
too difficult to deal with. Therefore, we also introduce the so-called stochas­
tic automata. A stochastic automaton is an automaton extended with clocks.
Clocks are variables which take some random value which is set according to
a given probability distribution. Once set, clocks count down, and when they
reach value zero, they may enable certain transitions in the automaton. We
define the semantics of stochastic automata in terms of PTSs. In fact, we de­
fine two different kinds of semantics: one when the stochastic automaton is
regarded as a closed system, i.e., when the system is complete by itself and no
external interaction is required, and the other when it is regarded as an open
system, that is, a system that cooperates with the environment or is intended
to be part of a larger system. Interpretation of stochastic automata as closed
systems is adequate for the final analysis of the system, e.g. to study the per­
formance or to verify the whole system. Instead, the interpretation as open
systems is appropriate to study compositionality and to analyse how systems
behave in contexts.

Compositionality is a major drawback in many existing models for perfor­
mance analysis such as queuing networks, stochastic Petri nets, or GSMPs,
specially, in non-Markovian models. On the contrary, stochastic automata of­
fer an appropriate framework to straightforwardly compose systems. In fact,
because of its simplicity, we use stochastic automata as the underlying seman-

128 Programming Concepts and Methods

tics of a stochastic process algebra that allows to express general distributions.
Actually, the stochastic automata model and the process algebra turn out to
be equally expressive. In this way, the process algebra can be regarded as alan­
guage to describe stochastic automata. This result closely follows the method­
ology of [7] where a process calculus for timed automata was introduced. Since
a stochastic automaton can be executed using discrete event simulation tech­
niques, the process algebra is called SPADES standing for stochastic process
algebra for discrete event simulation, but we just write 0.

Usually, the semantics of stochastic process algebras such as TIPP [11, 15],
PEPA [16], and EMPA [4], is defined in terms of extended transition systems,
which basically associate a distribution function to each transition. However,
the inherent interleaving characteristic of transition systems demands a careful
treatment of the definition of parallel composition. In traditional interleaving
process algebras like CCS [18] the expansion law plays an important role: it
says how parallel composition can be decomposed in terms of more primitive
operations, namely, prefixing and non-deterministic choice. Stochastic process
algebras extend prefixing into aF; P where F is a distribution function which
determines the probability of the random delay after which the action a can
happen. In this setting, the expansion law does no longer hold in general. To
face this problem, the community has come up with different solutions.

A first proposal, and the most widely accepted, has been to restrict the
attention to exponential distributions. Their memory less property restores the
expansion law [16, 15, 4]. Others have faced the general case [11, 13, 20] but the
underlying semantic object usually becomes cumbersome and infinite, which
makes it intractable. An alternative solution is to drop the expansion law by
moving to true concurrency models [6], but for simple recursive processes, their
semantic representations are infinite.

We propose a more elegant solution for 0. We separate the stochastic infor­
mation from the action name. (We remark that a similar approach has been
used in [13].) Instead of writing aF; P, we write ~xFH { XF }t-+a; P). The oper­
ator ~x F ~ . .. sets the clock x F according to the distribution function F, and
the operation {xF }t-+ ... prevents the prefixing a; P to happen until clock XF
has expired (i.e., reached value 0). This separation of concerns gives as a result
a straightforward expansion law, and moreover, it introduces more expressive
power. We observe that in principle any kind of (continuous, discrete, ...) dis­
tribution function is allowed in this model, while we maintain a finite semantic
object in a reasonable way (comparable to regular processes in CCS).

The paper is organised as follows. Section 2 discusses probabilistic transi­
tion systems and probabilistic bisimilarity for general probability spaces. In
Section 3, we define the stochastic automata model and study its semantics.
In Section 4, we discuss 0 in depth including its semantics and axiomatisation.
We discuss related work and further research in Section 5.

The complete report of this article, including proofs, rigorous definitions,
and detailed technicalities, is given in [8].

Algebraic approach to stochastic systems specification 129

2 PROBABILISTIC TRANSITION SYSTEMS

In this section, we introduce the notion of probabilistic transition systems and
probabilistic bisimulation.

Preliminaries. Let IN be the set of non-negative integers. Let rn. be the set
of real numbers and lR>o the set of non-negative reals. For n E IN, let mn
denote the nth Cartesia~ product of rn.. In particular, ffi.0 ~f {0}.

A probability space is a structure (0, :F, P) where 0 is a sample space, :F is a
u-algebra on n, and Pis a probability measure on :F. In this work, we consider
only probability spaces isomorphic to some Borel space defined in a real hyper­
space, whose coordinates come from independent random variables. We denote
by 'R(F1, ... , Fn) the probability space (rn.n, B(rn.n), Pn) where B(rn.n) is the
Borel algebra on rn.n and Pn is the unique probability measure obtained from
F1 , ... , Fn, a given family of distribution functions. In particular, if n = 0, 'R()
is the trivial probability space ({0}, {0, {0}}, Po) with Po in the obvious way.
We refer to (24] for further reading.

Let P = (0, :F, P) be a probability space. Let V : 0 -t 0' be an injective

function. We lift V to subsets off! as usual: V(A) ~f {V(a) I a E A} and define

:F' ~f {V(A) I A E :F}. Now, it is clear that, V(P) ~f (V(O), :F', p 0 v- 1)

is also a probability space. Since V(P) is basically the same probability space
asP, we say that Vis a decoration and we refer to V(P) as the decoration of
P according to V. Decoration functions are a key concept in the probabilistic
part of the stochastic automata semantics.

Probabilistic transition systems. We introduce a transition system with
probabilistic information. We allow any kind of probability spaces, includ­
ing continuous distributions. The definition of our model is inspired by [12]
and [13], although we do not consider explicit timed transitions.

Definition 1 Let Prob(H) denote the set of probability spaces (0, :F, P) such
that n ~ H. A probabilistic transition system (PTS for short) is a structure
T = (:E, :E', uo, C, T, ~)where

1. :E and :E' are two disjoint sets of states, with the initial state u0 E :E. States
in :E are called probabilistic and states in :E' are non-deterministic.

2. C is a set of labels.
3. T : :E -t Prob(:E') is the probabilistic transition relation.
4. ~ ~ :E' x C x :E is the labelled (or non-deterministic) transition relation.

l l l We denote u' ~ u for (u', £, u) E ~. and u' --ft for -.3u. u' ~ u. 0

Since Tis defined as a (total) function, each probabilistic state has exactly one
outgoing transition. It can be shown that if Prob(:E') contains only discrete
probability spaces, PTSs are as expressive as the simple probabilistic automata
of (23] and strictly more expressive than the class of reactive PTSs [17, 9].

130 Programming Concepts and Methods

Since our interest is to deal with time information using PTSs, the set of
labels we will use is C = A x IR2o, where A is a set of action names and
IR2o is the set of non-negative real numbers, which are intended to denote the
(relative) time at which an action takes place. We usually denote a(d) instead
of (a, d) whenever (a, d) E C and it means "action a occurs right after the
system has been idle for d time units".

Probabilistic bisimulation. Probabilistic bisimulation was introduced
in [17] for a class of PTSs dealing only with discrete probability spaces. This
definition has been adapted in [9, 12, 23] for several variants of PTSs, all of
them in a discrete probabilistic setting. Bisimulations have also been defined
in settings where exponential distributions are involved [16, 15, 4]. [13] has de­
fined bisimulation in a continuous setting and [22] used a coalgebraic approach
for the general setting. In essence, our definition coincides with the one in [13].

Definition 2 Let (I:,I:',O'o,C,T,---t) be a PTS. We define the function J.L:

I; X P(I:') -+ [0, 1] by J.L(O', S) ~f if s n n E :F then P(S n n) else 0,
provided that T(IT) = (0, :F, P).

Let R be an equivalence relation on I; U I:' such that if 0'1 R1T2 then either
0'1, 0'2 E I; or 0'1, 0'2 E I:'. Let I:' I R be the set of equivalence classes in I:'
induced by R. Then R is a (probabilistic) bisimulation if, whenever 0' 1 R~T2 , for
all S ~ I:' I R and £ E C, the following transfer properties hold

1. J.L (0'1 , U S) = J.L (0'2, U S), if 0'1, O'z E I:; and
2 e , . 1. e , d , R , .c ' "' 'f "'' . 0'1 ---+ 0'1 1mp 1es 0'2---+ 0'2 an 0'1 0'2, 10r some 0'2 E LJ, 1 0'1, O'z E LJ •

Two states 0'1 and 0'2 are (probabilistically) bisimilar, notation 0'1 +-+ O'z, if
there exists a probabilistic bisimulation R with 0'1 RIT2 . Two PTSs Tt and 12
are bisimilar, notation Tt +-+ 72, if their respective initial states are bisimilar
on the disjoint union of Tt and 12. 0

It can be proven that +-+ is the largest probabilistic bisimulation, and hence,
that it is an equivalence relation.

Although, the definition of probabilistic bisimulation coincides with the tra­
ditional definitions in the discrete case, e.g. [17, 12, 23], we remark a necessary
difference. In the discrete case, instead of property 1. above, it suffices to in­
sist that J.L(IT1 ,S) = J.L(IT2,S) where S E I:'IR, i.e., Sis an equivalence class
instead of a set of equivalence classes. In our case, this would have been too
weak due to the allowance of, for instance, continuous distribution function.
For example, consider the PTSs 7i = ({IT},IR,IT,IR,T;,---t), i E {1,2}, where

d ~ 0', and T1 (0') and T2 (0') are the probability spaces for a uniform dis­
tribution on [0, 1] and (1, 2], respectively. According to Definition 2, Tt and
12 are not bisimilar, since they do not agree in their probabilities. However,
the weaker property of the discrete case would have induced that the identity
relation is a probabilistic bisimulation since the probability of a point in a
continuous probability space is always zero.

Algebraic approach to stochastic systems specification 131

3 THE STOCHASTIC AUTOMATON MODEL

In this section, we introduce a new automaton model that allows us to rep­
resent processes with stochastic information. The basic idea is borrowed from
timed automata [2, 14] by combining it with ideas of discrete event systems,
in particular GSMPs [10, 26]. Besides, we study two different semantic models
for stochastic automata.

Stochastic Automata. We first enumerate all the ingredients of a stochas­
tic automaton and then give an example to explain the intuition behind the
definition.

Definition 3 A stochastic automaton is a structure (S, so, C, A,-, K, F)
where:

e S is a set of locations with s0 E S being the initial location.
e C is a set of clocks.
• A is a set of actions
e - ~ S x (A x SJfin(C)) x S is the set of edges. We denote the edge

(s, a, C, s') E- by s ~ s' and we say that Cis its trigger set.
• K : S -+ SJfin (C) is the clock setting function.
e F : C-+ (IR-+ [0, 1]) assigns to each clock a distribution function such that

F(x)(t) = 0 fort< 0; we write Fx instead of F(x).

Notice that each clock x E C is a random variable with distribution Fx. D

As in [7], the information of which clock should be set is related to the loca­
tions. Clocks are randomly set according to a certain associated distribution
function and they count down. A clock expires if it has reached the value 0.
The occurrence of an action is controlled by the expiration of clocks. Thus,
whenever s ~ s' and the system is in location s, a happens as soon as all
the clocks in the trigger set C have expired. Immediately afterwards all clocks
in K(s') are randomly set according to their respective distributions.

Example 1 Figure 1 represents a switch that controls a light. In the picture,
circles represent locations, variables enumerated in each location are the clocks
that are to be set according to the function K, and edges are represented by
the arrows. The initial location is represented by a small ingoing arrow. The
distribution function of each clock is given beside the picture.

The switch may be turned on at any time according to an exponential dis­
tribution with average of 30 minutes, even if the light is still on. It switches
automatically off exactly 2 minutes after the most recent time the light was
switched on. Since we considered that exactly 2 minutes must pass before the
light is turned off, y is a random variable that takes value 2 with probability
1. Notice that we can easily change the system to consider that clock y is not

132 Programming Concepts and Methods

F.,(t) = 1- e-iot

{ 0 ift<2
Fy(t)= 1 ift~2

on,x

Figure 1 The switch

precise and has a drift off units of time. If, for instance, we assume that such
a drift is uniformly distributed, then y would become a random variable with
a uniform distribution in [2- f, 2 + €]. D

Actual behaviour. In this subsection, we define the semantics of stochastic
automata when it is regarded as a closed system. A closed system is a system
which is considered complete by itself and no external interaction is needed. In
this kind of system one not only models the components of the intended system
but also the environment with which it interacts. In this way, the activity of the
whole system can take place as soon as it becomes ready to be executed since
there is no external agent that may delay its execution. That is, closed systems
respond to the maximal progress property. We refer to this interpretation as
the actual behaviour.

First, we introduce some background concepts, then we state which are the
probabilistic spaces that we use, and finally we define the actual behaviour of
stochastic automata.

A valuation is a function v : C -+ JR. Let V be the set of all valuations. If
dE IR>o, we define v- d by 'Vx E C. (v- d)(x) ~f v(x)- d. For simplicity,
assume- the set C of clock is totally ordered. Thus, if C ~ C, we write C for
the ordered form of C and C(i) for its i-th element. Let C ~ C, n = #C, and
D E IRn. We define v[C t-t D] by

v[C +-~D](y) ~f { vD(y()i) if y = C(i), for some i E {1, ... , n}
otherwise

Let (S, so, C, A,---+-, K:, F) be a stochastic automaton. Let s be a location
in S and let n = #K:(s). Let v be a valuation in V. Define V~ : IRn -+

{s} X v X {1} by V~(lJ) ~f (s, v[K:(s~t-tlJ], 1). Notice that v~ is injective. In
the next definition we will use the probability space n(Ft, ... , Fn) decorated
according to some V~.

Definition 4 Let SA = (S, so, C, A,---+-, K:, F) be a stochastic automaton.
The interpretation (or the actual behaviour) of SA in a valuation v0 is given

by the PTS !:,(SA)~ ((SxVx{O}), (SxVx{1}), (so, v0 , 0), AxiR~ 0 , T, ~)
with T and ~ defined as follows

P b ~ = (x1, .. . ,xn)
ro T(s,v,O) = V~(n(F.,., ... ,F.,,))

Act

Algebraic approach to stochastic systems specification

s a,c s' dEffi>o VxEC.(v-d)(x):SO

Vd' E [0, d). Vs ~. 3y E C'. (v- d')(y) > 0

(s, v, 1) ~ (s' , (v - d) , 0)

133

We say that an edge s -.:!.4- s' is enabled in a valuation v if it induces a
non-deterministic transition outgoing from (s, v, 1). In particular, notice that

s ~ s1 is enabled for any valuation v. D

Notice that, according to Definition 4, for each location s and valuation v

there is exactly one probabilistic transition since V~ is injective. So, for any
stochastic automaton SA and any valuation vo, Ita(SA) is indeed a PTS.

Rule Prob considers the setting of the clocks. Since the values of the clocks
are assigned randomly, a probabilistic transition corresponds to this step. No­
tice that this definition relies on the definition of V~ on probability spaces.
Rule Act explains the case of triggering an edge. So, for the occurrence of an

action a at time d according to an edge s a,c s', we check that all the clocks
in the trigger set C have already expired at time d. This part is considered by
the satisfaction of the predicate Vx E C. (v- d)(x) :::; 0. Moreover, it should
be the case that no edge was enabled before. That is, any edge must have an
active (i.e. positive) clock at any valuation "previous" to v- d. In this way, the
edge is forced to occur as soon as it becomes enabled. So, the maximal progress

b C'
is checked by the formula Vd' E [0, d). Vs1...+-. 3y E C'. (v- d')(y) > 0.
For the reader familiar with timed automata [2, 14], we may say that the

first constraint corresponds to the guard of the edge s -.:!.4- s', and the second
constraint is the invariant of location s.

Example 2. To understand the formal se­
mantics, we consider a simple example. Fig­
ure 2 represents an alarm bell that rings ran­
domly between 10 and 11 seconds according

~ring \:_)Jx
Figure 2 The alarm bell

to a uniform distribution. We define clock x to be a random variable with a
uniform distribution function Fx in the interval [10, 11]. If s is the only location
of the alarm bell, its PTS is given by

I;= {(s, Xf--ld, 0) IdE IR}

T(s,v,O) = V~(R.(Fx))

I;' = { (s, Xf--ld, 1) I dE IR}

ring(d)
(s, X :=d, 1) ~ (s, X :=d, 0) (if d 2:: 0) 0

We can extend the definition of probabilistic bisimulation to stochastic au­
tomata as follows.

Definition 5 Two stochastic automata SA1 and SA 2 are (probabilistically)
bisimilar, notation SA 1 H SA2 , if, for every valuation v, their interpretations
are bisimilar, i.e., I,1(SA!) H I,1(SA2). D

134 Programming Concepts and Methods

Potential behaviour. In this subsection, we define the behaviour of a
stochastic automaton as an open system. An open system is a system that
interacts with its environment. The environment can be a user or another sys­
tem. Basically, an open system is a component of a larger system. When a
stochastic automaton describes an open system, the semantics given in Def­
inition 4 does not suffice. In an open system, an action that is enabled may
not be executed until the environment is also ready to execute such an action.
Therefore, an activity may not take place as soon as it is enabled. This kind
of behaviour is appropriate to study compositionality. In fact, it turns out
that probabilistic bisimilarity is not a congruence for some basic operations on
stochastic automata, such as parallel composition. This has to do with the race
condition on the branches of the stochastic automata. Fastest branches (i.e.
branches which are enabled) may be disallowed or slowed down when the sys­
tem is embedded in some context, and therefore, slower branches, which could
not be executed in isolation, may become enabled in the composed stochastic
automata. For a discussion of this phenomenon, we refer to Example 4.

Therefore, we need to consider not only the actual behaviour of a stochastic
automaton, but also its potential behaviour. The potential behaviour is in prin­
ciple the actual behaviour with a larger non-deterministic transition relation.
A non-deterministic transition in the potential behaviour represents the fact
that an edge is potentially executable at any time after it becomes enabled.

Definition 6 Let SA = (S, s0 , C, A,-, K, F) be a stochastic automaton.

The potential behaviour of SA in a valuation v0 is defined by the PTS If:o (SA) ~r
((S x V x {0}), (S x V x {1}), (so, v0 , 0), Ax IR>o, T, ~),where Tis defined
by rule Prob as in Definition 4 and ~ is defined as follows

s ~ s' dE IR>o Yx E C. (v- d)(x) :S 0
Pot --------------~~--------~--~~=-

(s, v, 1) ~ (s' , (v - d) , 0) 0

The difference between the actual and the potential behaviour relies on rules
Act and Pot. To be precise, Pot is the same as rule Act where the constraint
of maximal progress has been omitted.

Definition 7 Two stochastic automataSA1 and SA2 are potentially bisimilar,
notation SA 1 f-+p SA2 , if, for every valuation v, their potential behaviours are
probabilistically bisimilar, i.e., !/:(SAl)++ I(;(SA2). 0

The following theorem states that it is always possible to recover the actual
behaviour from the potential behaviour.

Theorem 8 Let SA be a stochastic automaton and let If:o(SA) and !:,(SA)
be its potential and actual behaviour in v0 E V, respectively. The two following
statements are equivalent

Algebraic approach to stochastic systems specification 135

1. (s, v, 1) ~ (s1 , v1 , 0) and for all d1 E [0, d), bE A, (s, v, 1) ~
2. (s, v, 1) ~ (s 1 , v1 , 0)

As a consequence, we have that potential bisimulation is strictly finer than
probabilistic bisimulation. That is, for two stochastic automata SA1 and SA2,
SA1 Hp SA2 implies SA1 +-t SA2.

Structural bisimulation. Often, we can check if two stochastic automata
are equivalent just by inspecting their structure, without the need to study
their actual or potential behaviour. Thus, we define a stronger notion of equiv­
alence which we call structural bisimulation. We also state that this relation
is finer than potential bisimulation.

Definition 9 Let (S, so, C, A,-, "'' F) be a stochastic automaton. A rela­
tion R ~ S x S is a structural bisimulation if R is symmetric and whenever
s1 Rs2 , for all a E A, C ~ C, the following transfer properties hold:

1 ~I • l" 3 I ~ I d IR I . s1 s1 Imp 1es s 2. s2 s2 an s1 s2;
2. "'(sl) = x:(s2)

If R is a structural bisimulation such that s1 Rs2 , we denote s1 ~ s2 and we say
that s1 and s 2 are structurally bisimilar. Two stochastic automata SA1 and
SA2 are structurally bisimilar, notation SA1 ~ SA2, if their respective initial
locations are structurally bisimilar on the disjoint union of SA 1 and SA2 . D

Following standard results on bisimulation, we can prove that ~ is the
largest structural bisimulation, and moreover, that it is an equivalence relation.

It is clear that two stochastic automata may be potentially bisimilar but
not structurally bisimilar. Instead, structural bisimulation implies potential
bisimulation, and hence probabilistic bisimulation, too.

Theorem 10 Let SA1 and SA2 be two stochastic automata. If SA1 ~ SA2
then SA1 fu SA2.

4 SPADES

In the following we introduce SPADES, denoted by 0 and standing for stochastic
process algebra for discrete event simulation. The methodology that we follow
to define the syntax and the semantics is close to results in [7] where a process
algebra for timed automata was introduced.

Syntax. Let A be a set of actions. Let CN be a set of clock names and V:F
a set of distribution functions. We define C ~ CN x V:F to be the set of clocks.
We denote xa for (x, G) E C. We define the distribution assignment function

F: C -t (IR -t [0, 1]) by the second projection, i.e., F(xa) ~f G.

136 Programming Concepts and Methods

Definition 11 Let V be a set of process variables. The syntax of 0 is defined
according to the following grammar:

p stop I a; p I C~p I P + P I ~C~p I
PI lAP I p lLAP I PIAP I p[f] I X

where C ~Cis finite, a E A, A~ A, f : A-+ A, and X E V. A recursive
specification E is a set of recursive equations having the form X = p for each
X E V, where p E 0. Every recursive specification has a distinguished process
variable called root. 0

Process stop represents inaction; it is the process that cannot perform any
action. The intended meaning of a; p (named (action-)prefixing) is that action
a is immediately enabled and once it is performed the behaviour of pis exhibit.
C~p is the triggering condition; process p becomes enabled as soon as all the
clocks in C expire. p + q is the choice; it behaves either as p or q, but not
both. We remark that the passage of time does not resolve the choice if the
process is regarded as an open system; if instead it is regarded as a closed
system, the fastest process is the one to be executed. This last case is known
as the race condition. The clock setting operation ~C~p sets the clocks in C
according to their respective distribution function. We choose a LOTOS-like
parallel composition. Thus, PIIAq executes p and q in parallel, and they are
synchronised by actions in A. We should remark that synchronisation may
happen if both processes are ready to do it. We also introduce the operators
lLA and lA (named left and communication merge respectively) in order to
finitely axiomatise the parallel composition. Finally, the renaming operation
p[f] is a process that behaves like p except that actions are renamed by f.

Example 3 As a simple example, we give the specification of the switch de­
scribed in Example 1.

Arrival ~xaH xa }~on; Arrival

Switch0 tr

Switchon

System

on; Switchon

on; Switchon + ~YK HYK }~off; Switchotr

Arrivalll{on} Switchotr

In this case G is an exponential distribution with rate 310 and K is the distri­
bution function that gives probability 1 to the value 2. Process Arrival models
the arrival of people which occurs exponentially distributed with average of 30
minutes. Switch models the switch itself which initially is off. Notice that the
switch is always enabled to accept an "on" and hence no clock controls this
activity on the switch part of the S;}lstem. Process System describes the whole
system, allowing people to turn on the switch, i.e., process Arrival and Switch
should synchronise on the action on. 0

In the sequel, we need the notion of free and bound clock variables. Let

Algebraic approach to stochastic systems specification 137

Table 1 Stochastic automata for 0 (X = p E E

~~:(stop)= 0 ~~:(~C~p) = C u ~~:(p) ~~:(p + q) = ~~:(p) u ~~:(q)

~~:(a;p) = 0 ~~:(Ct-+p) = ~~:(p) ~~:(pjjAq) = ~~:(p) U ~~:(q)

~~:(p[f]) = ~~:(p) ~~:(pllAq) = ~~:(p) U ~~:(q)

~~:(ck(p)) = 0 ~~:(X)= ~~:(p) ~~:(pjAq) = K(p) U ~~:(q)

a;p!!4- P ..24- I ..24- I p p p p
a1:A

p+q-24-pl PIIAq .!!4- P111Ack(q)
p~pl

q + p .!!4- PI qJJAP ..24- ck(q)JIAP1

~C~p~p~ PliAq ..24- P1 11Ack(q)

p~pl
..24- I p p

p[f]~P1 [f] Ct-+p a,cuq,1 pi p .!!4- PI ~I q q
aEA

p .!!4- PI p ..24-pl PIJAq a,cuq,1 P11JAq1

X .!!4-pl ck(p) .!!4- p1 PJAq a,cuq,1 P111Aq'

p E Q. A clock xis free in p if p has a subterm Ct-+q with x E C that does not
appear in a context ~C1 ~ ••• with x E C1 • A clock xis bound in p if p has a
subterm ~C~q such that x E C. We denote by fv(p) and bv(p) the sets of free
and bound clock variables respectively.

Semantics. As we already said, compositionality is a major drawback in
many models for performance analysis, specially in those with the general­
ity of stochastic automata. Instead, stochastic automata can be composed
straightforwardly. In fact, we use stochastic automata to give semantics to 0
in a structured operational (i.e., SOS) manner. In order to define the automa­
ton associated to a parallel composition, we need to consider the additional
operation ck. ck(p) is a process that behaves like p except that no clock is set

at the very beginning. We denote this extended language by OCk.. The sets of
free and bounded variables for ck(p) are defined by fv(ck(p)) = fv(p) U x:(p)
and bv{ck{p)) = bv(p), where x; is defined in Table 1.

To associate a stochastic automaton to a given term, we need to define the
different parts of the stochastic automaton. We start by defining the clock
setting function x; and the set of edges - as the least relations satisfying
the rules in Table 1. However, not all the processes can have a straightforward
stochastic automaton as a semantic interpretation. To do so, clock names must
be considered with care as we see as follows. Consider the process

_...,.-----·-..,"""~

p = ~x;Ha; {~a}t-+{ ~xa, YH~{yH }t-+b; stop)) {1)

The second occurrence of xa is intended to be bound to the outermost clock
setting as shown by the grey arrow. Using the rules in Table 1, the following
stochastic automaton would be obtained

138 Programming Concepts and Methods

~ a, 0 (;;;\ b, {xc, YH LQ
~~

In this sense, xc would be captured by the innermost clock setting as shown
by the black arrow in (1). Therefore, we consider that clocks are different if
they are set in different places, although they may have the same name. Clock
capture may also occur in contexts with summations and parallel composition.

Capture of variables is a well known problem in languages with variables
that can be solved by considering terms modulo a-congruence. It is indeed the
solution that we adopt, although for recursive terms special care is needed.
However, we would like to characterise processes which have conflict of vari­
ables since it is also relevant for the axiomatisation. In fact, we will see that the
axiomatisation is sound and complete for structural bisimulation, and hence
it becomes important that the scope and binding of clocks is correct since this
relation considers clock names.

A first approach to characterise processes with conflict of variables could be
purely syntactic. However, this notion turns out to be too strong. Although
process p above is problematic, process Pli{a}stop does not introduce any
problem since its associated stochastic automaton will not have any outgoing
edge. In fact, it is evidently equivalent to ~xc~stop.

Therefore, we need a dynamic characterisation of processes which do not
have conflict of variables. A process p does not have conflict of variables if

no clock is illegally captured, that is, for every path p = Po ~ p1 ~
P2 · · ·Pn-1 ~ Pn, for every subterm q of p;, i E {0, ... , n}, which is not in
the scope of a prefix, the following conditions holds:

1. q = C....-+q' implies c n K(q') = 0
2. q =: q1 + q11 implies K(q') n K(q11) = fv(q') n K(q11) = K(q1) n fv(q 11) = 0
3. q = q'IIAq11 , q'[LAq11 , or q'IAq" implies bv(q')nvar(q") = var(q')nbv(q") = 0

Definition 12 Let p be a process without conflict of variables. The stochastic

automaton associated top is defined by [p] ~f (OCil, p, C, A,-+-, K, F), where
- and r;, are defined in Table 1, and C, A and F are defined as for the

syntax of Q. D

The reader is invited to check that the processes of the switch system de­
fined in Example 3 do not have conflict of variables, and that the stochastic
automaton associated to the process System is the one depicted in Figure 1
modulo the identification of ck(ck(p)) and ck(p), for all p.

As we said, the restriction to processes which do not have conflict of variables
is not an actual problem, since we can always properly rename clocks in any
(guardedly defined) process to obtain another process which does not have
conflict of variables. With "properly" we mean that the distribution function
associated to the clock must be preserved. For instance, p can be a-converted
into ~xc~(a; {xc}....-+(~zc, YHHYH }....-+b; stop)).

Algebraic approach to stochastic systems specification 139

Relating stochastic automata and terms. In the following we study
the connection between stochastic automata and recursive specifications. We
show that guarded recursive specifications and finitely branching stochastic
automata are equally expressive. In order to do so, we need to define the notion
of guarded specification and finitely branching. A process variable is guarded
if all its occurrences appear in a context of a prefix. A recursive specification
E is guarded if X = p E E implies that all variables in p are guarded. A
stochastic automaton is finitely branching if for every location s, its set of

outgoing arrows { s ~ s' I a E A, C E C, s' E S} is finite. Now we can state:

Proposition 13 Let E be a guarded recursive specification with root X. As­
sume E does not have conflict of variables. Then [X] is finitely branching.

0 has the property of expressing any (finitely branching) stochastic automaton.
The proof of Theorem 14 follows closely the ideas of a similar theorem in [7].

Theorem 14 For every finitely branching stochastic automaton SA there is a
guarded recursive specification E with root X such that the reachable part of
SA and the reachable part of [X] are isomorphic.

Bisimulations in 0. We extend the notion of probabilistic bisimulation,
potential bisimulation and structural bisimulation to 0 in the obvious way. Let
p, q E 0. We say that p and q are probabilistically, potentially, or structurally
bisimilar, if their respective associated stochastic automata are. We use the
notation p ++ q, p ++p q, and p ~ q, respectively.

In Section 3, we have already anticipated that probabilistic bisimilarity is
not a congruence. This is shown by the following example.

Example 4 ++ is not a congruence for parallel composition. Processes p1 =
a; stop+ ~xaHxa}~b;stop and P2 =a; stop+ ~xaHxa}~c;stop (b f:. c)
are probabilistically bisimilar if G(O) = 0, since in both cases, only the action
a at time 0 can be performed. However, p1 il{a}stop and p2 il{a}stop are not
bisimilar. In this context, the execution of action a is preempted since there is
no possible synchronisation, and b or c may happen (at a certain time greater
than 0). This example is depicted in Figure 3. The reader is invited to check
that ++ is neither a congruence for the triggering condition. D

This is precisely the kind of situations that occur when dealing with open
systems, and hence they justify the introduction of potential bisimulation. The
next theorem states that ++ p is a congruence for the operations in 0.

Theorem 15 Let p, q E 0 such that p f±.p q. For any context C[] containing
the operations stop, a;, C~, ~C~, +, IIA, ll_A, lA, or[!], and such that C[p]
and C[q] do not have conflict of variables, it holds that C[p] t+p C[q].

140 Programming Concepts and Methods

Figure 3 Bisimilarity is not a congruence

Besides, we have the result that structural bisimulation is a congruence for
all the operations (including ck).

Theorem 16 Let p, q E r;;lk such that p ~ q. For any context C[] containing
the opemtions stop, a;, C.-+, ~C~, +, IIA, [lA, lA, [!], or ck, it holds that
C[p] ~ C[q].

The proof of Theorem 15 is quite involved since it has to be done in a
traditional way: a relation is given for each case and it is proven to be a
potential bisimulation (up to f-tp). Instead, the proof that ~ is a congruence
uses the results of [3] since rules in Table 1 can be easily rewritten into path
format.

Another important result that we would like to highlight is that proper
renaming of variables preserves potential bisimulation. It is important indeed
because it justifies the fact that we can always properly rename clocks to obtain
processes without conflict of variables as we claimed before.

Structural axioms. In this paragraph, we give a set of axioms for 0.
We study the so-called structural axioms. These axioms preserve structural
bisimulation. We show that they allow to rewrite any (closed) term into a basic
or normal form. Moreover, we show that parallel composition and renaming
can be eliminated in favour of the basic operations stop, a;, C.-+, ~C~ and+.
When convenient, we consider terms modulo a-conversion.

Axioms in Table 2 can be explained as follows. The choice is commutative
(Al) and associative (A2). Axiom A3 states a kind of idempotency of +
and A4 states that stop is the neutral element for+. Axioms Tl-T5 show
the way in which triggering conditions can be simplified. T3 defines how to
reduce nested triggering conditions into only one. Axioms T4 and T5 say how
to move clock settings and summations out of the scope of a guard. Sl says
that it is irrelevant to set an empty set of clocks. S2 gathers all the clocks
settings in only one operation and S3 moves clocks settings out of the scope
of a summation.

Axioms Rl-R5 define the renaming operation. The way in which they op­
erate is more or less standard in process algebra.

Axioms PCl and PC2 move clock settings out of the scope of the parallel
composition. This is necessary because when expanding parallel composition

Al
A2
A3
A4

Tl
T2
T3
T4
T5

Sl
S2
S3

PCl
PC2
PC3

LMl
LM2
LM3
LM4
LM5
LM6
LM7
CMl
CM2
CM3
CM4
CM5
CM6
CM7
CM8
UBl
UB2

Algebraic approach to stochastic systems specification

Table 2 Structural axioms for
p + q = q + p Rl stop[f] = stop
(p + q) + r = p + (q + r) R2 (a;p)[f] =a; (p[f])
a;p + a;p = a;p R3 (Ct-+p)[f] = Ct-+p[f]
p +stop= p R4 (~C~p)[f] = ~C~p[f]

Ct-+stop = stop
0t-+p = p
Ct-+C't-+p = C u C't-+p
Ct-+~C'~p = ~C'~Ct-+p
Ct-+(p + q) = Ct-+p + Ct-+q

~0~p = p
~c~~c'~p = ~c u c'~p
~C~p + ~C'~q = ~C u C'~(p + q)

(~C~p)IIM = ~C~(PIIAq)
PIIA(~C~q) = ~C~(PIIAq)
PIIAq = P[LAq + qli_AP + PIAq

stopli_Aq =stop
a;pli_Aq =stop
a;pli_Aq =a; (PIIAq)
(Ct-+p)lLAq = Ct-+(pli_Aq)
(~C~p) li_Aq = ~C~(Pli_Aq)
pli_A(~C~q) = ~C~(Pli_M)
(p + q)u_Ar = (pli_Ar) + (qli_Ar)

PIAq = qiAP
stopiAstop =stop
stopiAa; q =stop
a;piAb; q =stop
a;piAa; q =a; (PIIM)
(Ct-+p)IAq = Ct-+(PIM)
(~C~p)IAq = ~C~(PIAq)
(p + q)IAr = (PIAr) + (qiAr)

R5 (p + q)[f] = p[f] + q[f]

if en c' = 0

if C n fv(q) = C' n fv(p) = 0

if C n var(q) = 0
if C n var(p) = 0
if B'(p) A B'(q)

if B'(q)
if B'(q) A a E A
if B'(q) A a rf_ A

if C n var(q) = 0
if C n var(p) = 0
if B'(r)

if a rf_ A
if a E A

if C n var(q) = 0
if B'(r)

B'(stop)
B'(a;p) UB3

B'(p)
B'(Ct-+p)

UB4
B'(p) B'(q)

B'(p + q)

141

in terms of summations, we do not want to duplicate clocks. Duplicating clocks
would transform processes without conflict of variables into (semantically dif­
ferent!) processes with conflict of variables. PC3 decomposes the parallel com­
position in terms of the left merge and the communication merge provided no
clock setting is wrongly duplicated. LM1-LM7 and CM1-CM8 define the
left merge and the communication merge respectively. The predicate B' de­
fined by the rules UB1-UB4 encodes information about ck. In fact, for all
guarded processes such that B'(p) can be proven using axioms UB1-UB4, it
holds that ck(p) ~ p. We do not want to have ck in our axiomatisation since
it does not preserve f-+p.

We observe that idempotency is not generally true in Q. Consider the process

142 Programming Concepts and Methods

p = ~xaHxa}l-ta;stop where G is uniform on [0,2). The probability that a
occurs in the interval [0, 1) in process p is ~. while in process p + p such
probability is ~- It follows that p !/±p + p and so they are not related by finer
bisimulations. Although axiom A3 already states a notion of idempotency a
more general property is C~-ta; p = C~-ta; p + C~-ta; p which we call A3' and
can be derived from the axioms A3 and T5.

Axioms in Table 2 are sound for structural bisimulation. An immediate
consequence is that they are also sound for potential and probabilistic bisimu­
lation. Besides, it can be easily checked that the axioms preserve the property
of non-conflict of variables. The side conditions in Table 2 are essential for this
to hold.

Theorem 17 Let p, q E 0 such that p = q can be proved from axioms zn
Table 2. Then we have,

1. p does not have conflict of variables if and only if neither q does; and
2. if they do not have conflict of variables, then p ~ q.

An interesting property that is derived from these axioms is that every term
can be expressed in a normal form.

Definition 18 Define the set B ~ 0 of basic terms inductively as follows:

e stopE B'
e p E B, C E g:Jfin(C) and a E A =::::} C~-ta;p E B'
e p, q E B' =::::} p + q E B'
e p E B' and C E g:Jfin(C) =::::} ~C~p E B

B' ~ 0 is the set of all terms whose clock settings are all within the scope of
a prefix construction. (Notice that p E B' implies B'(p).) A basic term has the
general form (modulo A1, A2, A3' and A4)

p = ~c~ (l::;EJ C;~-ta;;p;)

where each p; is a basic term, and I:iEJ q; ~f q1 + · · · + qn for I= { 1, ... , n }.

In l?articular, l::;E0 q; ~stop. D

Theorem 19 Let Cf (~ 0) be the set of all finite (or closed) terms, i.e.,
terms which do not contain process variables. For every term p E Oc there is
a term q E B such that p = q can be proven by means of the basic axioms and
a-converszon.

The set of axioms given in Table 2 is complete for structural bisimulation
on the set oc. Theorem 19 is essential for the proof of completeness. Since
a-conversion does not imply structural bisimulation, we must ensure that it
is not used in the proof of Theorem 19. To do so, it is enough to restrict to
terms without conflict of variables because of Theorem 17.

Algebraic approach to stochastic systems specification 143

Theorem 20 Let p, q E Cf be two terms without conflict of variables. Suppose
p = q can be derived from the axioms in Table 2 (but not a-conversion!). Then
pt:!;q.

One of the reasons why many approaches to stochastic process algebras stick
to only exponential distributions [16, 15, 4, ...] is that general distributions do
not preserve Milner's expansion law in their models. In other cases, combining
the expansion law with general distributions lead to infinite and sometimes
quite complicated models [11, 13, 20]. In our case, the expansion law is inherent
in the model and the way parallel composition is defined, and can be smoothly
derived from the axioms as stated by the following theorem.

Theorem 21 (Expansion Law) Let p, q E 0 such that p = ~C~p' and q =
~C'~q' with p' = l:C;~a;;p; and q' = I:Cj~bj; qj. Suppose PliAq does not
have conflict of variables. From the axioms in Table 2 we can derive

PiiAq = ~CUC'~ (l:a,(i!AC;~a;;(p;liAq') + l:b;(i!ACj~bi;(p'liAqj)

)
For clarity, we did not include the renaming operation. This, however, could
be done straightforwardly.

Example 5 The reader is invited to check that, using the axioms, the process
System of Example 3 can be re-written into the following expression.

System

Syson

Sysoff

~xaHxa}~on; Syson

~xa, YK~({xa}~on; Syson + {YK }~off; Sys0 ff)

{ xa }~on; Syson

Its associated stochastic automaton is indeed the one depicted in Figure 1. 0

5 FURTHER DISCUSSIONS

Related work. Apart from the Markovian process algebras [16, 15, 4, ...] ,
some general stochastic process algebras have been introduced.

TIPP [11] is the earliest approach to the general case. Its syntax has the
integrated prefix ap; p which in 0 corresponds to ~xpHxF }~a;p. Its seman­
tics is based on labelled transition systems in which transitions are decorated
with the associated distribution function and, to keep track of the execution
of parallel processes, a number that indicates how many times an action has
not been chosen to execute. This number introduces infinite semantic objects,
even for simple regular processes. [20] has followed a similar approach to give
semantics to a stochastic extension of the 1r-calculus. In this case transitions

144 Programming Concepts and Methods

are decorated with locality information to keep track which process performed
it.

In [13], a process algebra for discrete event simulation is introduced. The
concerns of randomly setting a timer, expiration of such a timer, and actual
activity are splitted in a rather similar way to ours. The semantic model is
similar to our PTSs but with explicit time transitions, and hence semantic
objects are usually highly infinite. The process algebra includes an urgent and
a delayable prefixing, so its interpretation combines both views of closed and
open system.

[6] studies a semantic for a process algebra similar to TIPP in terms of a
stochastic extension of event structures. This model seems to be more natural
to deal with general distributions since activities that are not causally depen­
dent (i.e. concurrent activity) are not related in the model, contrarily of what
occurs in interleaving based models. However, recursive processes always have
associated an infinite semantic object.

A general semi-Markovian process algebra based on EMPA [4] is discussed
in [5]. Terms in this process algebra have semantics in an interleaving based
model. Finiteness of the associated semantic object is kept in a reasonable
way. As a price to pay, the way to give semantics is quite cumbersome and not
only the transitions are decorated with many information (as for instance the
locality of the occurrence of an action) but also the states.

Among the above enumerated stochastic process algebras, [13] is the closest
to Q. As Q, [13] also allows non-determinism. In all the other cases (including
the Markovian process algebras), choice is always solved either probabilistically
or by the race condition. We also mention that none of [11, 20, 6, 5] discusses
an axiomatic theory for their respective stochastic process algebras.

Conclusions and further work. We introduced new models to analyse
stochastic and real-time systems. We discussed in depth a stochastic process
algebra whose expressivity is richer than existing ones. We showed that this
process algebra and its underlying semantic model, the stochastic automata,
are equally expressive. We gave an axiomatisation and we showed that the
expansion law can be straightforwardly derived from them. Besides, we have
defined a general probabilistic transition system. We have used it as seman­
tic model of the stochastic automata. In fact, we gave two different ways of
assigning a PTS to a stochastic automaton, so we may understand systems
either as closed or open.

It is worthwhile to notice that 0 is a conservative extension of the basic CCS
(i.e. the sublanguage containing only prefixing, summation and stop) in both
semantic and axiomatic sense. Besides, it can be proven that equivalences ++,
++p, and ~ turn out to be the same in the non-stochastic sublanguage of Q,
that is, the set of all the terms in which operations ~C~ and Ct-+ do not occur.

We should remark a couple of works we have already done regarding stochas­
tic automata and discrete event simulation. The first is that the actual be­
haviour of stochastic automata leads to an algorithm for discrete event sim-

Algebraic approach to stochastic systems specification 145

ulation. We use the notion of adversaries or schedulers [25, 23) to resolve
non-deterministic choices. Since parallel composition of stochastic automata
can be easily defined (actually, it is the one of 0), the simulation algorithm can
compose the complete stochastic automaton on the fly, which reduces the state
space explosion problem. Secondly, we already know that stochastic automata
properly contain a wide class of GSMPs. We will report in detail about these
works in the near future.

From the results reported in this paper and the observations just mentioned,
we believe that our models are quite suitable to specify and analyse stochastic
systems and real-time systems. But to go further in this direction many things
have still to be done. First of all the axiomatisation for Ois not sufficient as it is.
Axioms for potential bisimulation as well as laws for probabilistic bisimulation
have to be introduced. A clear example of this need is that terms p, and ~C~p
are potentially bisimilar provided C n fv(p) = 0. However, equality p = ~C~p
cannot be proved from the axioms in Table 2, which is reasonable because p
and ~C~p are not necessarily structurally bisimilar.

As we pointed out we have a method to simulate stochastic automata (and
hence terms in 0). However, analytical methods are far more effective to study
the correctness of a system. Usually errors are events with low probability, so
the use of simulation may not guarantee that they are not present or that
their probability is low enough to be considered. Model checking has proven
to be a powerful tool to verify timed systems. Some early papers like [1) have
shown the possibility of borrowing ideas from model checking on timed au­
tomata and applying them to stochastic systems. Our work will also address
the use of model checking on stochastic automata. Besides, we will investigate
on the possibility of borrowing from analytical methods already used in the
performance analysis community, so it can be applied to study analytically the
performance of systems modelled in Q.

REFERENCES

1. R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-time
systems. In J. Leach Albert, B. Monien, and M. Rodriguez, eds., Proceedings
18th ICALP, Madrid, LNCS 510, pp 113-126. Springer, 1991.

2. R. Alur and D. Dill. A theory of timed automata. Theor. Comput. Sci., 126:183-
235, 1994.

3. J.C.M. Baeten and C. Verhoef. A congruence theorem for structured operational
semantics with predicates. In E. Best, ed., Proceedings CONCUR 93, Hildesheim,
Germany, LNCS 715, pp 477-492. Springer, 1993.

4. M. Bemardo and R. Gorrieri. Extended Markovian process algebra. In U. Mon­
tanari and V. Sassone, eds., Proceedings CONCUR 96, Pisa, Italy, LNCS 1119,
pp 314-330. Springer, 1996.

5. M. Bravetti, M. Bemardo, and R. Gorrieri. From EMPA to GSMPA: allowing
for general distributions. In E. Brinksma and A. Nymeyer, eds., Proceedings
PAPM'97, pp 17-33. University of Twente, June 1997.

146 Programming Concepts and Methods

6. E. Brinksma, J.-P. Katoen, R. Langerak, and D. Latella. A stochastic causality­
based process algebra. The Computer Journal, 38(6):552-565, 1995.

7. P.R. D'Argenio and E. Brinksma. A calculus for timed automata (Extended
abstract). In B. Jonsson and J. Parrow, eds., Proceedings FTRTFT'96, Uppsala,
Sweden, LNCS 1135, pp 110-129. Springer, 1996.

8. P.R. D'Argenio, J.-P. Katoen, and E. Brinksma. An algebraic approach to the
specification of stochastic systems. Technical Report CTIT-98-02. University of
Twente, 1998.

9. R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative, and strat­
ified models of probabilistic processes. Infor. & Comput., 121:59-80, 1995.

10. P.W. Glynn. A GSMP formalism for discrete event simulation. Proceedings of
the IEEE, 77(1):14-23, 1989.

11. N. Gi:itz, U. Herzog, and M.Rettelbach. TIPP- Introduction and application to
protocol performance analysis. In H. Konig, ed., Formate Beschreibungstechniken
fur verteilte Systeme, FOKUS series. Saur Publishers, 1993.

12. H.A. Hansson and B. Jonsson. A calculus for communicating systems with time
and probabilities. In Proceedings 11th IEEE Real- Time Systems Symposium, pp
278-287, Lake Buena Vista, Florida, December 1990.

13. P. Harrison and B. Strulo. Stochastic process algebra for discrete event simula­
tion. In F. Bacelli, A. Jean-Marie, and I. Mitrani, eds., Quantitative Methods in
Parallel Systems, Esprit Basic Research Series, pp 18-37. Springer, 1995.

14. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Infor. & Comput., 111:193-244, 1994.

15. H. Hermanns and M.Rettelbach. Syntax, semantics, equivalences, and axioms
for MTIPP. In Proceedings PAPM'94, pp 71-87. University of Erlangen, July
1994.

16. J. Hills ton. A Compositional Approach to Performance Modelling. Distinguished
Dissertation in Computer Science. Cambridge University Press, 1996.

17. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Infor. &
Comput., 94:1-28, 1991.

18. R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.
19. A. Pnueli and L.D. Zuck. Probabilistic verification. Infor. & Comput., 103:1-29,

1993.
20. C. Priami. Stochastic rr-calculus with general distributions. In [21], pp 41-57.
21. M. Ribaudo, ed. Proceedings PAPM'96, Torino, Italy. Universita di Torino, 1996.
22. J.J.M.M. Rutten and E. de Vink. Bisimulation for probabilistic transition sys­

tems: a coalgebraic approach (extended abstract). In Proceedings 24th ICALP,
Bologna, LNCS 1256, pp 460-470. Springer, 1997.

23. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250-273, 1995.

24. A.N. Shiryaev. Probability. Springer, second edition, 1996.
25. M.Y. Vardi. Automatic verification of probabilistic concurrent finite state pro­

grams. In Proceedings 26th FOGS, Portland, pp 327-338. IEEE Camp. Soc.
Press, 1985.

26. W. Whitt. Continuity of generalized semi-Markov processes. Math. Oper. Res.,
5:494-501, 1980.

Algebraic approach to stochastic systems specification 147

BIOGRAPHY

Pedro R. D'Argenio graduated as Computing Analyst and Licentiate in Com­
puter Science from the National University of La Plata, Argentina, in 1993
and 1994, respectively. Until 1995, he held research and teaching positions at
the Department of Computer Science of the National University of La Plata.
Since 1995, he is a Ph.D. student at the Department of Computer Science
of the University of Twente, The Netherlands. His current research subjects
include specification, verification, and validation of real-time, stochastic, and
distributed systems as well as formal methods applied to performance analysis.

Joost-Pieter Katoen received his M.Sc. degree (with honours) and Ph.D. degree
in Computer Science from the University of Twente, The Netherlands, in 1987
and 1996, respectively. From 1988 to 1990 he was a postgraduate student at
the Eindhoven University of Technology, The Netherlands. He joined Philips
Research Laboratories Eindhoven from 1990 to 1992. Since 1997, he is assistant
professor at the Faculty of Computer Science of the University of Erlangen­
Niirnberg. His current research interests include specification and verification
of real-time and probabilistic systems, semantics, and performance analysis
based on formal methods.

Ed Brinksma received his M.Sc. degree (cum laude) in Mathematics from the
University of Groningen, The Netherlands, in 1982. In 1982 he joined the De­
partment of Computer Science at the University of Twente as an assistant
professor where he got his Ph.D. in Computer Science in 1988. In the period
1983-1989 he was the chairman of the committee of the International Organi­
sation for Standardisation (ISO) that was responsible for the definition of the
formal specification technique LOTOS. Since 1991, he is a full professor, oc­
cupying the chair in Formal Methods and Tools. His main research interest
is the application of formal methods to the design and analysis of distributed
systems. His current research topics include the application of formal methods
to testing, the relation between formal methods and performance analysis, the
application of correctness preserving transformations to realistic designs, and
tool-oriented design of specification formalisms.

