
9 

Representing structural 
requirements in software 
architecture 

V. Ambriola and V. Gervasi 
Universita di Pisa - Dipartimento di Informatica 
Corso Italia 40, I-56125 Pisa, Italy 
e-mail: { ambriola, gervasi }Cidi. unipi. it 

Abstract 
Software architecture is often intended as a synonym of functional decompo­
sition. Recently, the growing interest in quality factors is pushing software 
architects to explicitly address issues such as reliability, robustness, and effi­
ciency in the early phases of the software process. Also, an effective software 
process emphasizes the need for requirement traceability in all phases of devel­
opment. This paper is a first step in the direction of representing and tracking 
structural requirements (i.e., non functional requirements) in the software ar­
chitecture. A graphical language, based on the Dean and Cordy proposal, is 
extended to cope with this new issue, and an example of its use is given. 

Keywords 
Software architecture, requirements, design language 

1 INTRODUCTION 

The growing complexity of software systems, the agreement that a critical 
factor in their design is the high level organization of computational elements 
and interactions, coupled with the increasing production costs of software 
and the decreasing costs of hardware, are formidable arguments for those 
researchers in quest of new system abstractions. One of the effects of this 
concrete push is the birth of a new software engineering discipline, software 
architecture, that, in a historical perspective has noble, solid, and old roots 
(Parnas 1972). 

Perry and Wolf (1992) identify the need of a timely approach to structural 
system aspects. In their perspective, the software architecture is a framework 
with multiple purposes: it must satisfy the functional requirements, offer a 
basic design technique, allow effective reuse, and act as foundation for consis­
tency and dependencies analysis. 

The increasing costs of software are also imputable to its architecture. In 
particular, under the pressure of new requirements, software systems are sub­
ject to a natural evolution that results in long and expensive rework. These 

Sysrems Implementation 2000 R. Nigel Horspool (Ed.) 
C 1998 lAP. Published by Chapman &: Hall 



Structural requirements in software architecture 115 

activities often have as a side effect a perceivable reduction of the robust­
ness of the system. We interpret this effect as the lack of architectural ma­
turity. Software production is still dominated by the process of component 
re-implementation for each new architecture. We miss a set of standard archi­
tectural styles associated with the design and the formal description of their 
components. A software system should be modeled through its architecture, 
including system structures and topology. This approach makes possible the 
analysis of properties related to the system structure, and allows to under­
stand how they influenced the structural choices and their consequences. We 
expect that this analysis can suggest how to improve the qualitative attributes 
of a software system so that its life span can be prolonged. 

The paper is organized as follows: Section 2 compares the classical notion 
of architecture with the new definition used in the software context; Section 3 
lists the software requirements that we consider structural; Section 4 presents 
a production process that takes into account the distinction between struc­
tural and functional requirements. The formalism we propose to represent 
the architectural model is defined in Section 5, a discussion and a complete 
example follows; Section 8 concludes the paper with some remark. 

2 CIVIL ARCHITECTURE AND SOFTWARE ARCHITECTURE 

There are many and different important analogies between civil architecture 
(i.e., architecture related to buildings) and software architecture. Both derive 
from a common approach that leads the architect or the software designer to 
reconcile his creativity with respect to the requirements that a building or 
a software system must satisfy, as stated by the customer. These analogies 
concern the use of models, notations, architectural styles, and standards. 

Models of classical architecture (usually physical scale models or perspective 
drawings) privilege the aesthetic impact of a building and say little about its 
functionality, that is often described separately. On the other hand, models 
of software architecture are usually diagrams showing structural, behavioural, 
or information-oriented views of the system, completely ignoring the aesthetic 
issues implied by the creative process. 

As for buildings, architectural styles exist for software, too. For instance, 
there is a clear distinction between Romanesque, Gothic, and Baroque ar­
chitectures for the same class of buildings as there is between distributed, 
client-server, and layered architecture inside the same class of systems. These 
different structural topologies are, at a high level of abstraction, the aesthetic 
facet of every software system. 

The construction constraints of a building can concern, for instance, acous­
tic insulation or resistance against earthquakes; analogously, software systems 
can be required to provide real-time performance, fault tolerance, or compu­
tational efficiency. In general, these constraints are not explicit in the system 
design, partly because they are considered "quality attributes" that play a 
secondary role with respect to functional requirements, and partly because 



116 Systems Implementation 2000 

the models exploited for design do not take into account such factors, and so 
cannot express these constraints. 

There is another point of contact between the two kinds of architecture. 
Civil architecture has a focus in human living, since ever assumed as a ref­
erence point for the architect's actions. Human living has an evolutionary 
character, and thus the reference point changes with respect to the histori­
cal context where the design experience originally took form. This happens 
also for software, with the important difference that the software architect is 
confronted with a much faster evolution. 

Civil architecture tries to solve this problem by making -qualitative- choices 
in the design phase. Software engineering is partially following the same direc­
tion, moving its focus towards quality attributes that strongly depend upon 
system structure, even when these attributes are not explicitly present in the 
requirement list. 

3 STRUCTURAL REQUIREMENTS 

Structural requirements have significant effects upon the software product; 
they determine the final quality and justify the design decisions that constrain 
the implementation of functional requirements. Structural requirements, dif­
ferently from functional ones, can be perceived as instances of generic cate­
gories that play the role of quality factors to be achieved in the development of 
the software product (Tervonen 1996). These categories are: efficiency, porta­
bility, maintainability, expandability, robustness, safety. 

• Efficiency is how the system exploits its resources, in terms of performance 
under given conditions (1809126). Efficiency can be described in the spec­
ification phase and successively prescribed in the design phase. It can be 
measured, however, only after the implementation phase. 

• Portability refers to the ability of the system to be moved between (hard­
ware or software) environments (IS09126). It has attributes that depend 
upon the ability to be adapted, installed, conformed, and replaced. 

• Maintainability refers to the ability of the system to react to changes per­
formed to adapt software to environment or requirement modifications 
{IS09126). The attributes of this category are: simplicity of analysis, con­
ciseness, stability, and system modularity. 

• Expandability is the system ability of reacting to the insertion of new com­
ponents, caused by the request of new functionality that the system must 
possess. Expandability and maintainability are quality factors that strongly 
depend upon architecture. At the same time, they are the goals of architec­
tural specification. Both aspects can be better captured through a timely 
choice of the right architectural style. 

• Robustness is the system ability of reacting to incorrect inputs or to com­
ponent faults. It is a quality desired for every system, although only rarely 
expressed in the requirement list. 



Structural requirements in software architecture 117 

• Safety is the aspect related to the protection of the system and of the data 
that it manages. This quality has a great relevance in specific application 
domains, even if it cannot be formalized by traditional modeling languages. 

Other structural requirements are the so-called environment or architec­
ture requirements. These are the true architectural requirements determined 
by precise hardware or software needs, for instance those of a real-time sys­
tem or of a system that must be implemented on pre-existing hardware. In 
general, these requirements cannot be expressed, and therefore validated, by 
the most common modeling languages; however, they are commonly found in 
real projects, where they assume a crucial role. They differ from the quality­
based structural requirements mentioned above in that the latter determine 
how desirable (or, how "good") a given implementation is, while architectural 
requirements determine if the implementation is acceptable at all. Although 
this kind of requirements are usually understood, and their satisfaction as­
sumed without further mentions, the lack of a notational support for their 
expression can adversely affect the lower phases of the development process 
and, above all, subsequent maintenance activities. 

4 STRUCTURAL REQUIREMENTS IN THE PRODUCTION 
PROCESS 

As implicitly said by Parnas (1972), the identification of modules and of their 
responsibilities belongs to the pre-design phase, when assumptions are made 
about the roles to assign to modules in the context of the whole system. This 
activity requires a significant creative effort, justified by the fact that design 
is based on the documents produced by the previous phases of the software 
process, that often do not leave any indication about system decomposition 
(and indeed, especially at the higher levels, they should not). 

The problem is further aggravated when the design phase has the goal of 
producing a decomposition based on qualitative constraints, either directly 
determined by the requirements or induced by the expected benefits of a 
particular decomposition. 

To better understand the goals of a system decomposition in modules we 
need to better understand which are the factors that drive the decomposition. 
Parnas believes that these factors have an exclusive functional characteristic. 
The individuation of software functionality and the consequent splitting of 
the responsibilities for their implementation imply, through the design for 
change motto, the qualitative goals of modifiability and reuse. Reliability and 
comprehensibility are instead achieved by the complexity decrease generally 
induced by module decomposition. 

The work made by Parnas on system modularization does not discrimi­
nate upon the module nature, the characteristics of their interactions, or the 
different topologies that can be obtained in the system construction. Modular­
ization is, in fact, the first step towards the concept of software architecture, 



118 Systems Implementation 2000 

Factor Efficiency Porta b. Maintain. Expand. Robust. Safety 

Separation +j_ + + + 
Abstraction + + + 
Composition + 
Replication +j_ + 
Res. sharing + + 

Table 1 Influence of operative units on structural requirements. 

although an architecture satisfying given non functional requirements cannot 
be achieved only by means of functional decomposition. 

The following architectural factors (or operative units, according to Kazman 
and Bass {1994)) influence the fulfillment of these requirements: 

• Separation is the distribution of system functionalities among several com­
ponents, usually in a top-down fashion; 

• Abstraction is the creation of a virtual machine, implemented by software 
modules that hide their implementation from the other modules; 

• Composition is the operation opposite to Separation; it consists of merging 
together several layers of the design (usually in a bottom-up fashion); 

• Replication is the duplication of the same functionality in several modules; 
• Resource sharing is the operation of encapsulating data or services in a 

handler so that they can be used by several other modules (users of the 
resource) in a regulated fashion. 

As shown in Table 1, there is a distinct relationship between these fac­
tors and the categories of non functional requirements we discussed above: 
+ entries denote factors positively influencing the quality, - entries denote 
negative influences and + /- entries denote positive or negative influence, de­
pending on other conditions. 

Since architectures can be described by their adoption of the various units 
(Rosestolato 1996), we can track several pieces of common savvy about the 
properties of architectures via Table 1. For instance, a client/server architec­
ture makes use of separation and resource sharing, and this positively affects 
portability, while a blackboard architecture uses resource sharing (where the 
resource shared is the blackboard itself) and thus is less robust and safe -
having a critical point - but better maintenable than other architectures. 
Given a certain non functional requirement, a software architect can identify 
the category to which the requirement belongs and determine a set of com­
patible architectures among those based on the appropriate operative unit. 
It is also interesting to note that Table 1 makes clear that certain structural 
requirements are conflicting, and thus cannot be obtained without compro­
mising the soundness of the architecture: 

• portability, maintainability, and expandability conflict with efficiency if us­
ing abstraction and composition; 



Structural requirements in software architecture 119 

• portability and maintainability conflict with efficiency, robustness, and 
safety if using resource sharing; 

• robustness conflicts with portability, maintainability, and expandability if 
using replication. 

In the construction of a software system, modeling and design play a funda­
mental role. Traditional modeling consists of the functional specification only 
(using, for instance, Petri nets, Lotos or Z), and describes properties of the 
system stemming exclusively from its functional requirements. Then, design 
has to satisfy this functional specification and some additional constraints, 
i.e. structural requirements, even if they are not explicit in the model. 

As a consequence, the same (functional) model corresponds to many dif­
ferent designs, that differ in their choice of non-functional requirements. This 
is unpleasant, since the "best" implementation of a given system has then 
to be selected on the basis of unstated choices. We maintain thus that an 
explicit structural model should be developed alongside the functional one. 
The architectural specification document describing this model serves both 
as a descriptive model for analysis, and as a prescriptive model for design. 
A critical factor in the achievement of this double function is the use of an 
appropriate notation. 

5 THE ARCHITECTURAL MODEL 

To synthetically represent a large system we need a high abstraction level. 
The goal of the language proposed in this paper is to provide a notation to 
describe the architecture and the structural requirements of a software system. 
The model is an evolution of the proposal of Dean (1993), refined in Dean 
and Cordy (1995). 

The language aims at providing a comfortable notation, i.e., an easily un­
derstandable one (see Figure 1). Beside the graphical notation, there exists 
also a textual, set-based notation, whose main purpose is to allow a formal 
definition of the set of well-formed architectures (Rosestolato 1996). 

The language allows the designer to express the architecture of a software 
system, modeled as a set of interacting computational components, without 
worrying about their content, i.e., about the functionality that they must pro­
vide. A model is a graph, whose nodes (boxes) represent the elements of type 
component and whose arcs (lines) represent the elements of type connector. 

The architectural elements of type task are the only active components of 
the system. They can represent processes, modules, objects, .or procedures; 
more generally, they are computational elements that can manage control 
flow. The elements of type data are generic data structures. They can be per­
manent or temporary, structured or not, simple files, databases or archives; 
they can allow read-:-only access, write-only access, or both. They can have a 
variable or fixed dimension. In general, they can be considered as random ac­
cess memory. Expected connections are denoted by small circles; they are used 
to indicate expected system interfaces or to represent partially-instantiated 



120 Systems Implementation 2000 

Components Connectors 

0 Active task Stream 

~ ~ 
---------· 

Passive task Memory access 
·---------

D Random data _U Message bus 

[gJ Sequential data Procedure 

Data table ·················• Invocation 

D 0 0 
~ Production 

Expected 
Generic data Generic task connection 

Figure 1 Notation for the formalism. 

systems (e.g., when using a component-based architecture). The architectural 
elements of type connector represent the interactions between elements of 
type components. They are explicitly defined as architectural entities, that 
characterize the identity and the role of the participants to an interaction and 
that, together with the topology of the elements that make up the system 
architecture, characterize an architectural style. 

The language allows the designer to associate to the architectural elements 
- constants or variables, of type component or connector - a set of at­
tributes that indicate which type or category of non functional requirements 
they must satisfy. This association constitutes a specific view on the non 
functional requirements of the system. When embedded in the context of an 
architecture, we call this the NFR-view (where NFR stands for Non Func­
tional Requirements) of the system. In practical use, attributes are annotated 
with a reference to the original requirement which introduced them, allowing 
easy traceability of most design decisions. 

This approach has two advantages. The first is to establish a documented 
link between a requirement and the part of the system (a single architectural 
element, a pair or an entire subsystem) responsible for ensuring its satis­
faction. The existence of such a link and its explicit representation in the 
language greatly simplifies the requirement verification phase, and guarantees 
traceability of the design choices while evaluating alternatives or modifying 



Structural requirements in software architecture 121 

Figure 2 Efficiency constraints. 

~----'1 -- Sw <1 

Figure 3 Write security and Robustness constraints. 

the design at a later time. Also, in case of evolving requirements, it is much 
easier to decide which design choices are still valid in a different context and 
which choices must be reconsidered. 

The second advantage derives from the observation that structural require­
ments are the basis for the software design phase. The refinement of the 
functional specification, through the choice and the use of particular data 
structures, is motivated by structural requirements. 

The categories of structural requirements that can be expressed in the 
NFR-view are efficiency, robustness, safety, and many architectural and envi­
ronmental requirements. The NFR-view collects three kinds of non functional 
requirements of the efficiency category: computational, write, and read. These 
requirements are abbreviated as Ec, Ew, and Er respectively. The computa­
tional efficiency is a qualitative attribute exclusively related to a single archi­
tectural element of type task. The write or the read efficiency are requirements 
that involve a pair of architectural elements, the first of type task and the sec­
ond of type connector, which are responsible of the write or of the read. For 
instance, in Figure 2 computational efficiency is associated to the element Nl. 
The qualitative attributes of read and write efficiency involve, respectively, 
the pairs of architectural elements < Nl,c2 > and < Nl,cl >. 

Robustness (R) and write security {Sw) involve a pair of architectural ele­
ments. The first is of type task and the second of type connector, respectively 
read and write. For instance, Figure 3 shows that robustness is associated 
to the pair < Nl,c2 >, while the responsibility of write security in the data 
structure represented by Dl is attributed to the pair < Nl,cl >. 

The language offers four different types of environmental or architectural re­
quirements: time, synchronous, asynchronous, event. The NFR-view describes 
them with an association to a single architectural element of type connector. 
For instance, Figure 4 shows how connector c1, of type memory access, is 
involved in a time requirement and how the interaction between Nl and Dl 
happens in time intervals. Architectural elements c2 and c3, of type stream, al­
low the interaction between elements of type task, respectively in synchronous 
or asynchronous modality. The write operation made by N3 in Dl is performed 
each time "event" happens. This requirement is expressed by the graphical 
element, denoted by Event, associated to c4. 

The architectural specification language allows the attribution of multiple 



122 Systems Implementation 2000 

Figure 5 An example of multiple constraints. 

structural requirements to the same portion of an architecture. For instance, 
Figure 5 shows that Nl writes in Dl at given intervals and, at the same 
time, that this operation must be write efficient. An architectural element 
of type connector can be responsible of many non functional requirements. 
Connector c2, together with Nl, is responsible for the satisfaction of a read 
efficiency requirement and it must satisfy with N2 a robustness requirement. 

In few words, the architectural specification language allows the (complete 
or partial) description of a system static structure in terms of components and 
connectors. The NFR-view associates non functional requirements, and thus 
qualitative attributes, to portions of the architecture. The architectural spec­
ification expresses the potentiality of components to perform a computation 
and, by means of connectors, the interaction between them. 

6 DISCUSSION 

Systems are very sensible to changes in the qualitative requirements. When 
embedded in the system architecture, here defined as the set of active and 
passive components and of their relations, qualitative requirements can be 
seen at, and therefore associated to, three different levels: system, modules, 
calls. At the system level, the qualitative requirements are those that involve 
the system in its entirety; they are not imputable to part of it as they do 
not involve single entities. Typical categories of requirements at this level are, 
for instance, maintainability, expandability, and portability. In all these cases, 
the focus of interest is the whole system (Boasson 1995). 

Among the categories of structural requirements, maintainability, expand­
ability, and partially also portability are directly imputable to the architec­
tural style, as they are related to the system structure and, hence, to its global 
architecture. The involved items are never single modules or interactions be­
tween them and they cannot be associated to single functional parts (those 
that often drive the system decomposition). 

Efficiency, robustness, safety, and environmental or architectural require-



Structural requirements in software architecture 123 

ments are categories with precise relationships with the architectural elements 
of a system. They can be listed or described in strict relation with these ele­
ments, becoming integral part of the specific system architecture. 

Following this approach, the categories of structural requirements can be 
described in terms of components, connectors, and of their different topologies, 
i.e., through an architectural model. The idea behind this characterization is 
that a language can express these requirements in a structured way, without 
forcing this phase to be too much detailed or to deal with implementation 
issues. The software architecture is responsible of the structural requirements 
description with the purpose of supporting the validation process. The ex­
amples of architectural specification given in this paper give emphasis to two 
aspects. Firstly, even if it is possible to associate the achievement of require­
ments such as efficiency, robustness, and architectural requirements to parts of 
the architecture, we will never be able to gather all the structural requirements 
that depend upon the whole system. This is true not only for maintainabil­
ity or expandability but also for safety, as exemplified by the architecture in 
Figure 7(b). Secondly, if we start from an architectural specification based 
on a functional decomposition, and integrate it with an NFR-view, we can 
gain some benefits already from the design phase, only if we introduce some 
topological restriction on its architecture or on the nature of its components. 

The idea that stems from these two aspects is that we must determine 
a priori the topological restrictions on the architecture and on the nature 
of the architectural elements involved. We must determine in advance, for 
each of them, the properties that will be exploited in the achievement of non 
functional requirements. Different architectural styles, in fact, do not sim­
ply determine different designs but endow them with different properties. 
The choice of a style upon the other has effects on the system description, 
on its decomposition in parts, on its functionality and performance (Shaw 
et al. 1995). Unfortunately, software designers in practice do not follow this 
approach, partly because a formalism to document architectural styles, in­
cluding all benefits and consequences of their adoption, does not exist yet. 
The absence of an architectural specification, together with the lack of refer­
ence architectures, often causes the failure of architectural decisions that can 
only be definitely recorded in the source code. 

7 A COMPLETE EXAMPLE 

In this section we show an example of use of the architectural specification 
language, taken from (Rosestolato 1996): the Weather Data Extractor (WDE) 
of a radar system. We present some architectural specifications that have sig­
nificant impact with respect to the treatment of non functional requirements. 

Each architectural specification emphasizes, with a distribution of responsi­
bility among modules, specific functional aspects that the designers believe to 
be the most relevant. At the same time, architectural parts of the system have 
been made responsible of the validation of the structural requirements that 
the NFR-view puts in evidence. The exact function of the various modules 



124 Systems Implementation 2000 

WD 

(a) (b) 

Figure 6 Two pipe & filter architectures. 

is not relevant for our discussion, since we concentrate mainly in consider­
ing their relations (that is, we look at the architecture rather than at the 
components). 

The specifications shown in Figure 6 are similar. They identify tasks that 
communicate through streams. Both emphasize the sequence of operations 
that WDE must perform through a linear sequence of tasks {CS, F, MS, and 
OM in Figure 6{a); SINC, F2, F3, and F4 in Figure 6{b)) where the last ar­
chitectural elements (OM and F4) are responsible for the same functionality. 
These architectures, in fact, depend upon the sequence of events performed 
by WDE; they follow a strict functional decomposition. For instance, in the 
specification presented in Figure 6(a), the component CS verifies the corre­
spondence between stim operations and periodgrams, F removes noise from 
the periodgrams, MS computes the spectral analysis for each periodgram, and 
OM manages the map organization by sending them to WD and to WDP at 
given intervals (connectors are labeled Time). 

The specification in Figure 6(b) is a little more complex than the previous 
one, due to the splitting of the F task. This is due to a higher resolution level 
of the specification. 

The specifications in Figure 7 can be defined in object oriented style. In 
architecture (a), tasks interact via remote procedure calls. This architecture 



Structural requirements in software architecture 125 

Qwop QwoP 

(a) (b) 

Figure 7 Two object-oriented architectures. 

has a task (GMAP) that manages the maps produced by the radar and sends 
them to WD and WDP at given time intervals. This architecture is less com­
prehensible than the previous one: we cannot identify a linear sequence among 
the tasks that performs the WDE operations. This specification, still strongly 
driven by a functional decomposition, is negatively influenced by the lack of 
topological restrictions, because of its object oriented nature: compare this 
situation with the architectures in Figure 6, where the strong topological con­
straints (both architectures are actually a directed acyclic graph) and the 
information on the type of connectors (all of type stream, and most with Er 
attributes) would allow us to prove strong properties like deadlock-freedom 
and preservation of read efficiency along the pipeline. 

Figure 7(b) shows another architectural specification in object oriented 
style, this time emphasizing the issue of WDE state control. This can be 
recognized by the presence of a central active task (S) that interacts with all 
the other tasks and with CMS. This architectural specification shows how the 
need of giving evidence to a non functional aspect has, as a side effect, the 
introduction of topological constraints. Furthermore, these constraints result 
to be highly relevant for the achievement of other qualitative requirements. 

Finally, Figure 8 shows an example of client-server architecture, where a 
passive task (LM) acts as server and a set of active tasks act as clients. Clients 
do not communicate each other and make access to the services provided by 
the server by means of remote procedure calls. The topological constraint 
determines a classical star architecture, with the server at the center and 



126 Systems Implementation 2000 

RTCU 

Figure 8 A client-server architecture. 

resources only accessible through it. Notice how the load imposed on the 
server is explicitly pointed out by the Ec requirement on LM. 

8 CONCLUSIONS 

In this paper we discussed how the traditional approach to system architec­
ture, based on functional decomposition, can satisfy some NFRs (modifiability, 
reuse, reliability, comprehensibility) in limited ways induced by modulariza­
tion. However, entire classes of NFRs cannot be obtained by function-based 
modularization alone. We showed how a common kind of requirements, struc­
tural requirements, are directly related to the use of certain decomposition 
techniques, and thus how the choice of a certain architectural style over an­
other can make easier (or more difficult) the fulfillment of these requirements. 

The visual language proposed in this paper allows practical denotation of 
software architectures, exposing the constraints imposed on parts of the sys­
tem. More work is needed to classify the topological and structural constraints 
that characterize properties of the whole system, but we believe that by ex­
plicitly tracking the influence of structural requirements in the design, our 
notation moves a first step toward better integration of non functional re­
quirements in the software process. 

Acknowledgements. We wish to thank Massimo Rosestolato for his early 
work on the subject and for allowing us to use his example in this paper. A 
long discussion with Adriano Ambriola, a civil architect, inspired Section 2. 



Structural requirements in software architecture 127 

REFERENCES 

M. Boasson. The artistry of software architecture. IEEE Software, 12(6}:13-
16, November 1995. 

T.R. Dean. Software characterization using connectivity. Ph.D. disserta­
tion, Dept. of Computing and Information Science, Queen's University, 
Kingston, Canada, 1993. 

T .R. Dean, J .R. Cordy. A syntactic theory of software architecture. IEEE 
Transactions on Software Engineering, 21(4):302-313, April1995. 

D.L. Parnas. On the criteria to be used in decomposing system into modules. 
Communications of the ACM, 15(12}:1053-1058, December 1972. 

D.E. Perry, A.L. Wolf. Foundations for the study of software architecture. 
ACM Sigsoft Software Engineering Notes, 17(4):40-52, October 1992. 

R. Kazman, L. Bass. Toward deriving software architectures from quality 
attributes. Technical report CMU/SEI-94-TR-10, August 1994. 

M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D.M. Young, G. Zelesnik. Ab­
stractions for software architecture and tools to support them. IEEE 
Transactions on Software Engineering, 21(4):314-335, April1995. 

M. Rosestolato. Non functional requirements in the software architecture. 
Master's thesis, Dipartimento di Informatica, Pisa, 1996. In Italian. 

I. Tervonen. Support quality-based design and inspection. IEEE Software, 
13(1}:44-54, January 1996. 

9 BIOGRAPHIES 

Vincenzo Ambriola received the Laurea degree in Computer Science from 
the University of Pisa, in 1976. Currently he is Associate Professor of Soft­
ware Engineering at the Department of Computer Science of the University 
of Pisa. His research activity is focused on Requirement Engineering and 
Software Quality. 

Vincenzo Gervasi received the Laurea degree in Computer Science from 
the University of Pisa, in 1993. Currently he is a Ph.D. student at the 
Department of Computer Science of the University of Pisa. His research 
interests include Requirement Engineering, Specification Languages and 
Active/Deductive Databases. 


