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Abstract 
Nowadays de-centralized scheduling architecture with flexibility and robustness is 
required in manufacturing system. This paper studies the abilities of multi-agent 
paradigm with simple architecture and primitive algorithm to move appropriately 
in relation to several process machines. Efficient individual behaviour is obtained, 
and self-organized work flow is formulated with coordinated motions. An 
evolutionary mechanism is introduced into the self organized scheduling 
methodology and improves scheduling performance in terms of efficiency and 
robustness in our simulation model. The evolved work agents are capable of 
robustness and reliability and facilitate autonomous scheduling system. 
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1 INTRODUCTION 
Agent-oriented programming is one of the latest topics in information 
technology(Shoham, 1993). It is weil known in the field of science, engineering, 
social system, economics and so forth. The concept of agent has been mainly 
proposed in the area of artificiallife(Langton, 1986). 
The definition of agent varies in the application fields(lshida, 1995). The definition 
is generally classified into four items as follows: 
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i) Autonomy 
Agents solve their facing problems by using their own knowledge and 
recognizing their situations all by themselves. 

ii) Pro-activeness 
Agents join tasks actively towards their unified goal. 

iii) Social ability 
Agents solves their problems by reciprocal relation with other agents or human. 
Common protocol is implemented to make the communication and negotiation. 

iv) Reactivity 
Agents make an appropriate response against their environmental changes. 

These characteristics facilitate a scheduling algorithm based on coordinated 
motions of autonomaus agents. 
Conventional scheduling approach in manufacturing system, however, is based on 
centralized control architecture, and it is quite difficult to get an universal solutions 
in all conditions due to the Iack of flexibility and robustness(Kaihara, 1996a). 
This paper presents a universal dynamic scheduling algorithm with multi-agent 
paradigm for manufacturing systems. The best known of natural collective multi­
agent systems are social insects: they use simple components; they use many 
identical insects; they exhibit system reliability; they adapt to environmental 
changes; they are robust with respect to individual insect failures(Shone, 1984). 
The idea of making scheduling algorithm which are modelled on such systems is 
therefore very attractive. 
The evolutionary concept must play an important role in the multi-agent based 
scheduling paradigm, because the coordination protocols implemented in each 
agent will be sophisticated gradually by the evolution mechanism. Genetic 
algorithm (GA) is a kind of evolutionary programming methods and a search 
procedure based on the mechanics of natural selection and natural genetics(12). 
GA allows computers to evolve solutions to difficult problems, such as function 
optimization and artificial intelligence. 
An universal dynamic scheduling paradigm with evolutionary multi-agent system 
based on GA is proposed in this paper for job shop type manufacturing system. 
Our goal is to propose a decentralized universal scheduling concept which is robust 
against dynamic environmental changes despite its simple architecture. Multi-agent 
based manufacturing system is modelled and simulation technique is introduced to 
analyze its characteristics and prove its effectiveness. 

2 SCHEDULING MODEL 
Agent prerequisite 
Each work moving around in manufacturing system is defined as agent in our 
model. Simple architecture which conducts self-organization and solves unified 
goal is one of our research topics. Work agent is defined by following assumptions: 
i) minimal sensing 
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The simplest possible sensor will be sensitive to a single type of strictly local 
environmental variation. In our model each work agent is sensitive only the 
direction to its target process machine. 
ii) minimal mobility 
The movements of the work agents will be limited only l)step forward 2)turn right 
3)turn left 4)turn back. In case an obstacle is on their way, they will change their 
direction. 
iii) minimal communication 
Each work agent will communicate only to the agent in front. The information 
exchanged is limited to 1) agent type 2) moving direction. 
iv) minimal computation 
The only computation undertaken by the work agent will be the calculation of the 
change in direction, as a function of the value of the sensor input. 
v) minimal environment 
Our work agent will exist in the simplest possible environment to start with a 
plane, with a square boundary (100, 100) which agents bounce off but cannot 
sense. 

Scheduling problern 
Scheduling problern in this paper is formulated by following notation:-

M: Total number of process machines 
•: Total number of agents 
ITY: Total number of agent type 
Ni: Total number of operations of agent i 
Fi: The nurnber offinished operations of agent i 
Oij: Operation index j of agent i 
TYi: Type of agent i 
PRit: Scheduling priority of agent i at time t 
Toij: Operation time of Oij 
PMoij: Process machine index of Oij 
Xoij: Total number of alternative machines of Oij 
Pit(x,y): Position(x,y) of agent i at t 
Pio(x,y): Initialposition of agent i 
Pm(x,y): Position(x,y) of rnachine m 
Dit: Current direction of agent i at t 
Dio: initial direction of agent i 
MTBFm: MTBF of machine m 
MITRm: MTTR of machine m 
T: 
Vi: 
TGit: 

Simulation finish time 
Velocity of agent i (step/t) 

Direction set to target of agent i at t 
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Interna! condition of agent i at time t is defined as following notation: 

WorkAgt it={Pit(x,y), Dit, PMoij, PRit} (I) 

Performance evaluation parameter is average Operation completion ratio (OCR), 

defined as follows: 

OCR=• Fi/W (2) 
i=l,W 

3 COORDINATED MOTION 

Coordination algorithm 
Coordination amongst work agents is established through their minimal 
communication. Generally coordination algorithms introduce the selection 
mechanism of several heuristic rules which have been equipped in each agent. 
An "entrainment" algorithm is proposed for agent protocol as a basic study of 
coordination phenomenon in our scheduling problem(Kaihara, 1996b). 
The proposed coordinated algorithms are explained in Figure 1. Two types of work 
agent are considered to treat rapid product development problem. QTAT (Quick 
Turn Around Time) work agents, so called 'Priority work' or 'Hot work', have 
higher scheduling priority than normal ones(Kaihara, 1997). 

where 

Fi=Fi+l 
i=j+l 
If(Fi>Ni) j=O 

Figure 1 Coordination algorithm 

Setlnitial: Pit(x,y)=Random((l, ... ,lOO)(l, ... ,lOO)), Dio=Random(N,S,E, W), t=O, j=O 

Check Forward: if(• WorkAgti't(i'• i)(IPi't(x,y)-Pit(x,y)l=l))=True 



Negotiate: if(• WorkAgti't(i'• i)( Di't• TGit ))=True 

Move 1: (Pi(t+l)(x,y)= Pit(x,y)+ Vi• L(Di't))• (Di(t+l)=Di't) 

Move II: (Pi(t+l)(x,y)= Pit(x,y))• (Di(t+l)= Random( !Jlt)) 

Go Ahead: (Pi(t+l)(x,y)= Pit(x,y)+ Vi• L(Dit))• (Di(t+l)= Dit)) 

Check Machine: if( IPit(x,y)-Pm(x,y)l=l • m= PMoij)=True 

Set Direction: (Pi(t+l)(x,y)= Pit(x,y))• (Di(t+l)• TGit) 
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At frrst, initial intemal conditions of the agents are set at 'Set Initial'. Their initial 
positions are defined in the plane with a square boundary (100, 100) followed by 
uniform-random distribution. Their initial direction is selected from a set of (N: 
North, S: South, E: East, W: West) basedonalso uniform-random distribution. 
After a work agent checks the existence of the other agents in front with its 
minimal sensor, minimal information about the priority and the direction is 
exchanged between the agents at 'Check Forward'. 
Minimal computation is undertaken in 'Negotiate' followed by the entrainment 
algorithm, which is observed in the movement of several social insects. If the 
confronted two agents are equivalent in their moving direction, both never change 
their direction and one is entrained by the other('Move 1'). But otherwise they try 
to change their direction randomly to avoid the collision or deadlock('Move II'). 
When a work agent reaches its target machine ('Check Machine'), it increments 
the intemal conditions, and set a new direction toward the next target('Set 
Direction'). 
QTAT work agents will cooperate only with other QTATs, that means QTAT steps 
into 'Negotiate' only in the confrontation with other QTATs in the flow chart. 

4 EVOLUTIONARY COMPUTATION 

Optimization and robustness are generally under trade-off relations in scheduling 
problem. The proposed coordinated scheduling algorithm aims at the latter 
essentially. Well-trained groups of the work agents, however, will gain the better 
scheduling solutions without losing their robustness. Therefore the application of 
evolutionary computing into the work agents should be promising. 
Genetic algorithm (GA) is one of the most popular evolutionary computations and 
derives its behaviour from a metaphor of the processes of evolution in nature. We 
applied GA approach to reinforce the coordinated work agents. 
A genotype information, which defines the possible movements in negotiation, of 
the work agent is shown in Figure 2. Each agent has 6 bit genotype in length. For 
example, the agent which selects a genotype "011010" can change its direction into 
left or back with probability 50% in the 'MOVE II' as negotiated action. 
Two types of fitness functions and reproduction rules are examined in this paper as 
follows: 

(1) Fitness function 

•Fitness=O: The number of finished operations of agent i ( = Fi) 
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•Fitness=l: The number of moved steps closer toward the target machine 
(2) Reproduction rule 

•Elite=O: reproduce all the individuals (Chromosomes) 

•Elite=l(Elitism): reproduce worst half of the individuals in fitness value 
As a selection rule of the individuals, we adopted roulette selection strategy, which 
selects the individuals in fitness-proportionate manner. The other experimental 
parameters are as follows: 

Crossover rate = 50% 
Mutation rate = 1% 

The time step for evolution is given as a parameter in the experiment. 
1: TurnBack 
O· Not Turn Back 

1: Turn Right 
0: 1ot Turn Right 

I 

1 
1: Turn Left 
0: Not Turn Left 

I 

1 . 
I: Prohabil 
0: Prohabil 

ity75% 
ity50% 

1: I.:ook Forward 1: Tun with Probabilit y 
0: Not Look Forward 0: Turn Always 

Figure 2 A genotype Information 

5 EXPERIMENT RESULTS AND DISCUSSIONS 

A simulation model is developed to make basic analysis of evolutionary self­
organized scheduling paradigm with respect to its effectiveness and robustness. 

Simulation conditions 
Default simulation conditions are as follows: 

M=3, W=lOO, TTY=2 (TYi=l: 50, TYi=2: 50), Ni=3, Toij=l, Vi=l 
Followings are the process machine sequence definitions: 

if(• TAgtit(TYi=l)=True) then PMoil =!, PMoi2 =2, PMoi3 =3 

if(• TAgtit(TYi=2)=True) then PMoil =3, PMoi2 =2, PMoi3 =I 

Robustness of self-organization scheduling 

(3) 
(4) 

Scheduling robustness under various dynamic environment is our major concern 
about cooperative movement of multi-agents. One of the most popular non-liner 
noise about job shop type manufacturing system, QTA T work, is focused in this 
paper. 
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Figure 3 shows the simulation result about the robustness against QTAT works. 
The denominator and numerator in QTAT parameter means the nurober of total 
work agent and QTAT work agent in the simulation respectively. 
This experiment indicated us several interesting characteristics of the proposed 
paradigm. At frrst, we observed the robustness against QTA T work disturbance. 
Deadlock never happened no more than 20 in the nurober of QTAT works. 
Secondly not only the robustness against QTAT work but also noteworthy 'leader­
ship' role of social society were observed in our work agent movement. Until the 
nurober of QTATs reaches 20, OCR becomes higher, contrary to our initial 
expectations. The work movement animation showed us the interesting fact; a 
QTAT work agent attended several normal work agents and conducted them to 
appropriate direction as a Ieader. QTAT works play an important role to form a 
global agent flow quickly. We call it 'leader-ship phenomenon' of the autonomaus 
work agents, and the phenomenon is related to the mass decision making process in 
our society. Once the nurober of QTAT isover the threshold(>20), deadlocks occur 
and OCR progress stops as we expected, because QTAT work agents never 
negotiate with normal ones and act selfishly. Too many selfish agents can't 
formulate cooperative global work flow. 
Finally, all the agents are QTAT works, OCR progress recovers. QTAT work 
agents can resolve interactions, because the negotiation amongst QTAT is 
admitted. 

80 
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60 
50 

5 40 
0 30 

20 

QTAT::0/60 
• QTAT=I0/60 

• • • • - · QTAT=20/60 
9 QTAT=30/60 
• QTAT=40/60 
e QTAT=S0/60 

---i:s- QTA T=60/60 

1~ ~~~~~~~~~~~~~ 
0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 

Figure 3 QT AT work T:i:n e (I') 

(W=60, PRit=O,l Xoij=l,T=4000) 

Evolutionary effects 
The effect of GA approach is shown in Figure 4. The parameters in the simulation 
experiment were described in chapter 4. The performance in the proposed 
evolutionary cooperative scheduling has increased up to 40% compared with the 
conventional cooperative scheduling. The final genotype information in the 
parameters (Fitness= I, Elite= I) at 4,000 simulationtime is shown in Figure 5. It is 
observed that the individuals converge into 2 types, (010001) and (010011), in this 
experimental conditions. The comparison of scheduling robustness between non­
evolution and evolution algorithms is shown in Figure 6. As agent population 
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increases, it generally becomes difficult to formulate autonomous agent flow. 
Finally Figure 7 shows the evolutionary time span effects on robustness. 
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Figure 4 Effectiveness of evolution 

Figure 5 Genotype information 
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Several interesting characteristics are pointed out about the evolutionary 
cooperative scheduling as follows: 
i) General characteristic: 
The evolutionary computation based on GA enhances the efficiency of cooperative 
scheduling despite its simple architecture. Work agents evolve gradually and 
offspring with elite chromosome are produced and increase in every 
generation(Figure 5). 
ii) Fitness function: 
Scheduling perforrnance is always improved under the condition (Fitness=l), 
whereas the improvement is not always expected under the condition (Fitness=O). 
That is because the sensitivity of fitness function (Fitness=O) is too rough to 
converge the chromosomes. A detailed Ievel of the sensitivity is essential to the 
fitness function and the function (Fitness=l) is reasonable in this scheduling 
model(Figure 4, Figure 5) 
iii)Reproduction rule: 
Elitism(Elite=l) increases the scheduling perforrnance only if the sensitivity of the 
fitness function is secured (Figure 4). Elitism requires the sensitive fitness function 
to produce elite offspring by nature. The chromosomes aren't converged under 
rough fitness function (Fitness=O) in Elitism, because it is difficult to take the 
chromosomes in order. 
iv) Robustness (Figure 6): 
The evolutionary mechanism based on GA has been proved to enhance scheduling 
robustness under any population density. The appropriate convergence of 
chromosomes, which varies the experimental conditions, are obtained in the 
evolutionary scheduling paradigm. 
v) Evolutionary frequency (Figure 7): 
Scheduling robustness is relatively sensitive against evolutionary time span. Too 
short time span decreases the robustness, because the fitness value in each agent is 



562 

quite similar and that prevents appropriate convergence of chromosome. On the 
other band, evolutionary effects on the agents is weak under too long time span. 

Discussions 
Our implementation and experiments successfully demonstrated that the 
mechanisms for conflict resolution that we derived from our concept were able to 
cooperate work agents in a systematic manner. These work agents proved capable 
of robustness and reliability coping with the scheduling demands of a simple 
environment, and seem to perform pretty weil. The proposed scheduling paradigm 
is robust enough to treat general dynamic environmental changes in manufacturing 
system, such as priority work, despite its simple architecture. W e Jound 
'Leadership phenomenon' that is quite distinctive in the proposed scheduling. 
Evolutionary computation is effective to autonomaus agents and improved 
scheduling performance up to 40%. Several characteristics of the evolutionary self­
organization scheduling were clarified. 

6 CONCLUSION 

A new paradigm of evolutionary self organization scheduling using cooperative 
autonomaus agents has been proposed in this paper. The architecture is quite 
simple but suitable to fully de-centralized scheduling system. The effectiveness of 
the proposed paradigm has been investigated by using simulation model. As the 
result, our work agents have proved capable of robustness and reliability coping 
with the several scheduling demands. Evolutionary algorithm has played an 
important role to enhance scheduling performance and robustness. 
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