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nodes to a terminating node. Using VPCs allows for faster set-up of new con­
nections {along predefined routes) and rapid movement of traffic (ATM cells) 
with minimal processing at intermediate nodes {which is related to switching 
costs at each node). 

A VPC may also be assigned a certain bandwidth, i.e. a certain part of 
the bandwidth on each of the transmission links of the VPC may be reserved 
for its exclusive use. This accelerates the set-up of new connections (since 
exclusive ownership of bandwidth means that the availability of resources can 
be determined over the entire VPC). 

A further simplification and speed up is obtained if service classes are seg­
regated into logically distinct VPCs such that each service class has its own 
logically independent VPC network. With homogeneous traffic, the bandwidth 
reserved on a VPC may be expressed in terms of the maximum number of si­
multaneous connections it can support before violating some quality-of-service 
(QoS) constraints (e.g. cell loss). We call this number the "equivalent number 
of circuits" (or just "circuits" for short) for the traffic type considered, and 
express VPC bandwidths in terms of these rather than bits per time unit. 

We briefly mention that the calculation of the number of circuits from a 
given bandwidth is a complicated process which is done independently of the 
work presented here. It involves traffic characteristics (e.g. burstiness on the 
cell and burst scales and QoS constraints), and system properties (e.g. buffer 
capacities and strategies, and service policies). 

1.2 Management of Virtual Paths 

Because of the number of routes that traffic between a pair of end nodes 
may traverse, and the number of all possible pairs of end nodes with speci­
fied traffic requirements, a frequent use of VPCs may give rise to inordinately 
large numbers of them. This may cause problems in two areas of ATM network 
management. One problem area is in the management of VPis. The maximum 
number of VPis is limited by the field length allowed for VPis in ATM cell 
headers. The other problem area, which occurs only if VPCs are associated 
with reserved bandwidths, is in bandwidth management or efficient utilisa­
tion of the transmission capacity on transmission links. This is particularly 
evident for VPCs the traffic of which vary over time (thus not permitting full 
utilisation during off-peak periods), and VPCs with small volumes of traffic 
(which do not allow full exploitation of statistical multiplexing). 

In a series of works, e.g. (Arvidsson 1994, Arvidsson 1995), we have studied 
automatic reconfiguration of VPCs as a remedy for efficiency problems associ­
ated with time varying traffic. The basic concept is to reorganise the network 
of VPCs with respect to routes and bandwidths over time, in accordance 
with current demands. We have tried both on-line methods (based on short 
time traffic demand sampling followed by VPC network redesign) and off-line 
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methods (where VPC networks are designed according to averages of several 
demand measurements over the same traffic period). In this paper we extend 
our work and for the first time address the efficiency problems associated with 
low traffic volumes on some VPCs. 

2 STATEMENT OF PROBLEM 

2.1 Virtual Path Efficiency 

In network planning, design and management, there often exist competing 
goals and objectives, for which network planners have to strike a balance 
and arrive at a happy mean. One such case is ATM VPC routing, where 
the wish for simplicity in establishing, maintaining, and clearing connections 
contradicts the wish for high utilisation of the transmission network. 

A simple VPC identifies a route for a traffic stream between a pair of end 
nodes. Simplicity is achieved if traffic streams between pairs of end nodes are 
carried by end-to-end paths. This is because intermediate nodes mean individ­
ual routing of each request in addition to intermediate switching of the traffic 
flows, both of which incur processing time and require processing logic that 
translate into additional equipment costs. Moreover, intermediate switching 
incurs increased cell delay and loss through the buffers involved that again 
translates to costs in terms of additional equipment requirements. A more 
advanced VPC may have a certain transmission capacity committed along 
its route. This simplifies the establishment and clearing of a connection since 
these can be done end-to-end. The result is less pressure on the processing 
logic that translates into reduced equipment costs. Finally, a VPC may be de­
voted to a particular service class in order to simplify call acceptance control 
(CAC), by means of the equivalent circuit concept, and QoS management, 
through the distinction of different requirements provided by the VPis. 

Separate VPCs for each service class with dedicated capacity means that 
VPCs and their committed circuits are treated as a distinct inviolable entities, 
and we do not allow any statistical sharing of circuits between VPCs. Net­
work management, QoS management and connection management of VPCs 
and VCCs are indeed simplified this way. On the other hand, resources on 
transmission links are best utilised when there is maximum sharing among 
all VPCs traversing common transmission links. We are thus faced with the 
problem of choosing between reduced management efforts or high link utili­
sation. 

To illustrate the point, consider Figure 1. The diagram to the left shows the 
number of intermediate switching points per flow vs. the size of VPC in terms 
of number of hops. Though the numbers are not very interesting themselves, 
it is immediately clear that longer VPCs mean less intermediate switching. 
(The figures given refer to our specific test networks, which are described 
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Figure 1 Additional switching points vs. VPC length {right). Utilisation 
efficiency vs. traffic volume on the call scale (middle) and burst scale (right). 

in more detail below.) The middle and right diagrams show utilisation on 
the call and burst scale respectively vs. multiplexed number of channels and 
number of sources respectively. Again the numbers are not very interesting 
themselves, but we notice that the larger the traffic, the higher the utilisation 
for a constant QoS. It is also seen that there appears to be a limit above 
which further volumes do not significantly improve the utilisation. (The mid­
dle curve is computed from the Erlang-B model with a call loss probability 
QoS requirement of 10-2 . The right curve from the {not so realistic) model 
of (Anick et al. 1982) where independent, statistically identical sources alter 
between independent, exponentially distributed on- and off-periods and trans­
mit at peak rate during the former where the peak to mean ratio is 10, the 
buffer size is 10 average bursts, and the cell loss QoS requirement w-s.) 

Comparing the left diagram, which points at decreasing costs for longer 
dedicated VPCs with fewer intermediate switching points, to the middle and 
right diagram, which indicate reduced costs for shorter, general VPCs which 
can achieve high utilisation, it is clear that we are faced with a problem of 
striking a balance between the two factos. Indeed, as was suggested already 
by (Burgin 1989), the best choice is a compromise where the sum of switching 
costs and bandwidth costs reaches a minimum, i.e. we should consider separate 
VPCs but with some sharing. 

Separate, long VPCs make sense if there is adequately repeated updating 
(as in our automatic methods), and high volumes of traffic (i.e. high statistical 
multiplexing gain) on all VPCs. Sharing is, however, more attractive if rea­
sonable link utilisation cannot be achieved by a single traffic flow and should 
therefore be used for VPCs with low volumes of traffic. So we leave end-to-end 
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Figure 2 VPC network design modification by decomposition and aggrega­
tion. 

VPCs with high volumes of traffic (for which efficiency is not a big problem) 
but allow end-to-end VPC switch low traffic volumes to be decomposed into 
at most two VPC segments which can be aggregated with other, identical 
segments to allow for a higher degree of sharing. The principle of decompos­
ing and aggregation is shown in Figure 2. The figure shows a network with 
three nodes (named 1, 2, and 3) and two links (from 1 to 3 and from 3 to 
2 respectively). The left picture left shows a network with three VPCs, the 
one in the middle shows how one VPC is decomposed into two segments, and 
right one how the two segments are aggregated with existing, identical VPCs. 

2.2 Formal Notation and Terminology 

We consider VPC networks of N nodes with known capacity matrices C (of 
size N x N) where c0 ,t, o, t : (o, t = 1, ... , N, o =fi t) denotes the available 
bandwidth from node o to node t. All nodes contain VP cross connects and VC 
switching systems. This means that they may originate, terminate, and relay 
traffic either as bundles (VPs) or channels (VCs). To originate or terminate a 
channels requires both VP and VC functionality, while relaying can be done 
on the VP level only in the VP cross connect, or on the VC level by the 
VC switching system if preceded by VP demultiplexing and followed by VP 
multiplexing. 

For the sake of simplicity we omit conditioning on service classes and limit 
ourselves to the case of a single, uniform service class. (Note that we deploy 
service class (or traffic type) separation between VPC networks. Since we 
study decomposition and aggregation of VPCs within such VPC networks, 
neither the number of service classes (or traffic types) studied nor the specific 
choices will impact our results from a qualitative point of view.) 

All nodes originate traffic to and terminate traffic from all other nodes but 
themselves. User demands are fully characterised by a sequence of known end­
to-end traffic demand matrices A(k) (of size N x N), where a0 ,t(k) denotes 
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the traffic demand from o tot at time k, k: (k = 1, ... , K). The time index 
k indicates intervals such as hour, day of week, or day of year. 

For each traffic matrix there is a corresponding VPC network design matrix 
D(k) (of size N xN), the elements do,t(k) of which contain physical routes and 
associated bandwidths (in terms of circuits) for the end-to-end traffic demand 
a0 ,t(k). D(k) is computed from A(k) taking the relevant QoS demands for the 
service class(es) and the constraints of the physical network C, for details of 
the algorithm see (Arvidsson 1995). Our task is now to decompose the lightly 
loaded individual VPCs of all designs into two component VPCs of shorter 
length, which then must be aggregated to form shorter, common VPCs with 
higher loads. 

To simplify matters, we judge VPC traffic volumes by a simple threshold 
value (expressed in number of circuits). VPCs above this value are called 
"full VPCs" and are left untouched; VPCs below the value are called "thin 
VPCs" and are candidates for decomposition and aggregation. Typically, the 
threshold is set such that VPCs which can benefit significantly from increased 
volumes are affected. The goal of our decomposition procedure is to refine a 
design D(k) into a new, modified design D'(k) which is free from thin VPCs. 

3 RECURSIVE DECOMPOSITION AND AGGREGATION 

Our proposed algorithm examines the thin VPCs one by one, and for each of 
them it tries various decompositions until both segments can be aggregated 
into full VPCs. Segments can be aggregated with existing, full VPCs or with 
existing thin VPCs or other segments if the total bandwidth after the ag­
gregations makes the thin VPC/segments qualify as full VPCs. To allow for 
the latter option must the outcome of a particular attempt depend on the 
outcome of the following attempts. The algorithm therefore takes a recursive 
approach to decomposition and aggregation, where a particular attempt is 
judged only when all offsprings of that attempt can be judged. 

We will now describe the details of algorithm. The basic components are 
four data lists, a main procedure, and a set of supporting functions. The lists 
are fullVPClist, which contains all full VPCs; thinVPClist, which contains 
all thin VPCs; candVPClist, which contains all segments and merged seg­
ments that have not yet qualified as a full VPC; and failVPClist, which 
contains all thin VPCs which cannot be modified. To speed up the decom­
position and aggregation, the lists in our implementation are sorted lexico­
graphically, both forwards and backwards. 

The main procedure first initiates the lists mentioned above and then enters 
a loop where the thin VPCs are examined for decomposition and aggregation 
one by one. For each thin VPC, any node but the first and last ones may act 
as decomposition points. Nodes are tried sequentially for decomposition until 
one that results in successful aggregation has been found: 
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procedure main 
form fullVPClist and thinVPClist from design; 
clear candVPClist and failVPClist; 
let selectedPath be the first member of thinVPClist; 
let breakNode be the node after firstNode; 
repeat 

if successful(selectedPath,breakNode) then 
implement pending decompositions and aggregations; 
let selectedPath be the first member of thinVPClist; 
let breakNode be the node after firstNode; 

else if breakNode is not the node before lastNode then 
restore pending decompositions and aggregations; 
let breakNode be the next node; 

else 
restore pending decompositions and aggregations; 
move selectedPath from thinVPClist to failVPClist; 

endif 
until selectedPath is undefined 
stop; 

endprocedure 

The function successful(path,node) returns true or false depending 
on whether the two segments resulting from decomposing path at node will 
can be successfully aggregated or not: 

function successful(selectedPath,breakNode) 
let prefixPath be selectedPath from firstNode to breakNode; 
let suffixPath be selectedPath from breakNode to lastNode; 
if match(suffixPath,breakNode) and match(prefixPath,breakNode) then 

return true; 
else 

return false; 
endfunction 

The function match(path,node) returns true or false depending on whether 
path can be aggregated or not. Successful aggregation can result either from a 
match to an existing member of fullVPClist, or from a match to a member 
of candVPClist such that aggregation results in that the member qualifies as 
a full VPC. The function first tries the former option, then the latter one, and 
returns with a negative result if both options fail: 

function match(subpath,breakNode) 
if fullVPClist contains a path equal to subpath then 

set pending implementation; 
return true; 

else if extendible(subpath,breakNode) then 
return true; 
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else 
return false; 

endif 
endfunction 

The function extendible(path,node) handles the segments which may 
become full VPCs in candVPClist. It returns true or false depending on 
whether aggregating path with other segments results in full VPCs or not. 
These other segments may already be in candVPClist or tracked down and 
inserted by scanning the remaining members of thinVPClist. The first step is 
to find path in candVPClist. If this is successful, path is added to the existing 
member, otherwise path is entered as a new member. In the former case may 
the existing member now qualify as a full VPC, in which case the aggregation 
is successful. Otherwise more segments must be identified from thinVPClist 
and added on to result in a successful aggregation. The procedure therefore 
scans the latter list for members where a segment equal to path may be 
formed. The scanning continues until a new, full VPC can be formed, or until 
all members of thinVPClist have been tried. Each member scanned is tested 
for successful aggregation of both segments in the same way as in the main 
procedure, i.e. we may apply recursion: 

function extendible(subpath,breakNode) 
let mergePath be the member of candVPClist equal to subpath; 
if mergePath is defined then 

let mergePath be the aggregate of mergePath and subpath; 
if mergePath qualifies as a member of fullVPClist then 

set pending implementation; 
return true; 

end if 
else 

make subpath a new member of candVPClist; 
endif 
repeat 

let mergePath be the next member of thinVPClist 
with a segment equal to subpath; 
if mergePath is defined then 

if successful(mergePath,breakNode) then 
set pending implementation; 
return true; 

endif 
end if 

until mergePath is undefined 
reset pending implementation; 
return false; 

endfunction 
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4 NUMERICAL RESULTS 

4.1 Test Scenario 

(a) Networks, Traffics, and Tools 
To facilitate numerical tests, a computer programme was used to generate 
eight distinct networks of N = 20 nodes and K = 8 distinct traffic de­
mand matrices for each network. Requests for connections arrive according 
to independent Poisson processes for each origin-termination (OT) pair. The 
connection holding time is assumed to be negative exponentially distributed 
with unit mean. User demands are uniformly distributed between about 5 and 
350 Erlangs per OT pair, with a difference of about ±20% per OT pair from 
one matrix A(k) to another A(k') (corresponding to similar traffic demand 
variations over the time of the day, the day of the week etc.). Network trans­
mission capacities C are set to allow for a VPC network configuration D(O) 
with one VPC per OT pair (along the shortest physical route) with a capacity 
that allows a probability of rejection of exactly 10-2 , for a traffic which is the 
average over the whole range of traffic matrices A(1), ... , A(K). To give an 
idea of the actual test networks, we provide an example of a network and a 
traffic matrix in appendix 1. 

Next, a network simulator was constructed which implements any test net­
work according to its capacity matrix C and an associated traffic matrix A(k). 
To simulate traffic dynamics, user demands change every T = 30 time unit 
by replacing a traffic matrix A(k) by its successor A(k + 1) in a cyclic fashion 
such that A(K) is followed by A(1). 

(b) Congestion Control and Routing 
Requests for a connection to a node d arriving at a node o are accepted if 
there is enough free bandwidth available, i.e. if the number of connections 
in progress is less than the allocated capacity (recall that bandwidths are 
expressed as circuits). As indicated before, there may be more than VPC for 
every OT pair and all options are tried for all requests. Paths which have 
been modified into two hops are tried last and require two VCs, one per hop. 
Connections over one hop paths are said to be direct while those over modified 
paths are said to be broken. Requests which cannot find free bandwidth on 
any of these options are rejected. 

To reduce the probability of rejection we can allow rejected requests to hunt 
for free bandwidth on two VPCs in series, i.e. along a two-hop path where 
the first hop is from the origin to an arbitrary intermediate node and the 
second one from the intermediate node to the termination. Noting the ap­
parent similarities to overflows in circuit switched networks, we have adopted 
the dynamic alternative routing method (DAR) of selecting the intermediate 
node (Gibbens et al. 1989) and deployed trunk reservation (Katschner 1974) 
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in order to prevent excessive, inefficient use of this facility. Connections over 
such paths are referred to as overflowed. To limit the number of intermediate 
nodes per connection are paths which have been modified not available for 
this feature. 

A modified path also constitutes two direct paths: one between the ori­
gin and the intermediate node, and another one between the intermediate 
node and the termination. To achieve maximal statistical sharing, we give 
connection requests between these two pairs full access to the bandwidth pro­
vided by the modified path {i.e. it is not reserved to the original OT pair). 
This means that connections between the intermediate node and either end 
node can make a modified VPC unable to accept end-to-end connection re­
quests, even if less than the engineered number of end-to-end connections are 
in progress. Request for end-to-end connection which fail in this way are said 
to be blocked. 

(c) Virtual Path Management 
In the off-line approach to VPC management considered here are the K traffic 
matrices and their times of occurrence assumed to be known in advance. 
This allows the K VPC network designs to be computed in advance and 
implemented in the network as traffic change, i.e. design D(k) is followed by 
design D(k + 1) etc. and design D(K) by design D{l). 

Changing VPC network designs involves connecting, modifying, and closing 
VPCs. A VPC connection is when a new physical route is opened between 
two nodes by inserting entries in the routing tables of the VPC switching en­
tities at all nodes along the route, A VPC modification is when an existing 
physical route between two nodes is kept but the bandwidth allocated to it is 
changed by the replacing the contents in the CAC tables of the VC switching 
entities at the two end nodes, and a VPC disconnection is when an exist­
ing physical route between two nodes is closed by removing entries from the 
routing tables of the VP switching entities at all nodes on the route. 

Changing VPC designs may lead to a situation of bandwidth violation. 
This means that the number of connections on a physical link exceeds its 
capacity, i.e. the number it can support at a given cell level QoS. Bandwidth 
violation thus means that cell level QoS is impaired, and may happen if a 
new VPC network design means more bandwidth for some VPCs and less 
for others. A shortage {i.e. a violation) will then occur if (i) the number of 
connections in progress on VPCs subject to a bandwidth decrease exceeds the 
new bandwidth and (ii) their new, lower limits are reached slower than the 
number of connection in progress on VPCs subject to a bandwidth increase 
move towards their new, higher limits. In general, the impact of a bandwidth 
violation depends on the degree of violation and time during which it persists. 
The problem can be addressed in many ways; e.g. by physical rerouting, where 
the excess connections are physically rerouted while in progress (as is done 
for hand overs in cellular, mobile systems) and stay there for their remain-
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ing time; virtual rerouting, where excess connections are logically rerouted 
by requesting non-saturated VPCs over the same links to increment their 
occupancy during their remaining time of the excess connections; by polic­
ing, where police mechanisms will impose higher cell losses to make excessive 
streams conform with the imposed bandwidth requirements; or by ignorance, 
where actual violations (i.e. on links where both conditions above are fulfilled) 
will suffer from cell losses. 

Each option is associated with costs, in the first two the costs refer to 
processing of all potentially dangerous calls, in the third one the costs refer to 
cell losses for all calls in the potentially violating flow, and in the fourth one 
the costs refer to cell losses for all flows on actually violated links. (Note that 
much fewer cells thus will be lost with option four than with option three!) 

4.2 Algorithm Performance 

(a) Static performance 
Clearly, the outcome of the algorithm is dependent on the order in which 
thin VPCs are tried. We have adopted the approach to treat the thin VPCs 
in descending order of the path length (that is, the number of transmission 
links in a VPC). The rationale behind this is that in general it is harder 
to decompose a long VPC into two segments and hence it is better to deal 
with these at an early stage when more alternatives are available by way of 
recursion of other thin VPCs. In addition to processing the thin VPCs in 
descending path length, for the same path length we process the thin VPCs 
in ascending order of offered traffic or allocated circuits (as the case may be) 
since it is expected it is harder to accumulate traffic to satisfy the traffic 
threshold requirement for a VPC with a smaller volume of traffic. 

We have tested our procedure on the VPC designs D() for all 64 network 
and traffic configurations. The initial designs contain between 300 and 400 
VPCs. Using a threshold value of 30 circuits, the numbers of thin VPCs lie 
in the range of 100 to 150. 

After applying the procedure, the numbers of unmodified thin VPCs lie in 
the range of 0 to 16, the average number is about 6.5. The numbers of new 
full VPCs formed lie in the range of 10 to 31, with an average of about 19. 
This means that for these originally thin VPCs, no intermediate switching 
of their end-to-end traffic is required because of success in traffic aggregation 
from longer thin VPCs that use these VPCs as one of their two segments. 
The numbers of new VPC formed lie in the range of 0 to 9 with an average 
of about 3 (recall that new VPC are formed to carry transit traffic only). 

For two test cases, we have inverted the order of processing thin VPCs, 
that is, we process the thin VPCs in ascending order of path length. In one 
test case, the number of unmodified thin VPCs has gone up from 6 to 10. In 
another case, the number of unmodified thin VPCs has gone up from 7 to 12. 
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Table 1 Total results expressed as occurrences. 

Metric Direct Overflow 
used Mod. Ori. Mod. Ori. 

vee rejected (%) 1.4692 1.6896 0.7316 0.8679 
vee broken(%) 1.6445 1.6890 
vee blocked (%) 0.0451 0.0796 
vee overflowed(%) 0.9901 1.2281 

VPe modifications (%) 0.0239 0.0279 0.0239 0.0279 
VPe connections (%) 0.0187 0.0391 0.0187 0.0391 
VPe disconnections (%) 0.0186 0.0389 0.0186 0.0389 

Bandwidth violation (%) 0.0009 0.0008 0.0020 0.0017 

{b) Dynamic Performance 
Simulating each network for 4,800 time units (corresponding to 20 cycles 
of traffic patterns or about 150 million connections), we obtain the results 
shown in Table 1. The large number of connections per network means that 
the confidence obtained for each network is very high. To limit the amount 
of data, the tables show averages over all networks. The variance that follows 
from network differences is omitted since we do not think it is particularly 
significant to this work but would make the tables harder to read. 

The columns refer to specific combinations of strategy for routing (direct 
routing only or overflow routing applied) and design (modified or original). 
The rows are divided into three groups, the first one relate to the handling 
of vees, the second one to the handling of VPes, and the third one to 
bandwidth violations. 

The first group gives the fractions of requests resulting in rejected, broken, 
blocked, and overflowed connections respectively. As expected, it is seen that 
both modification and overflow routing reduces rejection and consequently im­
proves utilisation. With modified networks, a little over 1.5% of all requests 
try broken connections, and that the number increases if overflow routing is 
used. The small number follows from the restrictive usage in terms of modi­
fication threshold and path search order, and the increase is a result of more 
extensive usage following from the overflow option. Blocking events exhibit a 
similar behaviour, where approximately one request out of 2,000 arriving ones 
(or one out of 30 for which modification is tried) is blocked. With overflow 
routing, about 1% of all requests are handled as overflowed connections. The 
small number follows from the ability of the networks to satisfy most requests 
as direct connections, and the lower value noted for modified designs follows 
from the fact that overflow routing has less to add when design modification 
already has made more circuits available to a wide range of OT pairs. 
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Table 2 Revenues and expenses assumed in the performance evaluation. 

Action 

Carrying a direct VCC 
Carrying a broken or overflowed vee 

Performing a VPC connection (per node) 
Performing a VPC modification (per node) 
Performing a VPC disconnection (per node) 

Bandwidth violation (per link, percentage, and time) 

Gain 

1.00 
1.00 

Cost 

0.01 

0.10 
0.10 
0.10 

10,000.00 

The second group contains the number of modifications, connections, and 
disconnections of VPCs per generated call request, and the average degree of 
bandwidth violation. It is seen that the number of modifications, connections, 
and disconnections are independent of the vee routing strategy but drop 
somewhat with modification. The first observation follows immediately from 
the fact that the VPC network design algorithm does not take the routing 
strategy into account. The second observation is related to the decrease in 
number of VPCs in modified designs, a conclusion which is supported by 
noting that the drop is strong for connections and disconnections, but only 
weak for modifications. 

Finally, it is seen in the third group that bandwidth violations are marginal 
in all cases. The larger numbers noted for modified designs and overflow rout­
ing respectively and in combination follow from the associated higher utilisa­
tion. 

Our overall purpose is to maximise network profit, i.e. the difference be­
tween revenues and expenses. Revenues come from charging customers for the 
usage of services, and expenses are associated with maintaining the network 
and providing the services. To obtain an overall metric of network profit we 
introduce a monetary unit which is used to express all revenues and expenses. 
Our choices, inspired by discussions with operators, are summed up in Table 
2. Although one can think of different values, we feel that the order of mag­
nitude of our choices is reasonable, and they allow us to capture all aspects 
of our study into a single metric. 

The monetary unit is set such that a direct connection represents a gain of 
1.00 at no cost. A broken or overflowed connection represents the same gain, 
but with an additional cost of 0.01 to account for the additional overhead 
and reduced QoS associated with a second VC. VPe management actions 
represent costs of 0.10 per node (corresponds to ten times the cost of ave 
action, a relatively high number we believe). Finally, bandwidth violation 
represent a cost of 10,000.00 per link, per relative degree of violation, and per 
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Table 3 Total results expressed as monetary units. 

Metric Direct Overflow 
used Mod. Ori. Mod. Ori. 

Revenues per time unit 30140.61 30139.85 30140.48 30139.54 
Expenses per time unit 458.88 516.50 248.50 280.75 

Profitability (%) 98.48 98.29 99.18 99.07 
Improvement potential (%) 1.52 1.71 0.82 0.93 

Table 4 Separated results expressed as monetary units. 

OT pair Metric Direct Overflow 
category used Mod. Ori. Mod. Ori. 

Direct Profitability (%) 98.84 98.55 99.30 99.17 
paths Improvement potential(%) 1.16 1.45 0.70 0.83 

Mixed Profitability (%) 97.92 97.88 98.91 98.86 
paths Improvement potential(%) 2.08 2.12 1.09 1.14 

time unit. Table 3 shows the same results as in Table 1 expressed as monetary 
units. 

The first group of rows presents the absolute results per time unit and the 
second group gives some normalised results. In the first group it is seen that 
the networks are offered about 30,000 Erlangs, and the expenses per time 
unit are small compared to the revenues. The second group considers the 
actual profit (revenues minus expenses) in relation to the theoretical optimum 
(maximal revenues and no expenses). It is seen that all four cases are close to 
full profitability, but what is more important is the remaining improvement 
potential. Comparing to the case of neither modification nor advanced routing 
with an improvement potential of about 1. 7%, deploying both of them exploits 
about half that potential down to 0.82%. It is also seen that the improvement 
of advanced routing (0.78%) is larger than that of modification (0.19%), and 
that the two features are partly overlapping since the total improvement of 
both actions (0.89%) is less than the sum of the individual improvements 
(0.97%). 

To get a deeper understanding of the results, we have also conducted sep­
arate measurements for OT pairs with and without modified VPCs in their 
designs do,t(k). Table 4 gives the results in monetary units for OT pairs with 
direct VPCs only (upper rows) and with some modified VPCs (lower rows). 

The most important conclusion is that both classes of OT pairs benefit from 
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Figure 3 Profitability of modification vs. vee and VPe costs for direct 
routing (left) and overflow routing (right). 

modification and advanced routing. It is also interesting to note that OT pairs 
without modified VPes benefit the most from modification, an observation 
which is attributed to the fact that more bandwidth is made available to 
them, while OT pairs with modified VPes, which require free bandwidth 
on two VPes at the same time, cannot access the bandwidth to the same 
extent. On the other hand the situation is reversed with advanced routing, an 
observation which leads to the conclusion that generally disadvantaged OT 
pairs are more likely to have their paths modified. 

Finally, we study the sensitivity of our conclusions with respect to costs. The 
diagrams in Figure 3 show the cost ranges in which modification is profitable 
for simple and advanced routing respectively. Vee costs refer to the additional 
expense associated with broken or overflowed vees, while VPe costs refer to 
the expense associated with connecting, modifying, or disconnecting a VPe. 
As expected, it appears that modification is always profitable if the vee cost 
is little or none, and that the higher the vee cost, the higher must the VPe 
cost be for modification to make sense. 

5 CONCLUSIONS AND FURTHER WORK 

This work represents a first attempt at investigating the trade off between 
VPe and vee switching. Earlier works in the area, e.g. (Burgin 1989), have 
come to the same conclusion, i.e. that VPe and vee switching should be 
used in combination, but this study is, to the author's knowledge, the first 
with this level of detail and the first to study dynamic aspects. Building on our 
earlier results on optimal management on fully interconnected VP networks, 
we have proposed a method to identify and eliminate inefficient VPes. We 
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have also been able to demonstrate how the method can be applied successfully 
to improve network profitability. 

An obvious issue for further investigations is the question of optimal mod­
ification in terms of chasing the best threshold. Looking at the pros et cons 
of VPC and VCC routing, it is obvious that this threshold must depend on 
the relationship between VPC and VCC management costs as well as on the 
multiplexing characteristics of each service class. 

Another interesting issue is to do iterative designs in which the original 
traffic demand matrix and the new network design matrix are combined into 
a new traffic demand matrix which again is subject to VPC network design 
followed by possible modification. The same procedure may then be repeated 
over and over again until the demand matrices converge. 

A further point of interest is to apply a threshold to a complete OT pair 
rather than a single VPC. In this way are inefficient flows handled in a more 
collected effort. Finally, we would like to conduct a series of test for the case 
where VPC designs are computed in real time based on on-line estimations of 
traffic demands. 

Finally, the complexity of our algorithm, and alternative algorithms are 
strong points of interest. 
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APPENDIX 1 TEST NETWORKS 

Below we give an idea of the kind of test networks used by showing a sample 
topology, Figure 4, a sample capacity matrix, Table 5, and a sample demand 
matrix, Table 6. A complete description of the algorithm used to generate the 
networks is given in (Arvidsson 1995). 

Figure 4 A sample topology. 
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Table 5 A sample capacity matrix. 
OT c OT c OT c OT c OT c 

1- 2 2570 1- 6 600 1- 8 670 1- 9 1560 1-13 2160 
1-16 1510 2- 5 1320 2- 8 500 2-12 1190 2-16 2270 
3-9 1450 3-10 1690 3-15 510 4-11 540 4-14 2560 
4-18 90 5-12 1350 5-13 1090 6- 9 2760 6-10 330 
6-16 410 6-19 740 6-20 3130 7- 8 1540 7-11 1350 
7-14 4030 7-16 4540 7-17 500 7-19 610 7-20 650 
8-12 930 8-16 580 8-17 810 8-20 560 9-10 1070 
9-13 1410 9-15 2280 9-16 2980 10-19 2070 11-14 590 

11-18 1140 11-19 960 11-20 2030 12-17 2170 13-15 1610 
14-17 2360 14-18 2130 14-19 1580 16-17 1200 16-20 1060 
19-20 800 

Table 6 A sample demand matrix. 
OT A OT A OT A OT A OT A 

1- 2 156.6 1- 3 131.6 1- 4 190.2 1- 5 85.6 1- 5 85.6 
1- 6 46.2 1- 7 44.9 1- 8 30.6 1- 9 54.4 1-10 140.9 
1-11 111.5 1-12 223.1 1-13 113.8 1-14 42.4 1-15 72.6 
1-16 35.4 1-17 77.8 1-18 53.1 1-19 132.5 1-20 124.4 
2-3 313.4 2- 4 135.6 2- 5 18.4 2- 6 90.1 2-7 11.5 
2- 8 93.6 2- 9 71.0 2-10 37.3 2-11 162.6 2-12 136.7 
2-13 204.2 2-14 27.4 2-15 202.7 2-16 178.4 2-17 257.2 
2-18 36.0 2-19 305.4 2-20 207.9 3- 4 283.2 3- 5 121.1 
3- 6 35.0 3-7 20.8 3- 8 23.3 3- 9 64.2 3-10 315.9 
3-11 270.3 3-12 206.5 3-13 163.1 3-14 276.6 3-15 80.5 
3-16 191.6 3-17 106.4 3-18 234.3 3-19 195.9 3-20 339.5 
4- 5 52.5 4-6 282.1 4- 7 257.6 4- 8 148.4 4-9 160.9 
4-10 13.6 4-11 142.7 4-12 273.6 4-13 134.1 4-14 33.2 
4-15 11.6 4-16 77.2 4-17 22.4 4-18 67.5 4-19 256.9 
4-20 40.0 5-6 112.1 5-7 151.2 5-8 24.4 5-9 311.8 
5-10 14.4 5-11 205.0 5-12 261.8 5-13 9.4 5-14 245.5 
5-15 264.6 5-16 204.4 5-17 161.8 5-18 99.3 5-19 48.5 
5-20 118.5 6- 7 248.3 6- 8 50.6 6- 9 249.3 6-10 272.3 
6-11 118.4 6-12 28.2 6-13 104.7 6-14 244.3 6-15 252.4 
6-16 167.0 6-17 126.4 6-18 246.0 6-19 15.9 6-20 120.1 
7-8 128.0 7-9 304.4 7-10 108.2 7-11 85.8 7-12 246.5 
7-13 32.4 7-14 150.1 7-15 247.1 7-16 274.7 7-17 70.5 
7-18 191.6 7-19 195.2 7-20 44.2 8- 9 60.9 8-10 60.4 
8-11 175.7 8-12 191.6 8-13 242.3 8-14 294.7 8-15 106.8 
8-16 245.9 8-17 277.8 8-18 250.6 8-19 22.0 8-20 226.6 
9-10 151.2 9-11 259.1 9-12 274.9 9-13 161.3 9-14 13.6 
9-15 200.7 9-16 328.8 9-17 175.3 9-18 53.7 9-19 108.4 
9-20 322.5 10-11 155.9 10-12 199.5 10-13 230.6 10-14 297.6 

10-15 100.3 10-16 13.4 10-17 151.4 10-18 105.1 10-19 39.8 
10-20 111.5 11-12 171.1 11-13 149.3 11-14 210.2 11-15 49.0 
11-16 265.2 11-17 102.8 11-18 26.6 11-19 50.5 11-20 334.9 
12-13 92.2 12-14 251.9 12-15 98.0 12-16 10.4 12-17 141.4 
12-18 213.1 12-19 198.4 12-20 72.3 13-14 11.0 13-15 281.2 
13-16 174.5 13-17 27.1 13-18 234.8 13-19 71.6 13-20 223.2 
14-15 156.7 14-16 115.6 14-17 203.6 14-18 157.6 14-19 132.8 
14-20 154.5 15-16 209.5 15-17 276.4 15-18 45.3 15-19 133.2 
15-20 328.1 16-17 159.2 16-18 192.1 16-19 169.2 16-20 132.2 
17-18 138.2 17-19 239.7 17-20 119.9 18-19 73.4 18-20 298.1 
19-20 6.4 
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