
©

The original version of this chapter was revised: The copyright line was incorrect. This has
been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35353-1_28

IFIP International Federation for Information Processing
D. Kouvatsos (ed.), Performance Analysis of ATM Networks

2000

http://dx.doi.org/10.1007/978-0-387-35353-1_28

nodes to a terminating node. Using VPCs allows for faster set-up of new con­
nections {along predefined routes) and rapid movement of traffic (ATM cells)
with minimal processing at intermediate nodes {which is related to switching
costs at each node).

A VPC may also be assigned a certain bandwidth, i.e. a certain part of
the bandwidth on each of the transmission links of the VPC may be reserved
for its exclusive use. This accelerates the set-up of new connections (since
exclusive ownership of bandwidth means that the availability of resources can
be determined over the entire VPC).

A further simplification and speed up is obtained if service classes are seg­
regated into logically distinct VPCs such that each service class has its own
logically independent VPC network. With homogeneous traffic, the bandwidth
reserved on a VPC may be expressed in terms of the maximum number of si­
multaneous connections it can support before violating some quality-of-service
(QoS) constraints (e.g. cell loss). We call this number the "equivalent number
of circuits" (or just "circuits" for short) for the traffic type considered, and
express VPC bandwidths in terms of these rather than bits per time unit.

We briefly mention that the calculation of the number of circuits from a
given bandwidth is a complicated process which is done independently of the
work presented here. It involves traffic characteristics (e.g. burstiness on the
cell and burst scales and QoS constraints), and system properties (e.g. buffer
capacities and strategies, and service policies).

1.2 Management of Virtual Paths

Because of the number of routes that traffic between a pair of end nodes
may traverse, and the number of all possible pairs of end nodes with speci­
fied traffic requirements, a frequent use of VPCs may give rise to inordinately
large numbers of them. This may cause problems in two areas of ATM network
management. One problem area is in the management of VPis. The maximum
number of VPis is limited by the field length allowed for VPis in ATM cell
headers. The other problem area, which occurs only if VPCs are associated
with reserved bandwidths, is in bandwidth management or efficient utilisa­
tion of the transmission capacity on transmission links. This is particularly
evident for VPCs the traffic of which vary over time (thus not permitting full
utilisation during off-peak periods), and VPCs with small volumes of traffic
(which do not allow full exploitation of statistical multiplexing).

In a series of works, e.g. (Arvidsson 1994, Arvidsson 1995), we have studied
automatic reconfiguration of VPCs as a remedy for efficiency problems associ­
ated with time varying traffic. The basic concept is to reorganise the network
of VPCs with respect to routes and bandwidths over time, in accordance
with current demands. We have tried both on-line methods (based on short
time traffic demand sampling followed by VPC network redesign) and off-line

120

methods (where VPC networks are designed according to averages of several
demand measurements over the same traffic period). In this paper we extend
our work and for the first time address the efficiency problems associated with
low traffic volumes on some VPCs.

2 STATEMENT OF PROBLEM

2.1 Virtual Path Efficiency

In network planning, design and management, there often exist competing
goals and objectives, for which network planners have to strike a balance
and arrive at a happy mean. One such case is ATM VPC routing, where
the wish for simplicity in establishing, maintaining, and clearing connections
contradicts the wish for high utilisation of the transmission network.

A simple VPC identifies a route for a traffic stream between a pair of end
nodes. Simplicity is achieved if traffic streams between pairs of end nodes are
carried by end-to-end paths. This is because intermediate nodes mean individ­
ual routing of each request in addition to intermediate switching of the traffic
flows, both of which incur processing time and require processing logic that
translate into additional equipment costs. Moreover, intermediate switching
incurs increased cell delay and loss through the buffers involved that again
translates to costs in terms of additional equipment requirements. A more
advanced VPC may have a certain transmission capacity committed along
its route. This simplifies the establishment and clearing of a connection since
these can be done end-to-end. The result is less pressure on the processing
logic that translates into reduced equipment costs. Finally, a VPC may be de­
voted to a particular service class in order to simplify call acceptance control
(CAC), by means of the equivalent circuit concept, and QoS management,
through the distinction of different requirements provided by the VPis.

Separate VPCs for each service class with dedicated capacity means that
VPCs and their committed circuits are treated as a distinct inviolable entities,
and we do not allow any statistical sharing of circuits between VPCs. Net­
work management, QoS management and connection management of VPCs
and VCCs are indeed simplified this way. On the other hand, resources on
transmission links are best utilised when there is maximum sharing among
all VPCs traversing common transmission links. We are thus faced with the
problem of choosing between reduced management efforts or high link utili­
sation.

To illustrate the point, consider Figure 1. The diagram to the left shows the
number of intermediate switching points per flow vs. the size of VPC in terms
of number of hops. Though the numbers are not very interesting themselves,
it is immediately clear that longer VPCs mean less intermediate switching.
(The figures given refer to our specific test networks, which are described

121

VC overhead

r----

r-

r-

r--

r-

Maximal VPC length

Call muliplexing gain
0 ,-------------,

:::

0 ..

0

"'

0 500 1000
Multiplexed channels

Burst multiplexing gain

0 500 1000
Multiplexed sources

Figure 1 Additional switching points vs. VPC length {right). Utilisation
efficiency vs. traffic volume on the call scale (middle) and burst scale (right).

in more detail below.) The middle and right diagrams show utilisation on
the call and burst scale respectively vs. multiplexed number of channels and
number of sources respectively. Again the numbers are not very interesting
themselves, but we notice that the larger the traffic, the higher the utilisation
for a constant QoS. It is also seen that there appears to be a limit above
which further volumes do not significantly improve the utilisation. (The mid­
dle curve is computed from the Erlang-B model with a call loss probability
QoS requirement of 10-2 . The right curve from the {not so realistic) model
of (Anick et al. 1982) where independent, statistically identical sources alter
between independent, exponentially distributed on- and off-periods and trans­
mit at peak rate during the former where the peak to mean ratio is 10, the
buffer size is 10 average bursts, and the cell loss QoS requirement w-s.)

Comparing the left diagram, which points at decreasing costs for longer
dedicated VPCs with fewer intermediate switching points, to the middle and
right diagram, which indicate reduced costs for shorter, general VPCs which
can achieve high utilisation, it is clear that we are faced with a problem of
striking a balance between the two factos. Indeed, as was suggested already
by (Burgin 1989), the best choice is a compromise where the sum of switching
costs and bandwidth costs reaches a minimum, i.e. we should consider separate
VPCs but with some sharing.

Separate, long VPCs make sense if there is adequately repeated updating
(as in our automatic methods), and high volumes of traffic (i.e. high statistical
multiplexing gain) on all VPCs. Sharing is, however, more attractive if rea­
sonable link utilisation cannot be achieved by a single traffic flow and should
therefore be used for VPCs with low volumes of traffic. So we leave end-to-end

122

Original design Decomposed design Aggregated design

Figure 2 VPC network design modification by decomposition and aggrega­
tion.

VPCs with high volumes of traffic (for which efficiency is not a big problem)
but allow end-to-end VPC switch low traffic volumes to be decomposed into
at most two VPC segments which can be aggregated with other, identical
segments to allow for a higher degree of sharing. The principle of decompos­
ing and aggregation is shown in Figure 2. The figure shows a network with
three nodes (named 1, 2, and 3) and two links (from 1 to 3 and from 3 to
2 respectively). The left picture left shows a network with three VPCs, the
one in the middle shows how one VPC is decomposed into two segments, and
right one how the two segments are aggregated with existing, identical VPCs.

2.2 Formal Notation and Terminology

We consider VPC networks of N nodes with known capacity matrices C (of
size N x N) where c0 ,t, o, t : (o, t = 1, ... , N, o =fi t) denotes the available
bandwidth from node o to node t. All nodes contain VP cross connects and VC
switching systems. This means that they may originate, terminate, and relay
traffic either as bundles (VPs) or channels (VCs). To originate or terminate a
channels requires both VP and VC functionality, while relaying can be done
on the VP level only in the VP cross connect, or on the VC level by the
VC switching system if preceded by VP demultiplexing and followed by VP
multiplexing.

For the sake of simplicity we omit conditioning on service classes and limit
ourselves to the case of a single, uniform service class. (Note that we deploy
service class (or traffic type) separation between VPC networks. Since we
study decomposition and aggregation of VPCs within such VPC networks,
neither the number of service classes (or traffic types) studied nor the specific
choices will impact our results from a qualitative point of view.)

All nodes originate traffic to and terminate traffic from all other nodes but
themselves. User demands are fully characterised by a sequence of known end­
to-end traffic demand matrices A(k) (of size N x N), where a0 ,t(k) denotes

123

the traffic demand from o tot at time k, k: (k = 1, ... , K). The time index
k indicates intervals such as hour, day of week, or day of year.

For each traffic matrix there is a corresponding VPC network design matrix
D(k) (of size N xN), the elements do,t(k) of which contain physical routes and
associated bandwidths (in terms of circuits) for the end-to-end traffic demand
a0 ,t(k). D(k) is computed from A(k) taking the relevant QoS demands for the
service class(es) and the constraints of the physical network C, for details of
the algorithm see (Arvidsson 1995). Our task is now to decompose the lightly
loaded individual VPCs of all designs into two component VPCs of shorter
length, which then must be aggregated to form shorter, common VPCs with
higher loads.

To simplify matters, we judge VPC traffic volumes by a simple threshold
value (expressed in number of circuits). VPCs above this value are called
"full VPCs" and are left untouched; VPCs below the value are called "thin
VPCs" and are candidates for decomposition and aggregation. Typically, the
threshold is set such that VPCs which can benefit significantly from increased
volumes are affected. The goal of our decomposition procedure is to refine a
design D(k) into a new, modified design D'(k) which is free from thin VPCs.

3 RECURSIVE DECOMPOSITION AND AGGREGATION

Our proposed algorithm examines the thin VPCs one by one, and for each of
them it tries various decompositions until both segments can be aggregated
into full VPCs. Segments can be aggregated with existing, full VPCs or with
existing thin VPCs or other segments if the total bandwidth after the ag­
gregations makes the thin VPC/segments qualify as full VPCs. To allow for
the latter option must the outcome of a particular attempt depend on the
outcome of the following attempts. The algorithm therefore takes a recursive
approach to decomposition and aggregation, where a particular attempt is
judged only when all offsprings of that attempt can be judged.

We will now describe the details of algorithm. The basic components are
four data lists, a main procedure, and a set of supporting functions. The lists
are fullVPClist, which contains all full VPCs; thinVPClist, which contains
all thin VPCs; candVPClist, which contains all segments and merged seg­
ments that have not yet qualified as a full VPC; and failVPClist, which
contains all thin VPCs which cannot be modified. To speed up the decom­
position and aggregation, the lists in our implementation are sorted lexico­
graphically, both forwards and backwards.

The main procedure first initiates the lists mentioned above and then enters
a loop where the thin VPCs are examined for decomposition and aggregation
one by one. For each thin VPC, any node but the first and last ones may act
as decomposition points. Nodes are tried sequentially for decomposition until
one that results in successful aggregation has been found:

124

procedure main
form fullVPClist and thinVPClist from design;
clear candVPClist and failVPClist;
let selectedPath be the first member of thinVPClist;
let breakNode be the node after firstNode;
repeat

if successful(selectedPath,breakNode) then
implement pending decompositions and aggregations;
let selectedPath be the first member of thinVPClist;
let breakNode be the node after firstNode;

else if breakNode is not the node before lastNode then
restore pending decompositions and aggregations;
let breakNode be the next node;

else
restore pending decompositions and aggregations;
move selectedPath from thinVPClist to failVPClist;

endif
until selectedPath is undefined
stop;

endprocedure

The function successful(path,node) returns true or false depending
on whether the two segments resulting from decomposing path at node will
can be successfully aggregated or not:

function successful(selectedPath,breakNode)
let prefixPath be selectedPath from firstNode to breakNode;
let suffixPath be selectedPath from breakNode to lastNode;
if match(suffixPath,breakNode) and match(prefixPath,breakNode) then

return true;
else

return false;
endfunction

The function match(path,node) returns true or false depending on whether
path can be aggregated or not. Successful aggregation can result either from a
match to an existing member of fullVPClist, or from a match to a member
of candVPClist such that aggregation results in that the member qualifies as
a full VPC. The function first tries the former option, then the latter one, and
returns with a negative result if both options fail:

function match(subpath,breakNode)
if fullVPClist contains a path equal to subpath then

set pending implementation;
return true;

else if extendible(subpath,breakNode) then
return true;

125

else
return false;

endif
endfunction

The function extendible(path,node) handles the segments which may
become full VPCs in candVPClist. It returns true or false depending on
whether aggregating path with other segments results in full VPCs or not.
These other segments may already be in candVPClist or tracked down and
inserted by scanning the remaining members of thinVPClist. The first step is
to find path in candVPClist. If this is successful, path is added to the existing
member, otherwise path is entered as a new member. In the former case may
the existing member now qualify as a full VPC, in which case the aggregation
is successful. Otherwise more segments must be identified from thinVPClist
and added on to result in a successful aggregation. The procedure therefore
scans the latter list for members where a segment equal to path may be
formed. The scanning continues until a new, full VPC can be formed, or until
all members of thinVPClist have been tried. Each member scanned is tested
for successful aggregation of both segments in the same way as in the main
procedure, i.e. we may apply recursion:

function extendible(subpath,breakNode)
let mergePath be the member of candVPClist equal to subpath;
if mergePath is defined then

let mergePath be the aggregate of mergePath and subpath;
if mergePath qualifies as a member of fullVPClist then

set pending implementation;
return true;

end if
else

make subpath a new member of candVPClist;
endif
repeat

let mergePath be the next member of thinVPClist
with a segment equal to subpath;
if mergePath is defined then

if successful(mergePath,breakNode) then
set pending implementation;
return true;

endif
end if

until mergePath is undefined
reset pending implementation;
return false;

endfunction

126

4 NUMERICAL RESULTS

4.1 Test Scenario

(a) Networks, Traffics, and Tools
To facilitate numerical tests, a computer programme was used to generate
eight distinct networks of N = 20 nodes and K = 8 distinct traffic de­
mand matrices for each network. Requests for connections arrive according
to independent Poisson processes for each origin-termination (OT) pair. The
connection holding time is assumed to be negative exponentially distributed
with unit mean. User demands are uniformly distributed between about 5 and
350 Erlangs per OT pair, with a difference of about ±20% per OT pair from
one matrix A(k) to another A(k') (corresponding to similar traffic demand
variations over the time of the day, the day of the week etc.). Network trans­
mission capacities C are set to allow for a VPC network configuration D(O)
with one VPC per OT pair (along the shortest physical route) with a capacity
that allows a probability of rejection of exactly 10-2 , for a traffic which is the
average over the whole range of traffic matrices A(1), ... , A(K). To give an
idea of the actual test networks, we provide an example of a network and a
traffic matrix in appendix 1.

Next, a network simulator was constructed which implements any test net­
work according to its capacity matrix C and an associated traffic matrix A(k).
To simulate traffic dynamics, user demands change every T = 30 time unit
by replacing a traffic matrix A(k) by its successor A(k + 1) in a cyclic fashion
such that A(K) is followed by A(1).

(b) Congestion Control and Routing
Requests for a connection to a node d arriving at a node o are accepted if
there is enough free bandwidth available, i.e. if the number of connections
in progress is less than the allocated capacity (recall that bandwidths are
expressed as circuits). As indicated before, there may be more than VPC for
every OT pair and all options are tried for all requests. Paths which have
been modified into two hops are tried last and require two VCs, one per hop.
Connections over one hop paths are said to be direct while those over modified
paths are said to be broken. Requests which cannot find free bandwidth on
any of these options are rejected.

To reduce the probability of rejection we can allow rejected requests to hunt
for free bandwidth on two VPCs in series, i.e. along a two-hop path where
the first hop is from the origin to an arbitrary intermediate node and the
second one from the intermediate node to the termination. Noting the ap­
parent similarities to overflows in circuit switched networks, we have adopted
the dynamic alternative routing method (DAR) of selecting the intermediate
node (Gibbens et al. 1989) and deployed trunk reservation (Katschner 1974)

127

in order to prevent excessive, inefficient use of this facility. Connections over
such paths are referred to as overflowed. To limit the number of intermediate
nodes per connection are paths which have been modified not available for
this feature.

A modified path also constitutes two direct paths: one between the ori­
gin and the intermediate node, and another one between the intermediate
node and the termination. To achieve maximal statistical sharing, we give
connection requests between these two pairs full access to the bandwidth pro­
vided by the modified path {i.e. it is not reserved to the original OT pair).
This means that connections between the intermediate node and either end
node can make a modified VPC unable to accept end-to-end connection re­
quests, even if less than the engineered number of end-to-end connections are
in progress. Request for end-to-end connection which fail in this way are said
to be blocked.

(c) Virtual Path Management
In the off-line approach to VPC management considered here are the K traffic
matrices and their times of occurrence assumed to be known in advance.
This allows the K VPC network designs to be computed in advance and
implemented in the network as traffic change, i.e. design D(k) is followed by
design D(k + 1) etc. and design D(K) by design D{l).

Changing VPC network designs involves connecting, modifying, and closing
VPCs. A VPC connection is when a new physical route is opened between
two nodes by inserting entries in the routing tables of the VPC switching en­
tities at all nodes along the route, A VPC modification is when an existing
physical route between two nodes is kept but the bandwidth allocated to it is
changed by the replacing the contents in the CAC tables of the VC switching
entities at the two end nodes, and a VPC disconnection is when an exist­
ing physical route between two nodes is closed by removing entries from the
routing tables of the VP switching entities at all nodes on the route.

Changing VPC designs may lead to a situation of bandwidth violation.
This means that the number of connections on a physical link exceeds its
capacity, i.e. the number it can support at a given cell level QoS. Bandwidth
violation thus means that cell level QoS is impaired, and may happen if a
new VPC network design means more bandwidth for some VPCs and less
for others. A shortage {i.e. a violation) will then occur if (i) the number of
connections in progress on VPCs subject to a bandwidth decrease exceeds the
new bandwidth and (ii) their new, lower limits are reached slower than the
number of connection in progress on VPCs subject to a bandwidth increase
move towards their new, higher limits. In general, the impact of a bandwidth
violation depends on the degree of violation and time during which it persists.
The problem can be addressed in many ways; e.g. by physical rerouting, where
the excess connections are physically rerouted while in progress (as is done
for hand overs in cellular, mobile systems) and stay there for their remain-

128

ing time; virtual rerouting, where excess connections are logically rerouted
by requesting non-saturated VPCs over the same links to increment their
occupancy during their remaining time of the excess connections; by polic­
ing, where police mechanisms will impose higher cell losses to make excessive
streams conform with the imposed bandwidth requirements; or by ignorance,
where actual violations (i.e. on links where both conditions above are fulfilled)
will suffer from cell losses.

Each option is associated with costs, in the first two the costs refer to
processing of all potentially dangerous calls, in the third one the costs refer to
cell losses for all calls in the potentially violating flow, and in the fourth one
the costs refer to cell losses for all flows on actually violated links. (Note that
much fewer cells thus will be lost with option four than with option three!)

4.2 Algorithm Performance

(a) Static performance
Clearly, the outcome of the algorithm is dependent on the order in which
thin VPCs are tried. We have adopted the approach to treat the thin VPCs
in descending order of the path length (that is, the number of transmission
links in a VPC). The rationale behind this is that in general it is harder
to decompose a long VPC into two segments and hence it is better to deal
with these at an early stage when more alternatives are available by way of
recursion of other thin VPCs. In addition to processing the thin VPCs in
descending path length, for the same path length we process the thin VPCs
in ascending order of offered traffic or allocated circuits (as the case may be)
since it is expected it is harder to accumulate traffic to satisfy the traffic
threshold requirement for a VPC with a smaller volume of traffic.

We have tested our procedure on the VPC designs D() for all 64 network
and traffic configurations. The initial designs contain between 300 and 400
VPCs. Using a threshold value of 30 circuits, the numbers of thin VPCs lie
in the range of 100 to 150.

After applying the procedure, the numbers of unmodified thin VPCs lie in
the range of 0 to 16, the average number is about 6.5. The numbers of new
full VPCs formed lie in the range of 10 to 31, with an average of about 19.
This means that for these originally thin VPCs, no intermediate switching
of their end-to-end traffic is required because of success in traffic aggregation
from longer thin VPCs that use these VPCs as one of their two segments.
The numbers of new VPC formed lie in the range of 0 to 9 with an average
of about 3 (recall that new VPC are formed to carry transit traffic only).

For two test cases, we have inverted the order of processing thin VPCs,
that is, we process the thin VPCs in ascending order of path length. In one
test case, the number of unmodified thin VPCs has gone up from 6 to 10. In
another case, the number of unmodified thin VPCs has gone up from 7 to 12.

129

Table 1 Total results expressed as occurrences.

Metric Direct Overflow
used Mod. Ori. Mod. Ori.

vee rejected (%) 1.4692 1.6896 0.7316 0.8679
vee broken(%) 1.6445 1.6890
vee blocked (%) 0.0451 0.0796
vee overflowed(%) 0.9901 1.2281

VPe modifications (%) 0.0239 0.0279 0.0239 0.0279
VPe connections (%) 0.0187 0.0391 0.0187 0.0391
VPe disconnections (%) 0.0186 0.0389 0.0186 0.0389

Bandwidth violation (%) 0.0009 0.0008 0.0020 0.0017

{b) Dynamic Performance
Simulating each network for 4,800 time units (corresponding to 20 cycles
of traffic patterns or about 150 million connections), we obtain the results
shown in Table 1. The large number of connections per network means that
the confidence obtained for each network is very high. To limit the amount
of data, the tables show averages over all networks. The variance that follows
from network differences is omitted since we do not think it is particularly
significant to this work but would make the tables harder to read.

The columns refer to specific combinations of strategy for routing (direct
routing only or overflow routing applied) and design (modified or original).
The rows are divided into three groups, the first one relate to the handling
of vees, the second one to the handling of VPes, and the third one to
bandwidth violations.

The first group gives the fractions of requests resulting in rejected, broken,
blocked, and overflowed connections respectively. As expected, it is seen that
both modification and overflow routing reduces rejection and consequently im­
proves utilisation. With modified networks, a little over 1.5% of all requests
try broken connections, and that the number increases if overflow routing is
used. The small number follows from the restrictive usage in terms of modi­
fication threshold and path search order, and the increase is a result of more
extensive usage following from the overflow option. Blocking events exhibit a
similar behaviour, where approximately one request out of 2,000 arriving ones
(or one out of 30 for which modification is tried) is blocked. With overflow
routing, about 1% of all requests are handled as overflowed connections. The
small number follows from the ability of the networks to satisfy most requests
as direct connections, and the lower value noted for modified designs follows
from the fact that overflow routing has less to add when design modification
already has made more circuits available to a wide range of OT pairs.

130

Table 2 Revenues and expenses assumed in the performance evaluation.

Action

Carrying a direct VCC
Carrying a broken or overflowed vee

Performing a VPC connection (per node)
Performing a VPC modification (per node)
Performing a VPC disconnection (per node)

Bandwidth violation (per link, percentage, and time)

Gain

1.00
1.00

Cost

0.01

0.10
0.10
0.10

10,000.00

The second group contains the number of modifications, connections, and
disconnections of VPCs per generated call request, and the average degree of
bandwidth violation. It is seen that the number of modifications, connections,
and disconnections are independent of the vee routing strategy but drop
somewhat with modification. The first observation follows immediately from
the fact that the VPC network design algorithm does not take the routing
strategy into account. The second observation is related to the decrease in
number of VPCs in modified designs, a conclusion which is supported by
noting that the drop is strong for connections and disconnections, but only
weak for modifications.

Finally, it is seen in the third group that bandwidth violations are marginal
in all cases. The larger numbers noted for modified designs and overflow rout­
ing respectively and in combination follow from the associated higher utilisa­
tion.

Our overall purpose is to maximise network profit, i.e. the difference be­
tween revenues and expenses. Revenues come from charging customers for the
usage of services, and expenses are associated with maintaining the network
and providing the services. To obtain an overall metric of network profit we
introduce a monetary unit which is used to express all revenues and expenses.
Our choices, inspired by discussions with operators, are summed up in Table
2. Although one can think of different values, we feel that the order of mag­
nitude of our choices is reasonable, and they allow us to capture all aspects
of our study into a single metric.

The monetary unit is set such that a direct connection represents a gain of
1.00 at no cost. A broken or overflowed connection represents the same gain,
but with an additional cost of 0.01 to account for the additional overhead
and reduced QoS associated with a second VC. VPe management actions
represent costs of 0.10 per node (corresponds to ten times the cost of ave
action, a relatively high number we believe). Finally, bandwidth violation
represent a cost of 10,000.00 per link, per relative degree of violation, and per

131

Table 3 Total results expressed as monetary units.

Metric Direct Overflow
used Mod. Ori. Mod. Ori.

Revenues per time unit 30140.61 30139.85 30140.48 30139.54
Expenses per time unit 458.88 516.50 248.50 280.75

Profitability (%) 98.48 98.29 99.18 99.07
Improvement potential (%) 1.52 1.71 0.82 0.93

Table 4 Separated results expressed as monetary units.

OT pair Metric Direct Overflow
category used Mod. Ori. Mod. Ori.

Direct Profitability (%) 98.84 98.55 99.30 99.17
paths Improvement potential(%) 1.16 1.45 0.70 0.83

Mixed Profitability (%) 97.92 97.88 98.91 98.86
paths Improvement potential(%) 2.08 2.12 1.09 1.14

time unit. Table 3 shows the same results as in Table 1 expressed as monetary
units.

The first group of rows presents the absolute results per time unit and the
second group gives some normalised results. In the first group it is seen that
the networks are offered about 30,000 Erlangs, and the expenses per time
unit are small compared to the revenues. The second group considers the
actual profit (revenues minus expenses) in relation to the theoretical optimum
(maximal revenues and no expenses). It is seen that all four cases are close to
full profitability, but what is more important is the remaining improvement
potential. Comparing to the case of neither modification nor advanced routing
with an improvement potential of about 1. 7%, deploying both of them exploits
about half that potential down to 0.82%. It is also seen that the improvement
of advanced routing (0.78%) is larger than that of modification (0.19%), and
that the two features are partly overlapping since the total improvement of
both actions (0.89%) is less than the sum of the individual improvements
(0.97%).

To get a deeper understanding of the results, we have also conducted sep­
arate measurements for OT pairs with and without modified VPCs in their
designs do,t(k). Table 4 gives the results in monetary units for OT pairs with
direct VPCs only (upper rows) and with some modified VPCs (lower rows).

The most important conclusion is that both classes of OT pairs benefit from

132

Direct routing
0 ,-----------------,----,
0
0
0

.. .q
or-
]
t;jg
g.,;

C,)
P..o >IJ':)

C'i
0
0

Profitable

Non-profitable

0

0.00 0.10 0.20 0.30 0.40 0.50
vee cost factor

Overflow routing
0
0
0
0

... .q
or-
]
tlg
8.0

C,)

C'i
0
0

0
0.00 0.10 0.20 0.30 0.40 0.50

vee cost factor

Figure 3 Profitability of modification vs. vee and VPe costs for direct
routing (left) and overflow routing (right).

modification and advanced routing. It is also interesting to note that OT pairs
without modified VPes benefit the most from modification, an observation
which is attributed to the fact that more bandwidth is made available to
them, while OT pairs with modified VPes, which require free bandwidth
on two VPes at the same time, cannot access the bandwidth to the same
extent. On the other hand the situation is reversed with advanced routing, an
observation which leads to the conclusion that generally disadvantaged OT
pairs are more likely to have their paths modified.

Finally, we study the sensitivity of our conclusions with respect to costs. The
diagrams in Figure 3 show the cost ranges in which modification is profitable
for simple and advanced routing respectively. Vee costs refer to the additional
expense associated with broken or overflowed vees, while VPe costs refer to
the expense associated with connecting, modifying, or disconnecting a VPe.
As expected, it appears that modification is always profitable if the vee cost
is little or none, and that the higher the vee cost, the higher must the VPe
cost be for modification to make sense.

5 CONCLUSIONS AND FURTHER WORK

This work represents a first attempt at investigating the trade off between
VPe and vee switching. Earlier works in the area, e.g. (Burgin 1989), have
come to the same conclusion, i.e. that VPe and vee switching should be
used in combination, but this study is, to the author's knowledge, the first
with this level of detail and the first to study dynamic aspects. Building on our
earlier results on optimal management on fully interconnected VP networks,
we have proposed a method to identify and eliminate inefficient VPes. We

133

have also been able to demonstrate how the method can be applied successfully
to improve network profitability.

An obvious issue for further investigations is the question of optimal mod­
ification in terms of chasing the best threshold. Looking at the pros et cons
of VPC and VCC routing, it is obvious that this threshold must depend on
the relationship between VPC and VCC management costs as well as on the
multiplexing characteristics of each service class.

Another interesting issue is to do iterative designs in which the original
traffic demand matrix and the new network design matrix are combined into
a new traffic demand matrix which again is subject to VPC network design
followed by possible modification. The same procedure may then be repeated
over and over again until the demand matrices converge.

A further point of interest is to apply a threshold to a complete OT pair
rather than a single VPC. In this way are inefficient flows handled in a more
collected effort. Finally, we would like to conduct a series of test for the case
where VPC designs are computed in real time based on on-line estimations of
traffic demands.

Finally, the complexity of our algorithm, and alternative algorithms are
strong points of interest.

REFERENCES

Anick, D., Mithra, D., and Sandhi, M. (1982) Stochastic Theory of a Data­
Handling System with Multiple Sources, Bell System Technical Journal,
61, 1871-94.

Arvidsson, A. (1994) Real Time Management of Virtual Paths, in Proc. IEEE
Globecom 1994, 3, 1399-1403, IEEE.

Arvidsson, A. (1995) High Level B-ISDN/ATM Traffic Management in Real
Time, in Performance Modelling and Evaluation of ATM Networks, 1,
177-207, Chapman & Hall.

Burgin, J. (1989) Management of Capacity and Control in Broadband ISDN,
Int. J. of digital and Analog Cabled Systems, 2, 155-65.

Gibbens, R., Kelly, F., and Key, P. (1989) Dynamic Alternative Routing­
Modelling and Behaviour, in Proc. 12th Int. Teletraffic Gong., Turin
(Italy), paper no. 3.4A.3.

Katschner, L. (1974) Service Protection for Direct Final Traffic in DDD­
networks, Nachrichtentechnische Zeitschrift (NTZ), 5, 480-484.

ACKNOWLEDGEMENT

The author wishes to acknowledge that the algorithm presented is devised
and implemented by Dr. Yiu Kwok Tham during his stay with the Depart­
ment of Telecommunications and Mathematics at the University of Karls-

134

krona/Ronneby. The first report on this work was prepared jointly by him
and the current author. However, despite repeated attempts, the present au­
thor has been unable to get in touch with Dr. Tham for the preparation of
the current version.

APPENDIX 1 TEST NETWORKS

Below we give an idea of the kind of test networks used by showing a sample
topology, Figure 4, a sample capacity matrix, Table 5, and a sample demand
matrix, Table 6. A complete description of the algorithm used to generate the
networks is given in (Arvidsson 1995).

Figure 4 A sample topology.

135

Table 5 A sample capacity matrix.
OT c OT c OT c OT c OT c

1- 2 2570 1- 6 600 1- 8 670 1- 9 1560 1-13 2160
1-16 1510 2- 5 1320 2- 8 500 2-12 1190 2-16 2270
3-9 1450 3-10 1690 3-15 510 4-11 540 4-14 2560
4-18 90 5-12 1350 5-13 1090 6- 9 2760 6-10 330
6-16 410 6-19 740 6-20 3130 7- 8 1540 7-11 1350
7-14 4030 7-16 4540 7-17 500 7-19 610 7-20 650
8-12 930 8-16 580 8-17 810 8-20 560 9-10 1070
9-13 1410 9-15 2280 9-16 2980 10-19 2070 11-14 590

11-18 1140 11-19 960 11-20 2030 12-17 2170 13-15 1610
14-17 2360 14-18 2130 14-19 1580 16-17 1200 16-20 1060
19-20 800

Table 6 A sample demand matrix.
OT A OT A OT A OT A OT A

1- 2 156.6 1- 3 131.6 1- 4 190.2 1- 5 85.6 1- 5 85.6
1- 6 46.2 1- 7 44.9 1- 8 30.6 1- 9 54.4 1-10 140.9
1-11 111.5 1-12 223.1 1-13 113.8 1-14 42.4 1-15 72.6
1-16 35.4 1-17 77.8 1-18 53.1 1-19 132.5 1-20 124.4
2-3 313.4 2- 4 135.6 2- 5 18.4 2- 6 90.1 2-7 11.5
2- 8 93.6 2- 9 71.0 2-10 37.3 2-11 162.6 2-12 136.7
2-13 204.2 2-14 27.4 2-15 202.7 2-16 178.4 2-17 257.2
2-18 36.0 2-19 305.4 2-20 207.9 3- 4 283.2 3- 5 121.1
3- 6 35.0 3-7 20.8 3- 8 23.3 3- 9 64.2 3-10 315.9
3-11 270.3 3-12 206.5 3-13 163.1 3-14 276.6 3-15 80.5
3-16 191.6 3-17 106.4 3-18 234.3 3-19 195.9 3-20 339.5
4- 5 52.5 4-6 282.1 4- 7 257.6 4- 8 148.4 4-9 160.9
4-10 13.6 4-11 142.7 4-12 273.6 4-13 134.1 4-14 33.2
4-15 11.6 4-16 77.2 4-17 22.4 4-18 67.5 4-19 256.9
4-20 40.0 5-6 112.1 5-7 151.2 5-8 24.4 5-9 311.8
5-10 14.4 5-11 205.0 5-12 261.8 5-13 9.4 5-14 245.5
5-15 264.6 5-16 204.4 5-17 161.8 5-18 99.3 5-19 48.5
5-20 118.5 6- 7 248.3 6- 8 50.6 6- 9 249.3 6-10 272.3
6-11 118.4 6-12 28.2 6-13 104.7 6-14 244.3 6-15 252.4
6-16 167.0 6-17 126.4 6-18 246.0 6-19 15.9 6-20 120.1
7-8 128.0 7-9 304.4 7-10 108.2 7-11 85.8 7-12 246.5
7-13 32.4 7-14 150.1 7-15 247.1 7-16 274.7 7-17 70.5
7-18 191.6 7-19 195.2 7-20 44.2 8- 9 60.9 8-10 60.4
8-11 175.7 8-12 191.6 8-13 242.3 8-14 294.7 8-15 106.8
8-16 245.9 8-17 277.8 8-18 250.6 8-19 22.0 8-20 226.6
9-10 151.2 9-11 259.1 9-12 274.9 9-13 161.3 9-14 13.6
9-15 200.7 9-16 328.8 9-17 175.3 9-18 53.7 9-19 108.4
9-20 322.5 10-11 155.9 10-12 199.5 10-13 230.6 10-14 297.6

10-15 100.3 10-16 13.4 10-17 151.4 10-18 105.1 10-19 39.8
10-20 111.5 11-12 171.1 11-13 149.3 11-14 210.2 11-15 49.0
11-16 265.2 11-17 102.8 11-18 26.6 11-19 50.5 11-20 334.9
12-13 92.2 12-14 251.9 12-15 98.0 12-16 10.4 12-17 141.4
12-18 213.1 12-19 198.4 12-20 72.3 13-14 11.0 13-15 281.2
13-16 174.5 13-17 27.1 13-18 234.8 13-19 71.6 13-20 223.2
14-15 156.7 14-16 115.6 14-17 203.6 14-18 157.6 14-19 132.8
14-20 154.5 15-16 209.5 15-17 276.4 15-18 45.3 15-19 133.2
15-20 328.1 16-17 159.2 16-18 192.1 16-19 169.2 16-20 132.2
17-18 138.2 17-19 239.7 17-20 119.9 18-19 73.4 18-20 298.1
19-20 6.4

136

BIOGRAPHY

Ake Arvidsson received his Ph.D. from the Lund Institute of Technology
in Lund, Sweden, in 1990. He is currently acting professor at the Department
of Telecommunications and Mathematics, University of Karlskrona/Ronneby,
Sweden. Current research interests include bandwidth management and traffic
routing in ATM networks, traffic modelling for buffer engineering and call
acceptance control in ATM networks, and congestion control mechanisms for
intelligent networks. His URL is http:/ /www.itm.hk-r.sef"'akear.

137

	Balancing VP and VC Routing in ATM Networks

	1 PRELIMINARIES
	1.1 Definition of Virtual Paths
	1.2 Management of Virtual Paths

	2 STATEMENT OF PROBLEM
	2.1 Virtual Path Efficiency
	2.2 Formal Notation and Terminology

	3 RECURSIVE DECOMPOSITION AND AGGREGATION
	4 NUMERICAL RESULTS
	4.1 Test Scenario
	4.2 Algorithm Performance

	5 CONCLUSIONS AND FURTHER WORK
	REFERENCES
	ACKNOWLEDGEMENT
	APPENDIX 1 TEST NETWORKS
	BIOGRAPHY

