
16

On the architecture of software
component systems

M. Franz
Department of Information and Computer Science
University of California, Irvine, CA 92697-3425, USA
E-mail: franz@uci.edu

Abstract
Current object-oriented development practice is centered around application
frameworks. We argue that this approach is misleading, as it detracts from the
ultimate goal of composing software out of "software components" originating
from different sources. In particular, we suggest a model of software composition
that is based on passing of "first-class messages" rather than on inheritance.

In most object-oriented programming languages, messages and the methods that
get executed in response to receiving them are only "second class citizens". In these
languages, one can send a message to an object, but one cannot further manipulate
the message itself as a data object. As a consequence, many of the operations that a
naive observer might expect to be available are in fact not usually offered.
Examples of such missing operations are the ability to store arriving messages in a
data structure and execute them asynchronously later, perhaps in a different order,
or the capability of forwarding a received message to another object without first
having to decode it.

We are working on a system based on an experimental language that supports
"first-class messages" efficiently. We argue that this additional language capability
by itself suffices to simplify the design of extensible, component-oriented systems,
and that it leads to a more uniform overall system architecture.

Keywords
Software components, frameworks, applets, reusability, first-class messages

Systems Implementation 2000 R. Nigel Horspool (Ed.)
e 1998 lAP. Poblished by Chapman & Hall

208 Systems Implementation 2000

1 INTRODUCTION

The widespread deployment of object technology has brought about sweeping
changes to many areas of software construction. For a variety of applications, the
approach of taking an object-oriented application framework and customizing it for
a task at hand is a fast and cost-effective strategy that yields good results. Similarly,
reusing object-oriented components within an organization can be highly beneficial.
Unfortunately, however, current object-oriented technology is less well suited for
the emerging component-software paradigm, in which many independently
developed and highly specialized software parts cooperate in such a manner that
they appear to the end-user as one homogeneous application program.

The major hurdle to applying object-oriented technology in component-structured
systems is of architectural nature. Current object-oriented tools are almost ideally
suited for extending a comparatively large application framework with a
comparatively small amount of user-level functionality (Figure 1). This is usually
achieved by employing the inheritance mechanism offered in object-oriented
languages: the user-level functionality is implemented by deriving specialized
descendants of framework classes in which the default behavior of the framework
is being overridden by the desired behavior of the application.

/\. User-Level
~ Customization

Application
Framework

Figure I: Framework-based application architecture

This approach is particularly beneficial in the user-interface part of highly
interactive applications. Consequently, it is a common implementation strategy to
use an application framework specifically for realizing user-interfaces, while the
domain-specific remainders of the same applications might be implemented from
the ground up (and not necessarily using object-oriented technology). In this case,
Figure I would apply only to the user-interface part of the application.

A similar approach (Figure 2) is currently being employed in the development of
Java "applet" extensions for the most popular World Wide Web browsers. Applets

On the architecture of software component systems 209

are user-level customizations of an application framework called the Java Class
Library (Chan and Lee, 1997). What is striking about the Java approach in
particular is that the Java application framework is orders of magnitude larger than
almost all user-level applications that have so far been implemented on top of it.
Moreover, the framework is expanding rapidly with each revision.

Applets

Java
Class
Library

Figure 2: Java applet execution environment

This is partly due to the fact that user-level Java applets are frequently executed by
a slow virtual machine interpreting an intermediate byte-code representation
(Lindholm et al., 1996), while the framework is always represented as native code
and hence can provide a guaranteed performance. We suspect, however, that a
further contributing factor for the trend of incorporating every conceivable
functionality into the framework itself is that it is just so much easier to reuse code
in the application framework than it is to reuse third party code obtained elsewhere.

Why then, is it so much more difficult to reuse code outside of the application
framework, and why is Macllroy ' s vision of a software component industry
(Mcilroy, 1968) so persistently elusive? After all, Java supports dynamic linking of
classes, which should make the composition of software out of pre-fabricated,
independently developed building blocks all that much easier.

Our answer to this question is that, besides the well-known organizational
obstacles to effective reuse (e.g. , Card and Comer, 1994), the object-oriented
concept of inheritance quickly becomes a burden as the number of sources to
inherit from grows. Hence, taking a self-consistent application framework and
customizing it in a few isolated places is different from building something new out
of a variety of pre-fabricated components.

In the remainder of this paper, we elaborate some more on the difference between
customizing an application framework and composing a piece of software from
ready-made building blocks. We then argue that the former approach is a dead end
in the long term, and that efforts should be undertaken to better support
composeability of software from different sources. We suggest that "first-class
messages" are a first step in this direction, since they simplify the assembly of a

210 Systems Implementation 2000

consistent end-product from a host of independently developed software building
blocks.

2 HIERARCHICAL DECOMPOSITION AND BLACK-BOX REUSE

One of the most successful engineering techniques is hierarchical decomposition.
A problem is successively divided "top-down" into sub-problems, until it is small
enough to be solved directly, yielding a self-contained sub-system that will become
part of the eventual solution. The individual sub-systems that have been created in
this manner are then combined in a "bottom up" fashion. Since the various sub­
systems have been designed in isolation to each fulfil a particular task, they can
later be put together in combinations that differ from the original constellation, i.e.,
they can be reused.

Hierarchical decomposition has the important structural property that when
several smaller parts are combined into a larger part, the larger part "shadows" the
smaller ones. One no longer needs to understand the smaller parts in order to use
the larger part that has been constructed out of them. Just as importantly, one can
even change the interface between the smaller parts without affecting the interface
of the large part to the outside world.

Unfortunately, this structural property is lost in most object-oriented systems.
Object-oriented design often differs from hierarchical decomposition because
inheritance can be used not only to express specialization, but also generalization
(Wegner and Zdonik, 1988; Evered et al., 1997). As a consequence, object-oriented
design does not automatically create tree structures. For example, in languages that
support multiple inheritance, each of several base classes can be used in the
specification of several dependent ones, creating a web of dependencies. The
Interface mechanism present in Java is somewhat more restrictive than general
multiple inheritance, and hence lessens this problem somewhat, but still encourages
the cross-dependencies that counteract hierarchical structure.

Even without multiple inheritance, object-oriented design destroys locality.
Objects are backward-compatible with objects of their superclasses, while method
overriding has the effect that the meaning of a certain piece of code can be changed
in a future extension. As a consequence, programmers need to spend more time
analyzing components before they are able to use them. Certification of such
components is also more difficult, and even more importantly, mandates that none
of the components upon which the certified part depends is changed afterwards.
Because of lack of locality, traditional software review techniques are almost
impossible to apply.

As a consequence of all this, reusing someone else's classes is much more
difficult than reusing a traditional set of sub-systems with static procedural
interfaces. One needs to know not only the definition of all reused classes, but also
all possible interactions between one's own classes and the reused ones. It is no
coincidence that in many object-oriented systems (Goldberg and Robson, 1983;

On the architecture of software component systems 211

Goldberg, 1984; Muys-Vasovic, 1989) the source code is considered to be an
integral part of the documentation ("white-box reuse").

3 REUSABLESOFnNARECOMPONENTS

If software engineering were like every other engineering discipline, we would
expect to be able to acquire ready-made components and simply "plug them in",
i.e., use them without having to study their implementation. For example, if we
required an abstract data type "Stack", we could most probably find one in a library
somewhere, download it; and reuse it after studying the description of its interface.

In today's application-framework-oriented world, this particular goal of the
"software components" idea has more or less been accomplished. Frameworks,
such as the Java Class Library, are so encompassing that they contain ready-made
solutions for most of the common problems. For example, the Java Class Library
provides a classjava.util.Stack with the required "stack" functionality.

However, a second, equally important aspect of the "software components"
concept is not fulfilled by the current application framework approach: it is
virtually impossible to substitute a built-in class of a framework by an alternate
external one that fulfils the same interface. At closer range, we see that the
framework itself is one rather large monolithic piece of software, with a multitude
of non-obvious inner dependencies. For example, as is elaborated in the next
section, the "Stack" class found in the Java Class Library provides much more than
just the functionality of a stack. In order to duplicate its functionality externally,
one would, for example, need to know also about "Vectors" and "Enumerations".

Hence, rather than encouraging an independent marketplace for freely
substitutable software components, current software engineering practice
encourages the accumulation of all reusable functionality in an application
framework. Since the application framework is really a monolithic system, all
potential cross-dependencies are under the control of a single team of architects,
and need not be documented externally. Consequently, replacing internal
components or policies, unless specifically anticipated in the original design,
requires access to source code. We contend that while this approach is practical in
today's competitive development climate, it will harm our practice in the long run.

Instead of extensible frameworks, we should strive to craft true software
component architectures (Figure 3). The main characteristics of such an
architecture are the following:

• a software component system is a result of hierarchical decomposition,
• components on the same hierarchical level communicate as peers,
• components are substitutable with equivalent ones fulfilling the same interface,

and
• the common substrate that is shared by all components is relatively small.

212 Systems Implementation 2000

Independently
Developed
Components

Component
Substrate

Figure 3: Software component architecture

Interestingly enough, such component architectures do exist on the macroscopic
level. For the last few years, various standards for component interoperability have
been defined, such as CORBA (Object Management Group), COM/OLE
(Microsoft), and SOM/OpenDoc (Apple Computer, IBM, Novell), and this "coarse­
grained" component structure has been demonstrated to work effectively. Why
then, is the same approach not also utilized on a microscopic level, for example, for
implementing the stack functionality required by an application? Mainly because it
is generally assumed to be too heavy-weight.

Upon closer examination, the above-mentioned interoperability standards differ
from the object-oriented programming model that forms the basis of application
frameworks. Although the interfaces between components lend themselves to be
modeled as message protocols, and hence the components themselves as objects,
there is little "object orientation" beyond this. In particular, there is no inheritance
across component boundaries. Instead of invoking "super", objects specifically
have to request the services of other objects more prepared for fulfilling a particular
task, i.e. delegate the request.

We are in the process of developing a system based on the experimental language
Lagoona (Franz, 1997a), a descendant of Oberon (Wirth, 1988a), in which all
component interaction is initiated by message-passing among objects. Unlike
conventional object-oriented languages, however, Lagoona's messages are "stand­
alone" data objects, and not subordinate to classes. For example, Lagoona's
messages can be stored in data structures, such as "message queues". They can be
duplicated and sent to more than just a single receiver object, and previously stored
messages can be executed asynchronously.

While Lagoona, just like other object-oriented languages, provides type extension
(Wirth, 1988b), polymorphic variables, and automatic method dispatch depending
on the type of the receiver argument, it does away with the concept of method
inheritance that is usually offered by object-oriented languages. Instead, objects

On the architecture of software component systems 213

have the option of explicitly forwarding received messages to other objects that
handle them on their behalf, using a delegation mechanism called re-send. Hence,
the effect of inheritance can be simulated, if required, but it turns out that re-send
can be used to create far more effective architectures than traditional class
inheritance. In particular, Lagoona's microscopic program architecture corresponds
to the macroscopic architecture of component-oriented systems.

In the next section, we first examine the "Stack" data structure of the Java Class
Library in a little more detail, exposing the many dependencies a user of the class
has to be aware of. Without going into the syntactic peculiarities of Lagoona, which
are not the subject of this paper, we then explain how much more straightforward
and elegant an implementation would be in a language that provides stand-alone
messages. This brings us to the conclusion that the "compose out of parts and link
by message-passing" model of software construction might be better suited as a
basis for software reuse than the "inherit from framework and customize by
overriding" model that is currently popular.

4 HIGHER-ORDER DATA STRUCTURES: CONTAINERS

An adequate support for user-defined data structures is an important characteristic
of a good developing environment. For example, most object-oriented application
frameworks provide a host of pre-defined "container" data types that implement
data structures such as linked lists, stacks, hash tables, and the like, sparing the
programmer the effort of re-implementing this functionality over and over. As a
further benefit, the common code handling the container functionality is factored
out into a single class, rather than being duplicated in many different places,
reducing the overall application footprint.

Unfortunately, in object-oriented application frameworks, these container data
types are often realized in a relatively heavyweight fashion. As a case study, let us
take a look at how container data structures are implemented in the Java Class
Library (Chan and Lee, 1997). Java's standard package java.util provides five
container classes: Dictionary, HashTable, Properties, Vector, and Stack, forming
the inheritance hierarchy depicted in Figure 4.

java.lang.Object

/
java.utii.Dictionary- java.utii.Hashtable- java.utii.Properties

(abstract class)

' java.utii.Vector- java.utii.Stack

Figure 4: An excerpt from the Java class hierarchy

214 Systems Implementation 2000

In particular, a Java Vector is an expandable indexed data structure holding an
arbitrary number of objects as its elements. Elements can be added and removed at
any index position. A Java Stack is a specialization of such a Vector that
additionally provides simplified methods (such as push and pop) for managing data
in a LIFO queue. The specification of Stack doesn't mandate invalidation of the
methods inherited from Vector, hence it is unclear whether the integrity of a Stack
is actually guaranteed in implementations of the Java Class Library, or whether it
can be circumvented by calling an inherited Vector method to insert or remove
elements in the middle of a Stack. It seems that the inheritance relationship between
Vector and Stack has the sole purpose of facilitating code reuse, while creating a
problematic extension relationship.

A common task required of container data structures is enumeration of their
contents. For this purpose, the Java Class Library specifies an interface called
Enumeration. The Enumeration interface provides two methods,
hasMoreElements() that determines whether there are any more elements in the
enumeration and nextElement(), which retrieves the next element in the
enumeration. All five of the above-mentioned container classes provide a method
elements() that returns an enumerator object compatible with the Enumeration
interface'. The enumerator object can then be used for accessing the individual
elements of the container data structure. For example, one might use a loop such as
depicted in Figure 5 for accessing the elements of a vector.

for (
Enumeration e = v.elements(); //create an enumeration
e.hasMoreEiements(); II while still some unprocessed elements left
)

Object o = e.nextEiement() ; II retrieve the next element
o.dolt; II do something with it

Figure S: Iterating over a container data structure in Java

There is a considerable overhead involved in using container classes in this
manner. Every time that the elements of any of our containers need to be

• Note that while Dictionary and Vector each provide a method eltmt!nts() returning an Enumt!ration,
these two instances of eltmt!nts() are conceptually two different methods. In languages such as Java,
the intent of simultaneously introducing the same message into two disjoint class hierarchies can be
expressed only by providing two textually equal definitions. In Lagoona, on the other hand, messages
are "stand-alone" data objects, and not subordinate to classes. This means that messages are defined
globally on the package level, and not within the scope of a class; as a consequence, two otherwise
disjoint classes can "share" the same message by providing method implementations for it.

On the architecture of software component systems 215

enumerated, we first have to create an enumeration object. The enumeration object
contains pointers to the elements of the original data structure and keeps track of
which elements have been enumerated already.

Now think of how much effort is required to create an alternative class MyStack
that could be used as a substitute for java.util.Stack. Not only does one have to
implement the complete functionality of Vectors, since Stacks happen to be
backward-compatible with them, but one also has to implement a complete private
enumerator class for each container class. Further, container classes have complex
interactions with their enumerators, which in the case of Java are not even clearly
specified (for example, what if an object is removed from a container before an
ongoing enumeration has come to a finish?).

5 USING FIRST-CLASS MESSAGES

How then, do first-class messages make this any easier? There are several
contributing factors. First, if we do away with method inheritance, as in the
language Lagoona, we arrive at a looser coupling between the individual software
modules, increased locality, and regain what Bertrand Meyer once called modular
continuity (Meyer, 1988): a small change in a module should not trigger a large
change in the resulting system. Second, we gain structural uniformity: fine-grained
interaction between individual objects now follows the same model as the coarse­
grained interaction between OpenDoc parts or ActiveX components. Note that the
abolition of code inheritance need not necessarily lead to code duplication or
diminished code reuse. On the contrary, since messages are now tangible elements
at the source-language level, they can be re-sent even outside of the type-extension
hierarchy of the original receiver object. The main difference is that this process is
now explicit. The eventual implementation can be made efficient (Franz, 1997a).

Most importantly, however, the simple model of "tangible" messages leads to
sweeping architectural simplifications. For example, instead of the clumsy
enumeration feature of java.util.Stack described above, it would be much more
elegant if every container data structure simply offered a mechanism by which
messages could be generically broadcast to all the contained elements. For
example, in our paper on Lagoona (Franz, 1997a), we describe the use of a
distributor object that can receive arbitrary messages and automatically re-send
them to all elements of a private data structure (i.e., broadcast them). This is not
only simpler than the approach taken in Java, but it is also safer, since no direct
pointers to the individual contained elements are ever revealed. Note that this
approach also reduces overall complexity and code-size: instead of programming a
loop over the enumerator's data structure at every iteration site, the loop is now
encapsulated wholly within the container.

As a case study, consider the example of an extensible graphics editor. By
extensible, we mean that the graphics editor is supplied with a number of pre-

216 Systems Implementation 2000

defined graphical shapes, and the user has the ability to later add components that
implement further shapes. The addition of such late extension needs to be possible
without requiring that any part of the editor or any already existing extensions be
updated.

In a traditional framework-based system, this is solved by letting the graphical
editor communicate with all of its shapes through an abstract interface, and by
using dynamic loading to add classes implementing additional shapes to the already
executing system (Franz, 1997b). This is a good solution to the problem, but only
as long as the abstract message-interface of "shape" objects is considered
immutable.

Now imagine that we want to create a new kind of shape extension for the
existing graphics editor that represents a clock, a circle with two hands that display
the current time in analog form within the graphics-editor window. Just like any
other shape, clocks need to be instantiable: users may create arbitrarily many clocks
within each graphics document.

Hence, the question becomes: how do we control the periodic update of each
clock's display? A naive solution is to attach a separate thread to each clock-object
that handles the update; however, this is of course a very uneconomic use of
processor resources. Ideally, there should be only a single thread that is responsible
for updating all the clocks on the screen, no matter how many of them are present.
(This also has the added advantage that clock updates become synchronous)

A "good" solution therefore uses just one thread, located in the same module as
the clock class, which periodically sends tick messages to all clock-objects,
instructing them to update their respective displays. Unfortunately, in a
conventional object-oriented system, this means that the thread sending the tick
messages needs to keep track of all the clock objects, because tick messages can be
sent only to clock objects, and not to other graphical shapes: At the time that the
abstract message protocol of "shape" was defined, it wasn't anticipated that we
would eventually need tick messages, and hence no provision was made for them.

However, there is a considerable bookkeeping effort associated with keeping
track of the clock objects: it means that every time a new clock is created, it needs
to register with the tick thread, and before any clock is destroyed, it needs to
unregister. Since the latter can occur also as a side-effect of user actions such as
closing a window containing such a clock, implementing all of the bookkeeping
operations is no trivial task. In fact, it is feasible in practice only if a finalizing
garbage collector is available that can perform the unregister operation
automatically.

Besides requiring substantial programming effort, the outlined solution has
aesthetic shortcomings: It requires a separate data structure specifically for linking
together all the clock objects. This is in addition to the link already maintained in
the graphics editor, which groups together all the objects belonging to a graph. One
can easily imagine that many such separate data structures are required once that

On the architecture of software component systems 217

the object hierarchy grows to include lots of object types whose message protocol
cannot completely be accommodated by the abstract "shape" interface.

In traditional object-oriented languages, the only way of avoiding all of this is by
exposing the graphic editor's underlying data structure that links the individual
objects in a graph. Then, instead of maintaining separate data structures, the
extension modules can iterate over the full graph, sending messages only to
selective objects. However, this violates the concepts of information hiding and
safety, as it gives the programmer of one extension access to objects created by
another one.

This is where first-class messages come in. First-class messages allow a complete
separation of concerns while greatly simplifying the construction of such extensible
systems. If the above example were programmed in Lagoona, the graphics editor
could offer a procedure that generically broadcasts any message to all objects in a
graph. In this case, the iterator is wholly contained in the "main part" of the editor,
which also completely encapsulates the manner in which individual objects in a
graph are linked together. As a consequence, no object need ever be exposed to any
code written in another module. Moreover, the protocol of messages that can be
broadcast need not be defined a priori; only those messages that relate to the
interaction between the editor itself and the shapes it contains need to be specified
abstractly.

Hence, our tick thread would instruct the graphics editor to tell every object that
the time had advanced. This message would be broadcast to all objects, but only the
clocks would actually have an implementation associated with the message; all
other objects would simply ignore it. The added cost of this scheme is that the
iterator needs to touch every object, including objects that don't "understand" the
message being sent (which can be determined by a simple table look-up). In return,
a significant amount of bookkeeping effort is avoided elsewhere and great
architectural simplifications are gained.

6 RELATED WORK

While lacking direct language support for messages and methods, the Oberon
System (Wirth and Gutknecht, 1992), which originally inspired the Lagoona
language, has an architecture that makes extensive use of generic message
broadcast and message re-send. For example, all editing applications in the Oberon
System are structured after the Model-View-Controller pattern (Krasner and Pope,
1988), and update-events that result from model changes are distributed to the
respective viewers by a broadcast mechanism. Hence, rather than keeping pointers
from the model back to the views that display them, models notify their viewers of
a change by sending a message to the root of the display hierarchy. The message
then "trickles down" the display hierarchy, automatically forwarded by every
container-object to each of its children. Hence, for example, a window-object
passes all received messages to the objects representing its contents. Note that the

218 Systems Implementation 2000

messages forwarded in this manner may include messages that are not included in
the protocol of the container.

The main difference between Oberon and the system we are building is that the
Oberon language (Wirth, 1988b), in which the Oberon system is written, doesn't
automate type-dispatch. This places a burden on the programmer and
simultaneously also makes efficient implementation more difficult. Our project
starts off from the general architecture of the Oberon System with the aim of
improving it further by the addition of a small amount of language support.

Another object-oriented programming language that explicitly renounces method
inheritance is Emerald (Raj et al., 1991). Similar to Lagoona, Emerald stresses the
concept of locality (which its authors call object autonomy) by forcing all behavior
to be encapsulated within the definition of each individual object class. In Emerald,
the domain of encapsulation is the class; unfortunately there is no separate package
concept. An interesting aspect of Emerald is the fact that it bases object
substitutability on interface conformity (rather than common type-ancestry); hence
multiple implementations of the same class are possible. Emerald is targeted
towards distributed systems and hence has slightly different goals than Lagoona; in
particular, Emerald has no equivalent to Lagoona's re-send mechanism and hence,
in the absence of inheritance, makes code-sharing difficult.

Several recent papers (e.g., Odersky and Wadler, 1997; Krall and Vitek, 1997)
propose to extend and improve upon the original definition of the Java language.
Some of the proposed constructs, such as Higher-Order Functions (Odersky and
Wadler) and lterators (Krall and Vitek) present alternative solutions to the "loose
coupling" idea that is approached in Lagoona through the mechanism of message
forwarding. However, while these additional constructs raise the expressive power
of Java, we feel that they make an already complex programming language even
more difficult to master. The primary design goal of Lagoona, on the other hand, is
to replace method inheritance altogether by a simpler and more flexible construct
that can be used to emulate inheritance if required. We contend that Lagoona is a
simpler language than Java, and that message forwarding is a "natural" paradigm
for component-based systems since it uniformly applies to intra-component
messaging as well as inter-component communication.

7 SUMMARY AND CONCLUSION

Elevating messages to stand-alone status on the programming language level,
alongside classes and variables, gives rise to new system architectures. These
architectures lead to elegant and small implementations, and since they duplicate
the macroscopic structure of software component systems on a microscopic level,
provide structural uniformity. For these reasons, we think that languages that
directly correspond to such architectures are better suited for the implementation of
component-oriented systems than conventional object-oriented languages.

On the architecture of software component systems 219

8 REFERENCES

Arnold, K. and Gosling, J. (1996). The Java Programming Language; Addison­
Wesley.

Card, D. and Comer, E. (1994) Why Do So Many Reuse Programs Fail? IEEE
Software, 11, 5, 114-115.

Chan, P. and Lee, R. (1997). The Java Class Libraries: An Annotated Reference;
Addison-Wesley.

Evered, M., Keedy, J.L., Schmolitzky, A., and Menger, G. (1997). How Well Do
Inheritance Mechanisms Support Inheritance Concepts?, in Hanspeter
MossenbOck (Ed.), Modular Programming Languages, Proceedings of the
Joint Modular Languages Conference, JMLC'97, Springer Lecture Notes in
Computer Science No. 1204, 252-266.

Franz, M. (1997a). The Programming Language Lagoona: A Fresh Look at
Object-Orientation. Software- Concepts and Tools, 18:1, 14-26.

Franz, M. (1997b). Dynamic Linking of Software Components IEEE Computer,
30:3, 74-81.

Goldberg, A. (1984) Sma/ltalk-80: The Interactive Programming Environment;
Addison-Wesley.

Goldberg, A. and Robson, D. (1983). Smal/talk-80: The Language and its
Implementation; Addison-Wesley.

Krall, A. and Vitek, J. (1997) On Extending Java, in Hanspeter Mossenbock (Ed.),
Modular Programming Languages, Proceedings of the Joint Modular
Languages Conference, JMLC'97, Springer Lecture Notes in Computer
Science No. 1204, 321-335.

Krasner, G.E. and Pope, S.T. (1988) A Cookbook for using the Model-View­
Controller User Interface Paradigm in Smalltalk-89. Journal of Object­
Oriented Programming, 1:3,26-49.

Lindholm, T., Yellin, F., Joy, B., and Walrath, K. (1996) The Java Virtual
Machine Specification; Addison-Wesley.

Mcilroy, M.D. (1976) Mass Produced Software Components, in Software
Engineering, Concepts and Techniques, Proceedings of the NATO
Conferences, New York, 88-98.

Meyer, B. (1988) Object-Oriented Software Construction; Prentice-Hall.
Muys-Vasovic, J.-D. (1989) MacApp: An Object-Oriented Framework

Application, in Tutorial Notes, Technology of Object-Oriented Languages and
Systems (TOOLS) '89.

Odersky, M. and Wadler, P. (1997) Pizza into Java: Translating theory into
practice, in Proceedings of POPL'97: The 24th ACM SJGPLAN-SIGACT
Symposium on Principles of Programming Languages, ACM Press, 146-159.

Raj, R.K., Tempero, E., Levy, H.M., Black, A.P., Hutchinson, N.C., and Jul, E.
(1991) Emerald: A General-Purpose Programming Language. Software­
Practice and Experience, 21: 1, 91-118.

220 Systems Implementation 2000

Wegner, P. and Zdonik, S.B. (1988). Inheritance as an Incremental Modification
Mechanism, or, What Like Is and Isn't Like, in ECOOP'88 Proceedings,
Springer Lecture Notes in Computer Science, No. 322, 55-77.

Wirth, N. (1988). The Programming Language Oberon. Software-Practice and
Experience, 18:7,671-690.

Wirth, N. (1988). Type Extensions. ACM Transactions on Programming
Languages and Systems, 10:2,204-214.

Wirth, N. and Gutknecht, J. (1992). Project Oberon: The Design of an Operating
System and Compiler; Addison-Wesley.

9 BIOGRAPHY

Michael Franz is an assistant professor in the Department of Information and
Computer Science at the University of California, Irvine. He holds a Doctorate in
Technical Sciences and a Diploma in Computer Engineering, both from the Swiss
Federal Institute of Technology (ETH) in Zurich. Further information about Franz
and his research can be found at http://www.ics.uci.edu/-franz.

