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Abstract 
Current object-oriented development practice is centered around application 
frameworks. We argue that this approach is misleading, as it detracts from the 
ultimate goal of composing software out of "software components" originating 
from different sources. In particular, we suggest a model of software composition 
that is based on passing of "first-class messages" rather than on inheritance. 

In most object-oriented programming languages, messages and the methods that 
get executed in response to receiving them are only "second class citizens". In these 
languages, one can send a message to an object, but one cannot further manipulate 
the message itself as a data object. As a consequence, many of the operations that a 
naive observer might expect to be available are in fact not usually offered. 
Examples of such missing operations are the ability to store arriving messages in a 
data structure and execute them asynchronously later, perhaps in a different order, 
or the capability of forwarding a received message to another object without first 
having to decode it. 

We are working on a system based on an experimental language that supports 
"first-class messages" efficiently. We argue that this additional language capability 
by itself suffices to simplify the design of extensible, component-oriented systems, 
and that it leads to a more uniform overall system architecture. 
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1 INTRODUCTION 

The widespread deployment of object technology has brought about sweeping 
changes to many areas of software construction. For a variety of applications, the 
approach of taking an object-oriented application framework and customizing it for 
a task at hand is a fast and cost-effective strategy that yields good results. Similarly, 
reusing object-oriented components within an organization can be highly beneficial. 
Unfortunately, however, current object-oriented technology is less well suited for 
the emerging component-software paradigm, in which many independently 
developed and highly specialized software parts cooperate in such a manner that 
they appear to the end-user as one homogeneous application program. 

The major hurdle to applying object-oriented technology in component-structured 
systems is of architectural nature. Current object-oriented tools are almost ideally 
suited for extending a comparatively large application framework with a 
comparatively small amount of user-level functionality (Figure 1). This is usually 
achieved by employing the inheritance mechanism offered in object-oriented 
languages: the user-level functionality is implemented by deriving specialized 
descendants of framework classes in which the default behavior of the framework 
is being overridden by the desired behavior of the application. 

/\. User-Level 
~ Customization 

Application 
Framework 

Figure I: Framework-based application architecture 

This approach is particularly beneficial in the user-interface part of highly 
interactive applications. Consequently, it is a common implementation strategy to 
use an application framework specifically for realizing user-interfaces, while the 
domain-specific remainders of the same applications might be implemented from 
the ground up (and not necessarily using object-oriented technology). In this case, 
Figure I would apply only to the user-interface part of the application. 

A similar approach (Figure 2) is currently being employed in the development of 
Java "applet" extensions for the most popular World Wide Web browsers. Applets 
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are user-level customizations of an application framework called the Java Class 
Library (Chan and Lee, 1997). What is striking about the Java approach in 
particular is that the Java application framework is orders of magnitude larger than 
almost all user-level applications that have so far been implemented on top of it. 
Moreover, the framework is expanding rapidly with each revision. 

Applets 

Java 
Class 
Library 

Figure 2: Java applet execution environment 

This is partly due to the fact that user-level Java applets are frequently executed by 
a slow virtual machine interpreting an intermediate byte-code representation 
(Lindholm et al., 1996), while the framework is always represented as native code 
and hence can provide a guaranteed performance. We suspect, however, that a 
further contributing factor for the trend of incorporating every conceivable 
functionality into the framework itself is that it is just so much easier to reuse code 
in the application framework than it is to reuse third party code obtained elsewhere. 

Why then, is it so much more difficult to reuse code outside of the application 
framework, and why is Macllroy ' s vision of a software component industry 
(Mcilroy, 1968) so persistently elusive? After all, Java supports dynamic linking of 
classes, which should make the composition of software out of pre-fabricated, 
independently developed building blocks all that much easier. 

Our answer to this question is that, besides the well-known organizational 
obstacles to effective reuse (e.g. , Card and Comer, 1994), the object-oriented 
concept of inheritance quickly becomes a burden as the number of sources to 
inherit from grows. Hence, taking a self-consistent application framework and 
customizing it in a few isolated places is different from building something new out 
of a variety of pre-fabricated components. 

In the remainder of this paper, we elaborate some more on the difference between 
customizing an application framework and composing a piece of software from 
ready-made building blocks. We then argue that the former approach is a dead end 
in the long term, and that efforts should be undertaken to better support 
composeability of software from different sources. We suggest that "first-class 
messages" are a first step in this direction, since they simplify the assembly of a 
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consistent end-product from a host of independently developed software building 
blocks. 

2 HIERARCHICAL DECOMPOSITION AND BLACK-BOX REUSE 

One of the most successful engineering techniques is hierarchical decomposition. 
A problem is successively divided "top-down" into sub-problems, until it is small 
enough to be solved directly, yielding a self-contained sub-system that will become 
part of the eventual solution. The individual sub-systems that have been created in 
this manner are then combined in a "bottom up" fashion. Since the various sub­
systems have been designed in isolation to each fulfil a particular task, they can 
later be put together in combinations that differ from the original constellation, i.e., 
they can be reused. 

Hierarchical decomposition has the important structural property that when 
several smaller parts are combined into a larger part, the larger part "shadows" the 
smaller ones. One no longer needs to understand the smaller parts in order to use 
the larger part that has been constructed out of them. Just as importantly, one can 
even change the interface between the smaller parts without affecting the interface 
of the large part to the outside world. 

Unfortunately, this structural property is lost in most object-oriented systems. 
Object-oriented design often differs from hierarchical decomposition because 
inheritance can be used not only to express specialization, but also generalization 
(Wegner and Zdonik, 1988; Evered et al., 1997). As a consequence, object-oriented 
design does not automatically create tree structures. For example, in languages that 
support multiple inheritance, each of several base classes can be used in the 
specification of several dependent ones, creating a web of dependencies. The 
Interface mechanism present in Java is somewhat more restrictive than general 
multiple inheritance, and hence lessens this problem somewhat, but still encourages 
the cross-dependencies that counteract hierarchical structure. 

Even without multiple inheritance, object-oriented design destroys locality. 
Objects are backward-compatible with objects of their superclasses, while method 
overriding has the effect that the meaning of a certain piece of code can be changed 
in a future extension. As a consequence, programmers need to spend more time 
analyzing components before they are able to use them. Certification of such 
components is also more difficult, and even more importantly, mandates that none 
of the components upon which the certified part depends is changed afterwards. 
Because of lack of locality, traditional software review techniques are almost 
impossible to apply. 

As a consequence of all this, reusing someone else's classes is much more 
difficult than reusing a traditional set of sub-systems with static procedural 
interfaces. One needs to know not only the definition of all reused classes, but also 
all possible interactions between one's own classes and the reused ones. It is no 
coincidence that in many object-oriented systems (Goldberg and Robson, 1983; 
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Goldberg, 1984; Muys-Vasovic, 1989) the source code is considered to be an 
integral part of the documentation ("white-box reuse"). 

3 REUSABLESOFnNARECOMPONENTS 

If software engineering were like every other engineering discipline, we would 
expect to be able to acquire ready-made components and simply "plug them in", 
i.e., use them without having to study their implementation. For example, if we 
required an abstract data type "Stack", we could most probably find one in a library 
somewhere, download it; and reuse it after studying the description of its interface. 

In today's application-framework-oriented world, this particular goal of the 
"software components" idea has more or less been accomplished. Frameworks, 
such as the Java Class Library, are so encompassing that they contain ready-made 
solutions for most of the common problems. For example, the Java Class Library 
provides a classjava.util.Stack with the required "stack" functionality. 

However, a second, equally important aspect of the "software components" 
concept is not fulfilled by the current application framework approach: it is 
virtually impossible to substitute a built-in class of a framework by an alternate 
external one that fulfils the same interface. At closer range, we see that the 
framework itself is one rather large monolithic piece of software, with a multitude 
of non-obvious inner dependencies. For example, as is elaborated in the next 
section, the "Stack" class found in the Java Class Library provides much more than 
just the functionality of a stack. In order to duplicate its functionality externally, 
one would, for example, need to know also about "Vectors" and "Enumerations". 

Hence, rather than encouraging an independent marketplace for freely 
substitutable software components, current software engineering practice 
encourages the accumulation of all reusable functionality in an application 
framework. Since the application framework is really a monolithic system, all 
potential cross-dependencies are under the control of a single team of architects, 
and need not be documented externally. Consequently, replacing internal 
components or policies, unless specifically anticipated in the original design, 
requires access to source code. We contend that while this approach is practical in 
today's competitive development climate, it will harm our practice in the long run. 

Instead of extensible frameworks, we should strive to craft true software 
component architectures (Figure 3). The main characteristics of such an 
architecture are the following: 

• a software component system is a result of hierarchical decomposition, 
• components on the same hierarchical level communicate as peers, 
• components are substitutable with equivalent ones fulfilling the same interface, 

and 
• the common substrate that is shared by all components is relatively small. 
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Figure 3: Software component architecture 

Interestingly enough, such component architectures do exist on the macroscopic 
level. For the last few years, various standards for component interoperability have 
been defined, such as CORBA (Object Management Group), COM/OLE 
(Microsoft), and SOM/OpenDoc (Apple Computer, IBM, Novell), and this "coarse­
grained" component structure has been demonstrated to work effectively. Why 
then, is the same approach not also utilized on a microscopic level, for example, for 
implementing the stack functionality required by an application? Mainly because it 
is generally assumed to be too heavy-weight. 

Upon closer examination, the above-mentioned interoperability standards differ 
from the object-oriented programming model that forms the basis of application 
frameworks. Although the interfaces between components lend themselves to be 
modeled as message protocols, and hence the components themselves as objects, 
there is little "object orientation" beyond this. In particular, there is no inheritance 
across component boundaries. Instead of invoking "super", objects specifically 
have to request the services of other objects more prepared for fulfilling a particular 
task, i.e. delegate the request. 

We are in the process of developing a system based on the experimental language 
Lagoona (Franz, 1997a), a descendant of Oberon (Wirth, 1988a), in which all 
component interaction is initiated by message-passing among objects. Unlike 
conventional object-oriented languages, however, Lagoona's messages are "stand­
alone" data objects, and not subordinate to classes. For example, Lagoona's 
messages can be stored in data structures, such as "message queues". They can be 
duplicated and sent to more than just a single receiver object, and previously stored 
messages can be executed asynchronously. 

While Lagoona, just like other object-oriented languages, provides type extension 
(Wirth, 1988b), polymorphic variables, and automatic method dispatch depending 
on the type of the receiver argument, it does away with the concept of method 
inheritance that is usually offered by object-oriented languages. Instead, objects 
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have the option of explicitly forwarding received messages to other objects that 
handle them on their behalf, using a delegation mechanism called re-send. Hence, 
the effect of inheritance can be simulated, if required, but it turns out that re-send 
can be used to create far more effective architectures than traditional class 
inheritance. In particular, Lagoona's microscopic program architecture corresponds 
to the macroscopic architecture of component-oriented systems. 

In the next section, we first examine the "Stack" data structure of the Java Class 
Library in a little more detail, exposing the many dependencies a user of the class 
has to be aware of. Without going into the syntactic peculiarities of Lagoona, which 
are not the subject of this paper, we then explain how much more straightforward 
and elegant an implementation would be in a language that provides stand-alone 
messages. This brings us to the conclusion that the "compose out of parts and link 
by message-passing" model of software construction might be better suited as a 
basis for software reuse than the "inherit from framework and customize by 
overriding" model that is currently popular. 

4 HIGHER-ORDER DATA STRUCTURES: CONTAINERS 

An adequate support for user-defined data structures is an important characteristic 
of a good developing environment. For example, most object-oriented application 
frameworks provide a host of pre-defined "container" data types that implement 
data structures such as linked lists, stacks, hash tables, and the like, sparing the 
programmer the effort of re-implementing this functionality over and over. As a 
further benefit, the common code handling the container functionality is factored 
out into a single class, rather than being duplicated in many different places, 
reducing the overall application footprint. 

Unfortunately, in object-oriented application frameworks, these container data 
types are often realized in a relatively heavyweight fashion. As a case study, let us 
take a look at how container data structures are implemented in the Java Class 
Library (Chan and Lee, 1997). Java's standard package java.util provides five 
container classes: Dictionary, HashTable, Properties, Vector, and Stack, forming 
the inheritance hierarchy depicted in Figure 4. 

java.lang.Object 

/ 
java.utii.Dictionary- java.utii.Hashtable- java.utii.Properties 

(abstract class) 

' java.utii.Vector- java.utii.Stack 

Figure 4: An excerpt from the Java class hierarchy 



214 Systems Implementation 2000 

In particular, a Java Vector is an expandable indexed data structure holding an 
arbitrary number of objects as its elements. Elements can be added and removed at 
any index position. A Java Stack is a specialization of such a Vector that 
additionally provides simplified methods (such as push and pop) for managing data 
in a LIFO queue. The specification of Stack doesn't mandate invalidation of the 
methods inherited from Vector, hence it is unclear whether the integrity of a Stack 
is actually guaranteed in implementations of the Java Class Library, or whether it 
can be circumvented by calling an inherited Vector method to insert or remove 
elements in the middle of a Stack. It seems that the inheritance relationship between 
Vector and Stack has the sole purpose of facilitating code reuse, while creating a 
problematic extension relationship. 

A common task required of container data structures is enumeration of their 
contents. For this purpose, the Java Class Library specifies an interface called 
Enumeration. The Enumeration interface provides two methods, 
hasMoreElements() that determines whether there are any more elements in the 
enumeration and nextElement( ), which retrieves the next element in the 
enumeration. All five of the above-mentioned container classes provide a method 
elements() that returns an enumerator object compatible with the Enumeration 
interface'. The enumerator object can then be used for accessing the individual 
elements of the container data structure. For example, one might use a loop such as 
depicted in Figure 5 for accessing the elements of a vector. 

for ( 
Enumeration e = v.elements(); //create an enumeration 
e.hasMoreEiements(); II while still some unprocessed elements left 
) 

Object o = e.nextEiement() ; II retrieve the next element 
o.dolt; II do something with it 

Figure S: Iterating over a container data structure in Java 

There is a considerable overhead involved in using container classes in this 
manner. Every time that the elements of any of our containers need to be 

• Note that while Dictionary and Vector each provide a method eltmt!nts() returning an Enumt!ration, 
these two instances of eltmt!nts() are conceptually two different methods. In languages such as Java, 
the intent of simultaneously introducing the same message into two disjoint class hierarchies can be 
expressed only by providing two textually equal definitions. In Lagoona, on the other hand, messages 
are "stand-alone" data objects, and not subordinate to classes. This means that messages are defined 
globally on the package level, and not within the scope of a class; as a consequence, two otherwise 
disjoint classes can "share" the same message by providing method implementations for it. 
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enumerated, we first have to create an enumeration object. The enumeration object 
contains pointers to the elements of the original data structure and keeps track of 
which elements have been enumerated already. 

Now think of how much effort is required to create an alternative class MyStack 
that could be used as a substitute for java.util.Stack. Not only does one have to 
implement the complete functionality of Vectors, since Stacks happen to be 
backward-compatible with them, but one also has to implement a complete private 
enumerator class for each container class. Further, container classes have complex 
interactions with their enumerators, which in the case of Java are not even clearly 
specified (for example, what if an object is removed from a container before an 
ongoing enumeration has come to a finish?). 

5 USING FIRST-CLASS MESSAGES 

How then, do first-class messages make this any easier? There are several 
contributing factors. First, if we do away with method inheritance, as in the 
language Lagoona, we arrive at a looser coupling between the individual software 
modules, increased locality, and regain what Bertrand Meyer once called modular 
continuity (Meyer, 1988): a small change in a module should not trigger a large 
change in the resulting system. Second, we gain structural uniformity: fine-grained 
interaction between individual objects now follows the same model as the coarse­
grained interaction between OpenDoc parts or ActiveX components. Note that the 
abolition of code inheritance need not necessarily lead to code duplication or 
diminished code reuse. On the contrary, since messages are now tangible elements 
at the source-language level, they can be re-sent even outside of the type-extension 
hierarchy of the original receiver object. The main difference is that this process is 
now explicit. The eventual implementation can be made efficient (Franz, 1997a). 

Most importantly, however, the simple model of "tangible" messages leads to 
sweeping architectural simplifications. For example, instead of the clumsy 
enumeration feature of java.util.Stack described above, it would be much more 
elegant if every container data structure simply offered a mechanism by which 
messages could be generically broadcast to all the contained elements. For 
example, in our paper on Lagoona (Franz, 1997a), we describe the use of a 
distributor object that can receive arbitrary messages and automatically re-send 
them to all elements of a private data structure (i.e., broadcast them). This is not 
only simpler than the approach taken in Java, but it is also safer, since no direct 
pointers to the individual contained elements are ever revealed. Note that this 
approach also reduces overall complexity and code-size: instead of programming a 
loop over the enumerator's data structure at every iteration site, the loop is now 
encapsulated wholly within the container. 

As a case study, consider the example of an extensible graphics editor. By 
extensible, we mean that the graphics editor is supplied with a number of pre-
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defined graphical shapes, and the user has the ability to later add components that 
implement further shapes. The addition of such late extension needs to be possible 
without requiring that any part of the editor or any already existing extensions be 
updated. 

In a traditional framework-based system, this is solved by letting the graphical 
editor communicate with all of its shapes through an abstract interface, and by 
using dynamic loading to add classes implementing additional shapes to the already 
executing system (Franz, 1997b). This is a good solution to the problem, but only 
as long as the abstract message-interface of "shape" objects is considered 
immutable. 

Now imagine that we want to create a new kind of shape extension for the 
existing graphics editor that represents a clock, a circle with two hands that display 
the current time in analog form within the graphics-editor window. Just like any 
other shape, clocks need to be instantiable: users may create arbitrarily many clocks 
within each graphics document. 

Hence, the question becomes: how do we control the periodic update of each 
clock's display? A naive solution is to attach a separate thread to each clock-object 
that handles the update; however, this is of course a very uneconomic use of 
processor resources. Ideally, there should be only a single thread that is responsible 
for updating all the clocks on the screen, no matter how many of them are present. 
(This also has the added advantage that clock updates become synchronous) 

A "good" solution therefore uses just one thread, located in the same module as 
the clock class, which periodically sends tick messages to all clock-objects, 
instructing them to update their respective displays. Unfortunately, in a 
conventional object-oriented system, this means that the thread sending the tick 
messages needs to keep track of all the clock objects, because tick messages can be 
sent only to clock objects, and not to other graphical shapes: At the time that the 
abstract message protocol of "shape" was defined, it wasn't anticipated that we 
would eventually need tick messages, and hence no provision was made for them. 

However, there is a considerable bookkeeping effort associated with keeping 
track of the clock objects: it means that every time a new clock is created, it needs 
to register with the tick thread, and before any clock is destroyed, it needs to 
unregister. Since the latter can occur also as a side-effect of user actions such as 
closing a window containing such a clock, implementing all of the bookkeeping 
operations is no trivial task. In fact, it is feasible in practice only if a finalizing 
garbage collector is available that can perform the unregister operation 
automatically. 

Besides requiring substantial programming effort, the outlined solution has 
aesthetic shortcomings: It requires a separate data structure specifically for linking 
together all the clock objects. This is in addition to the link already maintained in 
the graphics editor, which groups together all the objects belonging to a graph. One 
can easily imagine that many such separate data structures are required once that 
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the object hierarchy grows to include lots of object types whose message protocol 
cannot completely be accommodated by the abstract "shape" interface. 

In traditional object-oriented languages, the only way of avoiding all of this is by 
exposing the graphic editor's underlying data structure that links the individual 
objects in a graph. Then, instead of maintaining separate data structures, the 
extension modules can iterate over the full graph, sending messages only to 
selective objects. However, this violates the concepts of information hiding and 
safety, as it gives the programmer of one extension access to objects created by 
another one. 

This is where first-class messages come in. First-class messages allow a complete 
separation of concerns while greatly simplifying the construction of such extensible 
systems. If the above example were programmed in Lagoona, the graphics editor 
could offer a procedure that generically broadcasts any message to all objects in a 
graph. In this case, the iterator is wholly contained in the "main part" of the editor, 
which also completely encapsulates the manner in which individual objects in a 
graph are linked together. As a consequence, no object need ever be exposed to any 
code written in another module. Moreover, the protocol of messages that can be 
broadcast need not be defined a priori; only those messages that relate to the 
interaction between the editor itself and the shapes it contains need to be specified 
abstractly. 

Hence, our tick thread would instruct the graphics editor to tell every object that 
the time had advanced. This message would be broadcast to all objects, but only the 
clocks would actually have an implementation associated with the message; all 
other objects would simply ignore it. The added cost of this scheme is that the 
iterator needs to touch every object, including objects that don't "understand" the 
message being sent (which can be determined by a simple table look-up). In return, 
a significant amount of bookkeeping effort is avoided elsewhere and great 
architectural simplifications are gained. 

6 RELATED WORK 

While lacking direct language support for messages and methods, the Oberon 
System (Wirth and Gutknecht, 1992), which originally inspired the Lagoona 
language, has an architecture that makes extensive use of generic message 
broadcast and message re-send. For example, all editing applications in the Oberon 
System are structured after the Model-View-Controller pattern (Krasner and Pope, 
1988), and update-events that result from model changes are distributed to the 
respective viewers by a broadcast mechanism. Hence, rather than keeping pointers 
from the model back to the views that display them, models notify their viewers of 
a change by sending a message to the root of the display hierarchy. The message 
then "trickles down" the display hierarchy, automatically forwarded by every 
container-object to each of its children. Hence, for example, a window-object 
passes all received messages to the objects representing its contents. Note that the 
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messages forwarded in this manner may include messages that are not included in 
the protocol of the container. 

The main difference between Oberon and the system we are building is that the 
Oberon language (Wirth, 1988b), in which the Oberon system is written, doesn't 
automate type-dispatch. This places a burden on the programmer and 
simultaneously also makes efficient implementation more difficult. Our project 
starts off from the general architecture of the Oberon System with the aim of 
improving it further by the addition of a small amount of language support. 

Another object-oriented programming language that explicitly renounces method 
inheritance is Emerald (Raj et al., 1991). Similar to Lagoona, Emerald stresses the 
concept of locality (which its authors call object autonomy) by forcing all behavior 
to be encapsulated within the definition of each individual object class. In Emerald, 
the domain of encapsulation is the class; unfortunately there is no separate package 
concept. An interesting aspect of Emerald is the fact that it bases object 
substitutability on interface conformity (rather than common type-ancestry); hence 
multiple implementations of the same class are possible. Emerald is targeted 
towards distributed systems and hence has slightly different goals than Lagoona; in 
particular, Emerald has no equivalent to Lagoona's re-send mechanism and hence, 
in the absence of inheritance, makes code-sharing difficult. 

Several recent papers (e.g., Odersky and Wadler, 1997; Krall and Vitek, 1997) 
propose to extend and improve upon the original definition of the Java language. 
Some of the proposed constructs, such as Higher-Order Functions (Odersky and 
Wadler) and lterators (Krall and Vitek) present alternative solutions to the "loose 
coupling" idea that is approached in Lagoona through the mechanism of message 
forwarding. However, while these additional constructs raise the expressive power 
of Java, we feel that they make an already complex programming language even 
more difficult to master. The primary design goal of Lagoona, on the other hand, is 
to replace method inheritance altogether by a simpler and more flexible construct 
that can be used to emulate inheritance if required. We contend that Lagoona is a 
simpler language than Java, and that message forwarding is a "natural" paradigm 
for component-based systems since it uniformly applies to intra-component 
messaging as well as inter-component communication. 

7 SUMMARY AND CONCLUSION 

Elevating messages to stand-alone status on the programming language level, 
alongside classes and variables, gives rise to new system architectures. These 
architectures lead to elegant and small implementations, and since they duplicate 
the macroscopic structure of software component systems on a microscopic level, 
provide structural uniformity. For these reasons, we think that languages that 
directly correspond to such architectures are better suited for the implementation of 
component-oriented systems than conventional object-oriented languages. 
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