Unified Representation systems for
different levels of abstraction

Arthur B. Baskin

Senior Analyst, Intelligent Information Technologies, Corp.
123 W. Main St., Urbana, Illinois 61801, U.S.A.
Telephone: 217-337-7058; Fax: 217-337-6928

E-mail: abaskin@msn.com

Stephen C-Y. Lu

David Packard Professor of Manufacturing Engineering
University of Southern California, Denney Research Building,
Room 101, Los Angeles, CA 90089-1111, U.S.A.

Telephone: 213-740-9616; Fax: 213-740-6668

E-mail: sclu@usc.edu

Abstract

Our unified representation system for organising and recording engineering design
results brings together formalisms from mechanical engineering design and
software engineering. It specifically identifies two orthogonal axes of abstraction
and explains many problems in engineering design formalisms, which lack this
separation. The formalism supports qualitative and quantitative measures of design
quality that can be used to evaluate alternative design structures. The formalism
does not prescribe a specific design methodology, but the representation does
provide bias toward more formal and reproducible design methods. Although the
formalism is grounded in object-oriented information modelling, its application to
engineering design problems is much broader than software development.

Keywords
Knowledge representation, Axiomatic Design, modelling, structured
methodologies, engineering design, Engineering as Collaborative Negotiation -

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35357-9_22
A. B. Baskin et al. (eds.), Cooperative Knowledge Processing for Engineering Design

© IFIP International Federation for Information Processing 1999

http://dx.doi.org/10.1007/978-0-387-35357-9_22

226

1 INTRODUCTION

Engineering design can be thought of as a problem of managing complexity. A
product should appear simple to the consumer and simple to assemble or. Thus,
engineers must match the complexity inherent in a product or service with a design
while avoiding unnecessary complexity.

Engineers traditionally manage complexity by decomposing problems into
smaller, less complex, component problems that can, in turn, be assembled to form
an overall solution. Complex system-level design problems can only be solved by
decomposing them into sub-systems that generally have interacting constraints.
Forming separate sub-problems enables work to proceed in separate areas in
parallel, but gives rise to conflict and rework because differing approaches to the
overall problem may be implicit in each of the sub-systems. The component
models, provided by these parallel design activities, frequently employ differing
specialised vocabularies and ways of structuring the solution. For these reasons,
integrating the component solutions and solving the resulting conflicts frequently
consumes much of the productivity that resulted from the concurrent design
activity. Such a collaborative design framework is illustrated in figure 1 below.

Individual Infoamation

Workbench Without
Walls to facilitate and
integrate teams through
Collaborative Negotiation

Shared Digital

Maghe: — Heuristic
Experience

o New Type of

Knowledge Processing
Technologist

Information
Appliance

Product
Components

Information i
Technologies

Figure 1: A group of designers using a shared electronic workbench to develop a
solution of a system-level design problem.

CAD, CAM. CAE) R
Information Utility

One might imagine integrating these diverse design vocabularies and different
localised optimisation criteria by imposing a unified vocabulary and prescriptive
methodology on all of the component design activities. Unfortunately, this
approach re-introduces all of the original complexity of the presenting problem
into each component. The solution lies in having a unified representation system,
which promotes the convergence of the group, while allowing for diversity.

227

2 TWO ORTHOGONAL AXES OF DECOMPOSITION

Part-whole decomposition is a way to break an overall problem into manageable
components, which can be separated from the decomposition of the problem across
product life cycle stages. At first, this separation may appear artificial because both
axes proceed from abstract properties of the presenting problem toward more
concrete aspects of the problem and its implementation. The separation of more
concrete aspects of the problem from concrete aspects of the implementation of the
solution is central to our unified representational framework.

Following the pattern, established by Professor Suh in Axiomatic Design (Suh
1990), we identify four key stages in the decomposition across product life cycles.
(Identification of additional stages is a simple extension of the formalism.) Figure
2 illustrates the progression from problem toward implementation.

(realised by)
Abstract Concrete
Problem Analysis Design Implementation
sub-problem sub-system component part

(decomposition) |(decomposition) |(decomposition) |(decomposition)
Concrlte (FR) (DP) (PV)

Figure 2: The relationship between abstraction across product stages and within
each stage. Separating the two orthogonal abstraction processes into
decomposition and realised by occurs at each stage in the product life cycle.

In Axiomatic Design, the last three stages are identified as Functional
Requirements (FR), Design Parameters (DP), and Process Variables (PV)
respectively. The important part of this figure is the illustration that there are two
orthogonal forms of abstraction at each product stage. We will refer to the
abstraction within a stage as “decomposition” and the orthogonal abstraction
operator that maps between product stages as “realised by.”

2.1 Separating abstractions provides reproducibility of placement

We wish to bias the actions of a group of designers from different engineering
perspectives so that they will share as much common structure in the results as
practical while avoiding a unified and prescriptive approach. In the figure above,
the two different axes of abstraction will naturally lead to an arrangement of design
results within a two dimensional lattice. Aspects of the overall problem will occur
in the upper left corner and detailed implementation (fabrication) issues will occur
in the lower right corner. Thus, co-operating designers will know where to attach
their intermediate results and where to look for the results of others.

228

(realised by)
Abstract > Concrete
Problem Analysis Design Implementation
human powered vehicle| wheeled unequal size spoke diameter
down hill all terrain stirrups covered peddles
stable unstable drive train hub chain size,
Concrete (FR) (DP) (PV)

Figure 3: A simple model of the problem of designing a human powered vehicle,
which shows the relative placement of terms used in the design.

A concrete example may help illustrate the point. Figure 3, shows how a number
of the terms in the design of a human powered vehicle would be arrayed on our
two dimensional abstraction grid. The upper terms can be specialised by the terms
below them and the terms to the right are used to realise the terms on the left.

2.2 Objects make placement more formal

Thus far, we have used an informal notion of placement of terms within the two
dimensional abstraction grid by separating the terms according to the product stage
which best typifies the term and the level of detail of the term within the given
stage. We now use an object-oriented information modelling formalism to make
these notions more precise. We choose an object-oriented formalism because it can
be made as mathematically precise as we wish and can be extended with
specialised domain relationships.

For the purposes of this paper, we use a simplified version of the OMT modelling
technique developed by (Rumbaugh 1991). In this simple model, we associate
nouns with objects and verbs with methods on objects. In addition to objects, we
utilise several predefined relationships having the symbolic representation shown
in the figure below.

Object

Part Of Property Contains
Method 1

Part Containee

Property IsA Property

Method Method
Specialisation-1 Specialisation-2
Property constraint Property

Method U Method

9 <

Figure 4: Object modelling notation showing the “part-whole,” “container-
containee,” “constraint,” and “IsA” relationships among object. The presence of
relationships indicates coupling among the objects.

229

We use these types of relationships between objects to model aspects of the design
at each stage. Thus, we say that a “table object” has a table top and four separate
legs — all part of the table because these parts are essential to the function of a
table. On the other hand, a “room object” can contain a collection of people of any
size without changing the fact that it is a room. Similarly, a “conference room” or a
“bathroom” are both specialised rooms and we might wish to record the domain
constraint that it is a good idea to have a bathroom “near” a conference room.

2.3 Four object models for four separate purposes

We continue our discussion of where to place a given concept during the
construction of the design by considering the function of each of the four models in
greater detail. We expect that all of our participating designers will use the same
set of rules for placing a noun in a given model and use the same definitions of the
object relationships between them. In this situation, there should be substantial
agreement among the participants about the overall structure of the design model
without imposing a single vocabulary and design methodology for all perspectives.

The objects, which are identified in the problem decomposition, should all
represent entities or concepts occurring in the problem domain. Thus, these domain
terms serve to define the nature of the problem area and how to survey the problem
in a structured way. Only nouns that occur directly in the problem domain should
be used for objects in the problem model. The problem model should delimit the
problem but should not specify aspects of the solution unless they are dictated by
the nature of the problem itself.

The objects in the decomposition of the analysis model should be used to define
“what” will be done in response to the problem, but should not specify “how” it is
to be done. For example, in our bicycle example, the analysis model might specify
“gears” to be part of the “drive train” without specifying the design choice between
gears internal or external to the hub of the rear wheel.

The objects in the design model should represent abstract solution strategies
rather than specific settings. For example, the choice between casting or machining
a specific part is a design choice, while the specific numerical control program for
a milling machine provides a detailed implementation model.

2.4 Relationships record context, show alternatives, and promote
reuse

The problem of design reuse is quite difficult and has many aspects. Part of the
problem of reusing an existing design comes from the difficulty in locating an
existing design and then reconfiguring the design to the presenting situation. When
we consider system-level design problems solved by groups of co-operating
designers, we see that this problem contains a version of the design reuse problem.
When two designers with different perspectives on the problem come together to
resolve conflicts or solve interacting constraints, they must be able to understand
the basic structure of each other’s model. This model sharing activity is little
changed if the model was developed some time ago and is only being shared today

230

for the purpose of reuse. Navigating the model, understanding the specialisation
implicit in the design result, and tailoring it to a different use are much the same
problems for design reuse and collaborating perspectives.

The modelling formalism we have discussed thus far, naturally records the path
of specialisation which goes on during model construction. The decompositions of
each of the four models and the realised by mappings record the progress of the
specialisation of the problem from a general problem statement in the top left
corner to a detailed implementation model in the lower right corner. Maintaining
these links explicitly throughout the life of the modelling process is vital to
understanding the model today and reusing it tomorrow.

It is possible to record, in the model, objects which are not strictly part of the
solution. For example, in the problem model, we might show that there are human
powered vehicles and engine powered vehicles using an IsA relationship which
branches from the abstract notion of vehicle to each more specialised vehicle. This
form of “branched IsA” shows that there are alternative problem specialisations
from which we can choose. We record our choice by drawing a “realised by” arc
from only one of these specialised problems. In this way, we record the problem
context for the problem we are solving.

In a similar way, “branched realised by” denotes that there are two or more
alternative ways to realise a given requirement. As we accumulate design
experience in a given area, we can record each of the realised by arcs which we
explore from a given point. This “map” records the alternatives explored and
suggests the alternative ways that the problem can be specialised. Taken together,
the “branched IsA” and the “branched realised by” arcs provide just the sort of
road map that we require. We can use the map to understand how a problem has
been specialised for an existing design solution and how to specialise it differently
when solving conflicts in concurrent engineering or reusing it at a later date.

3 APPLYING QUANTITATIVE MEASURES TO DESIGN MODELS

Perhaps the most important property to measure about a model is the degree to
which the model “appropriately” matches the complete system being modelled. In
terms of our formalism, this measure corresponds to determining whether or not
the object identities and relationships have been properly chosen. For the implicit
realised by arcs from the real world into the problem model, it is impossible to
evaluate the quality. Thus, the fidelity of the problem model cannot be evaluated
by our metrics, which operate only on the model. We can, however, measure the
degree to which the problem model is properly reflected in analysis, design, and
implementation models. We can also apply measures of quality within each
individual model as well.

A number of evaluation metrics have been proposed for object-oriented software
development (Henderson-Sellers 1996). A number of these can be adapted to the
more general problem of object-oriented information modelling but this extension
is beyond the scope of this paper. In the remainder of this section, we will explore

231

a measure of mechanical engineering design quality, generalised from Axiomatic
Design, which applies equally well in this object-oriented design context.

3.1 Patterns of coupling indicate robustness

We can consider that two objects are “coupled” if and only if there is a relationship
existing between the objects. For this discussion, we ignore the role of the type of
relationship on the strength and detailed nature of the coupling.

Before considering a quantitative measure of robustness, we explore the notion
qualitatively. There can be many ways to define robustness. The definition that we
favour is that if either the requirements or detailed implementation options are
changed, the ripple effects through the design are damped. If either change triggers
redesign efforts out of proportion to the size of the original change then the original
design was not robust. What this means is that if the pattern of coupling in our
solution matches the pattern of coupling in the problem, then the changes in the
solution can parallel those in the domain and the solution will be robust.

3.2 Quantifying Robustness Using Coupling Matrices

We will now proceed to quantify this notion of robustness as “matching the pattern
of coupling in the domain.” We can summarise this constraint, between the
problem (P) and the solution (S), using the following matrix equation:

1,Cl=1Cl (1)

where the coupling terms ,C ; are non-zero if there is coupling (an object
relationship) between elements I and J of the problem model and zero otherwise.
Similarly, the coupling terms (C ; are non-zero if there is coupling (an object
relationship) between solution elements I and J and zero otherwise. Note, if terms
¢C,, are non-zero and the corresponding coupling terms (C,, are zero, then the
solution is less coupled than the problem, which causes no harm. If the converse is
true, then the problem elements can change more freely than the solution, and the
solution is, therefore, not robust under changing requirements.

If we expand (1) to include the separate analysis, design, and implementation
models, we can decompose the coupling within the solution into its components:

1,Cl=1ClI=1,CI*1,Ci*| CI)

where the new terms correspond to the solution coupling arising from analysis,
design and implementation respectively. Notice that the matrix algebra for
coupling terms mirrors the transitivity of coupling in the actual models. An overly
coupled implementation will effectively lead to a solution that is coupled even if
the analysis and design models are not.

We now separate the coupling which results from the realised by arcs between
models from the coupling within a given model. Each of the component terms in
equation (2) can now be expanded into its two components:

232
1,Cl=1Cl=1,CI*I1,Cl*I Cl*I CI*| ,CI*ICI @)

where we have shown the coupling matrices for the realised by mappings between
the models together with the coupling matrices within the models for analysis,
design, and implementation respectively. (This separation is equivalent to the
notions of inter module and intra-module connectivity in software engineering.)

In the equations above, the coupling terms are, to first approximation, 0 if there is
no connection between the two referenced elements and 1 if there is. Note that
most relationships can be unidirectional and therefore the matrices will generally
not be symmetric about the diagonal (which always contains ones for the coupling
within a model). We now turn to the mapping between models embodied in the
“realised by” arcs. Like the arcs making up the decomposition within a model,
these arcs can also define a pattern of coupling.

If we use (2) to compare the pattern of coupling in the problem to that of the
solution and we discover a coupling term in the solution, which is larger than the
corresponding term in the problem, then there is a potential problem. According to
the problem model, it is possible to vary two or more requirements separately, but
the solution model is not able to isolate that variation. Thus, functionality in the
solution unrelated to the requirement change must also be adjusted. Thus, the
requirements change are “amplified” rather than “damped” as we require. Using
the component matrices in equation (2), we can identify the source of the excess
coupling as originating from one of the realised by mappings or one of the
analysis, design, or implementation models. Thus, we can target the improvement
of the model using this approach. The most robust design is the most likely to be
well behaved when our co-operating designers come together for a design review
and attempt to reconcile inconsistencies in their competing partial solutions.

3.3 Applying coupling measure at different levels of abstraction

As we have seen above, coupling matrices can be used to compare the amount of
coupling in the presenting problem and the way in which the solution matches this
pattern. Because of the nature of matrix products, we can combine the coupling
matrices for analysis, design, implementation and their respective realised by
mappings into a single combined matrix which summarises the pattern of coupling
in the overall solution.

In the event that the solution is more coupled than the presenting problem, we
can use the individual decomposition and mapping matrices to detect where the
additional coupling is being introduced. (Once a non-zero coupling term has been
introduced, it will propagate through the matrices in the same way that the
functional coupling propagates through the design.) In this way we can apply our
robustness metric to the overall solution and to its major component parts.

Thus far, we have explored a relative scale for robustness based on comparing
the pattern of coupling in the solution to that of the problem. As we apply the
metric to more detailed situations, we can develop a restricted metric (which
corresponds more directly to the metric used in Axiomatic Design).

233

If we assume the worst case presenting problem, each element of the problem
will be able to vary independently. In this situation, the coupling among the
problem elements will produce the identity matrix. In general, we will not be able
to force the product of the mapping matrix for realised by arcs and the coupling
with the various models to produce the identity matrix. We now relax our earlier
matching restriction to require that the matrix be lower triangular (normal matrix
reordering can be used to collect the zeros above the diagonal).

Solutions whose coupling matrices are at least lower triangular are still robust
against changes in requirements. A triangular coupling matrix implies that there is
a single degree of freedom associated with one element of the solution that forms
the context for all remaining solution elements. Once this element of the solution
has be set, the next most heavily coupled element can be set. Proceeding in this
way, the elements of the solution can be set in a single pass through the problem.
In the event that the solution is not lower triangular, it means that there is a cycle in
among the couplings. A solution for this cycle must be identified as a single unit
and cannot be found in a convergent manner. Thus, cycles correspond to non-
triangular matrices and non-robust solutions.

3.4 Automating the evaluation of design quality measures

The coupling matrices necessary to evaluate relative coupling between problem
and solution can be evaluated automatically while design models are constructed.
Complete coupling matrices require that the parameter lists of each object’s
method specification must also be examined. Method parameters can provide
additional coupling beyond that which is apparent in the topology of the models.

A number of software engineering frameworks routinely collect such data about
object-oriented software models defined with the tool’s framework. We are
currently exploring the extension of such frameworks to include our robustness
measures in addition to more traditional object quality measures.

4 RECONCILING PERSPECTIVES AND REUSING PATTERNS

We are now ready to return to the problem of providing a generalised
representation for design results that is usable by designers from different
perspectives. We will add a third dimension to our modelling framework: reuse of
design patterns. As we pointed out initially, the challenge for integrating the work
of designers from differing perspectives is to support communication and co-
ordination among the designers without imposing a single unified vocabulary or
prescriptive design method.

We identify a design perspective with a subset of the overall models. The subset
may be contained entirely within a single product stage or may cut across stages as
required by the engineering perspective. Different engineering perspectives may be
substantially disjoint in their attention to elements of all four of the individual
decomposition models. In addition, each perspective may only treat a subset of the
realised by arcs between the model elements treated by the perspective.

234

In our framework, perspectives are not permitted to be entirely disjoint. Each
perspective must be a specialisation (usually with extension) of a base pattern of
structure, which is common to all perspectives. Each perspective can specialise
only a portion of the global pattern, but this pattern enforces a minimal
connectivity among the perspectives.

Because each perspective maintains its knowledge about the patterns of coupling
independently, even if summary results are shared, it is possible for the group to
define coupled solutions without knowing it because the coupling matrices are
never assembled across all perspectives. In our framework, the developers of each
perspective are permitted to work with their own subset of the overall model. The
use of a single framework and a single store for the emerging perspectives allows
the detection of undesirable patterns of structure before they lead to rework during
design integration or brittle response to changing requirements.

The basic patterns from which each perspective is specialised can be used to
collect normative experience in each of the product stages. In the first stage, we
record proven ways to structure families of problems and we can frequently map
these problem elements to meaningful analysis elements. In a similar way, analysis
patterns convey the experience in how to approach the solution to well understood
problems. We represent this specialisation of normative patterns at each stage of
the product life cycle as a third orthogonal axis in our modelling framework. This
axis is used to record the abstraction of experience with families of problems and
solutions and recourse to these libraries of patterns helps to unify the competing
design perspectives.

5 DISCUSSION AND SUMMARY

In this paper, we have presented a formalism for recording engineering design
results which emphasises the separation of traditional sub-system decomposition
into two orthogonal abstraction hierarchies: one spanning product life cycle stages
and one decomposing a single stage. We have shown that some patterns of
connection among objects in this two dimensional model structure correspond to
robust structures, which damp ripple effects due to change in requirements or
conflict resolution among co-operating designers. These patterns can be
automatically evaluated and used to localise undesirable coupling within the
overall framework or evaluate alternative designs.

The nature of the orthogonal separation of axes of abstraction provides a natural
localising and organising framework, which can be used to guide a group of
engineers approaching the problem from different perspectives. More general
patterns can be included in pattern libraries and specialised as part of a program of
design reuse. Finally, maintaining a fully connected design model within the
framework provides documentation of the alternatives available and explored
along with the rationale for each implementation element.

235

6 REFERENCES

Suh, N. P. (1990) The Principles of Design, Oxford University Press, New York.

Rumbaugh, J., et. al. (1991) Object-oriented Modeling and Design, Prentice-Hall.

Henderson-Sellers, B. (1996) Object-oriented metrics: measures of complexity,
Prentice-Hall.

7 BIOGRAPHIES

Arthur Baskin has been involved in applied artificial intelligence and decision
support systems research for the past fifteen years. After receiving his Ph.D. in
computer science from the University of Ilinois in 1979, he has developed
information systems in medicine, civil engineering, mechanical engineering, and
computer assisted instruction. He is now a senior analyst with Intelligent
Information Technologies working in the areas of object software methodology
and support systems for engineering maintenance management.

Dr. Stephen Lu holds the David Packard Chair in Manufacturing Engineering at
the School of Engineering at the University of Southern California (USC). Besides
leading the school-wide design and manufacturing systems research program, he is
also the founding director of the IMPACT Research Laboratory and the Asia
Pacific Institute at USC. His current research interests are in the development of
basic theories, decision models and computer tools to support engineering as
collaborative negotiation. He has over 160 publications in the areas of engineering
automation, and received many national and international awards for his technical
contributions.

	Unified Representation systems for different levels of abstraction
	1 INTRODUCTION
	2 TWO ORTHOGONAL AXES OF DECOMPOSITION
	2.1 Separating abstractions provides reproducibility of placement
	2.2 Objects make placement more formal
	2.3 Four object models for four separate purposes
	2.4 Relationships record context, show alternatives, and promotereuse
	3 APPLYING QUANTITATIVE MEASURES TO DESIGN MODELS
	3.1 Patterns of coupling indicate robustness
	3.2 Quantifying Robustness Using Coupling Matrices
	3.3 Applying coupling measure at different levels of abstraction
	3.4 Automating the evaluation of design quality measures
	4 RECONCILING PERSPECTIVES AND REUSING PATTERNS
	5 DISCUSSION AND SUMMARY
	6 REFERENCES
	7 BIOGRAPHIES

