
14

Attribute grammars in the
functional style

S.D. Swierstra and P.R. Azero
Dept. of Computer Science, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands
tel: +(31}(30) 253 1454, fax: +{31}(30) 251 3791
e-mail: { swierstra,pablo} @cs. ruu. nl

Abstract
For a long time, attribute grammars have formed an isolated programming
formalism. We show how we may embed the attribute grammar approach in a
modern functional programming language. The advantages of both sides rein­
force each other: the former provides compositionality and the latter naming
abstraction and higher-orderness. Through a sequence of program transforma­
tions we show different aspects of the techniques involved. We conclude with
the observation that an attribute grammar oriented algorithm development
may be a fruitful one, and may go hand in hand with a more algebraic style
of program development.

Keywords
attribute grammars, functional programming, parsing, pretty printing

1 INTRODUCTION

The evolution of programming languages during the past years is affecting the
way we build software. Especially when using the new generation of functional
programming languages like ML or Haskell, we may use powerful abstraction
and typing mechanisms, both based on a sound mathematical foundation. We
advocate the use of such languages as system implementation languages.

When constructing a new combinator library one is extending an existing
programming language with a new sub-language; the naming, typing and ab­
straction mechanisms are borrowed from the original language (Fokker 1995,
Hudak et al. 1996, Hughes 1995, Swierstra et al. 1996, Azero et al. 1997).
It should come as no surprise that the attribute grammar formalism, which
traditionally has been used for describing implementations of programming
languages, could be a source of inspiration here. However for making use of
the ideas of attributes grammars one has always been limited to choosing a
specific source formalism and a specific target language. Fortunately, as we

Sys1ems Implementation 2000 R. Nigel Horspool (Ed.)
C 1998 IFIP. Published by Chapman & Hall

Attribute grammars in the functional style 181

will show, it is nowadays quite straightforward to use the attribute grammar
based way of thinking when programming in the setting of a modern, lazily
evaluated functional language: it is the declarative way of thinking in both
formalisms which bridges the gap!

Thinking in terms of attribute grammars is a useful approach to writing
complicated functions and their associated calls. By explicitly naming argu­
ment and result positions (by the introduction of attribute names), we are
no longer restricted to the implicit positional argument passing enforced by
conventional function definitions.

Our approach is demonstrated by a working example: a table formatter.
We start in section 2 with its specification, and a functional parser for the
language describing tables. In the next step we enrich the parser with attribute
grammar style definitions. In section 3 we add attribute computations for the
heights of the elements by introducing appropriate algebras. In section 4 we
add the computation of the widths of the table elements, and show how to
combine height and width computations. Section 5 describes how to compute
the formatted table, and in section 6 we present some conclusions.

2 A PARSER FOR TABLES

Our final goal is to develop a program which recognises and formats (possibly
nested) HTML style tables, as described by the following grammar:

table -+ <TABLE> row* </TABLE>
row -+ <TR> elem* </TR>
elem -+ <TD> string I table <lTD>

An example of accepted input and the associated output is given in figure 1.

<TABLE>
<TR><TD>the</TD>

<TD>table</TD></TR>
<TR><TD>

<TABLE>
<TR><TD>formatter</TD>

<TD>in</TD></TR>
<TR><TD>functional</TD>

<TD>polytypic</TD></TR>
</TABLE></TD>

<TD>style</TD></TR>
</TABLE>

(a)

1----------------------------1
I the I table I
1----------------------------1
11--------------------1 lstylel
II formatter I in II I
11--------------------11 I
II functional I polytypic II I
11--------------------11 I
1----------------------------1

(b)

Figure 1 Table formatting: (a) input and (b) associated output

Our first version of the table formatter parses the input and returns the
abstract syntax tree. In subsequent sections we modify parts of it to com-

182 Systems Implementation 2000

pute the actual formatting. The program is written in the programming lan­
guage Haskell (Hammond et al. 1997), and uses so-called parser combina­
tors (Fokker 1995) - here mostly defined as infix operators: functions which
construct parsers out of more elementary parsers, completely analogous to
the well-known recursive descent parsing technique. An example of the ad­
vantages of embedding a formalism (in our case context-free grammars) in a
language which provides powerful abstraction techniques is that this automat­
ically gives us an abstraction mechanism for the embedded language (in our
case the context-free grammars). Since we already have a naming mechanism
available we do not have to deal separately with the concept of nonterminal.

2.1 Parsing with combinators: giving structure

Before we describe the structure of the combinator taggedwi th which will be
used to construct a parser for recognising HTML-tagged structures, we will
briefly discuss the basic combinators used in its construction.

The types of the basic combinators used in this example are:

<+>
<I>
<$>
succeed

Parser (a -> b) -> Parser a -> Parser b
Parser a -> Parser a -> Parser a
(a -> b) -> Parser a -> Parser b
a -> Parser a

The sequence combinator<+>, composes two parsers sequentially. The mean­
ing of the combined result is computed by applying the result of the first com­
ponent to the second. The choice combinator < I > constructs a new parser
which may perform the role of either argument parser. Finally, succeed, the
parser that returns a parser that always succeeds (recognises the empty string)
and returns the argument of succeed as its semantic value. Sequence, choice
and succeed form, together with sptoken which recognises just its argument,
the basic constructors of parsers for context free languages.

A fifth combinator is defined for describing further processing of the seman­
tic values returned by the parsers. It is the application defined as:

f <$> p = succeed f <+> p

Thus, it applies a function, the so called semantic function, to the semantic
results parsing the structures. We will see how, by a careful combination of
such semantic functions and parser combinators, we can prevent a parse tree
from coming into existence at all (Swierstra et al. 1993, Wadler 1990).

Now let us take a look at the program in figure 2, and take the combinator
taggedwi th. This combinator takes two arguments: a String providing the
text of the tag and the Parser for the structure enclosed between the tags.

Attribute grammars in the functional style

type Alg_List a b = (b, a -> b -> b)
type Alg_Table t rs r es e

183

= (rs -> t,Alg_List r rs,es -> r,Alg_List e es,(String -> e,t ->e))

taggedwith :: String-> Parser a-> Parser a
taggedwith s p = (_ y _ -> y) <$> topen s <+> p <+> tclose s

where topen s = sptoken ("<" ++ s ++ ">")
tclose s = sptoken ("</" ++ s ++ ">")

format_table :: Alg_Table t rs res e ->Parser Chart
format_table (sem_table,sem_rows,sem_row,sem_elems

, (sem_selem,sem_telem))
= let table = sem_table <$> taggedwith "TABLE"

(p_list sem_rows (taggedwith "TR"
(sem_row <$> p_list sem_elems (taggedwith "TD"

(sem_selem <$> spstring
<I> sem_telem <$> table)))))

in table

Figure 2 Parsing tables

Its semantics are: recognise the 'open' tags, then (combinator<+>) recognise
the structure p, then (again<+>) parse the 'close' tag. The lambda expression
in front of the <$> takes the three recognised elements and returns the middle
one, since this is the only part of the recognised string which bears meaning.

(<.>) :: Alg_List b a-> Alg_List b' a'-> Alg_List (b,b') (a,a')
(a, f) <.> (b, g) = ((a,b), (\(x,y) (xs,ys) -> (f x xs,g y ys)))

star : : Alg_List a b -> Alg_List [a] [b]
star (e, op) = (repeat e, zipWith op)

p_list
p_list

.• Alg_List a b ->Parser c a-> Parser c b
algG(zero, op) p = op <$> p <+> p_list alg p

-- Some useful algebras
init_list = (0, (:))
max_alg (0 max)
sum_alg = (0 , (+))

<I> succeed zero

-- Compute the max element of the list
-- Compute the sum of the list

Figure 3 Parsing tables

The Kleene • from the two first table rules is realised by the combinator
p_list (see figure 3). The first argument of p_list is a tuple of two values:
(zero,op), an algebra that uniquely defines the homomorphism from the

184 Systems Implementation 2000

carrier set of the initial algebra to the carrier set of the argument algebra
(in our case the type b). The second argument of p_list is a parser for p­
structures.

p_list works as follows: as long as it is possible to recognise a p-structure
apply the p-parser and combine the results using the binary operator op. If no
further elements can be recognised it returns zero as semantic value. As an ex­
ample of its use take p_list sum_alg p_Integer, provided that p_Integer
has been defined for parsing a sequence of digits. The expression would recog­
nise a sequence of integers, and return their sum. You may note that because
op is a binary operator, the actual parse result is a large expression which
is constructed out of applications of op-calls and recognised elements, and
the zero which is used when no further elements can be recognised. Because
we work in a lazy language, the value of this expression will only be evalu­
ated when it is actually needed, which will usually be in a test or at a strict
argument position.

Simple elements like strings and tokens can be parsed with the combinators
spstring and sptoken respectively. All the defined parsers take streams of
characters as input. The type of the results depend on what we want to do
with the recognised structure. We will deal with this in the next section.

2.2 Simulating structure walks: adding semantics

By providing different definitions for the algebras passed to the p_list-calls
and for the sem_antic functions we may describe quite different results. Note
that it is the completely polymorphic formulation of our parsing algorithm
which allows us to provide such different definitions. Our first set of definitions
will deliver a data structure holding the table:

type Table = Rows
type Rows = [Row]
type Row = Elems
type Elems = [Elem]
data Elem = SElem String I TElem Table

table= format_table (id,init_list,id,init_list,(SElem,TElem))

The type of the element returned by table is Table. We always look at the
type of the first parameter of the table algebra. It is already possible in the
previous functions to see the role played by the semantic functions and the list
algebras - figure 4(a). The latter apply functions to the collected elements,
and the former provide intermediate computations such as transforming data
types, collecting intermediate values and computing new values. In the fol­
lowing sections we will focus on the systematic description of these functions.

Attribute grammars in the functional style 185

We only give a polymorphic collection of functions (the algebra for tables)
corresponding to such computations.

•
sem_table t

P':';..-;5 .

"'"".
S&mJ OW t

L.: .: .

.JO C

• max ,1 + max r2 + ...

~r
iic··-·.s·

!:ierns .

/ '""~"'
•

(a) Building the AST (b) Computing the heights

Figure 4 Computations over trees

2.3 Walks, trees: where are they?

In the previous section we have seen how we can use algebras to describe
the construction of abstract syntax trees. All we are using these trees for is
to compute the meaning of the recognised structure. As when using attribute
grammars, we want to express this meaning in a compositional way: the mean­
ing of a structured object is expressed in terms of its substructures. Expressed
in a more mathematical style: we have to define a homomorphism from the
initial algebra (the abstract syntax trees) to some other algebra (the mean­
ing). Such homomorphisms have become known as catamorphisms (Meijer
et al. 1991). An interesting consequence of trees being initial is that this
function is completely defined by the target-algebra. Expressed in computer
science terms this is just saying that the structure of the recursion follows
directly from the data type definition; a fact well known to programmers and
attribute grammar systems.

186 Systems Implementation 2000

A direct consequence of this is that it is possible to compute the meaning
of a structure directly, without going through an explicit tree-form represen­
tation: instead of referring to the initial algebra (constructed from the data
type constructors) we use the meaning-algebra (constructed from the seman­
tic functions) whenever we are performing a reduction (i.e. would construct a
tree-node) in the parsing process.

3 COMPUTING THE HEIGHT

As a first step let us define the functions for computing the height of a table.
Figure 4(b) depicts an attribute grammar view of the solution. We have one
synthesised attribute height. The height of an element is the height of a
simple element, 1, or the height of a nested table. The height of a row is the
maximum of the heights of the elements of the row, and the height of a table is
the sum of all the heights of the rows. This computational structure is actually
what p_list is capturing: roll over the elements of the list, taking every
element into account, accumulating a result. Thus the list algebra sem_elems
for computing the height of a row is max_alg.

The height of the table is the sum of the heights of the rows. Again we can
use a list algebra to express that computation, thus sem_rows is sum_alg.
The complete set of functions is

height_table = (id,sum_alg,id,max_alg,(const 1,id))

sem_ table and sem_row do not need special transformations, they only pass
on their argument.

We observe the following relation between the set of functions defined and
an attribute grammar: (a) the results of applying the semantic functions to
the children nodes correspond to synthesised attributes and, (b) attribute
computations are nicely described by algebras.

4 COMPUTING THE WIDTHS

At the table level, the computation of widths deserves a bit of attention. We
will not be able to deduce any maximum for the widths of the table until
we have recognised the whole table. But instead of keeping the whole table,
we can maintain a list with the maxima found thus far. When a new row is
recognised, its width-values are to be compared with those of the accumulated
list, taking the maxima of the columns' pair. But this is just applying an
algebra to all the elements of a list, and thus obtaining a list. We introduce a
star combinator:

star : : Alg_List a b -> Alg_List [a] [b]

Attribute grammars in the functional style

width_table = (sum, star max_alg, id, init_list, (length, id))

hw_table = (id 'x' sum, sum_alg <.> star max_alg
,id 'x' id , max_alg <.> init_list
,((const 1) 'split' length , id 'x' id))

f ' x ' g = h where h (u, v)
f 'split' g = h where h u

(f u, g v)
(f u, g u)

Figure 5 Computing heights and widths

star (e, op) = (repeat e, zipWith op)

187

It takes an algebra, and returns an algebra with, as carrier set, lists of elements
of the original algebra. In this way, once we have defined the algebra for
computing a maximum, max_alg, we can define an algebra for computing
the pairwise maxima of two lists: star max_alg and this is what we need to
compute the widths at the table level.

Now we want to combine the computations of the height and the width.
Again, thinking in an attribute grammar style, we need another synthesised
attribute. Because functions can only return a single value, we have to pair
both results (height and width), and deliver them together. For the row, the
width is the collection of widths of all the elements, thus init_list. What to
return? A pair with the computation of heights and the computation of widths.
Because of our algebraic style of programming, we can define an algebra
composition combinator (also called tupling combinator), which takes two
algebras and returns an algebra that computes a pair of values. In this way
it is possible to structure the computations of the attributes even more. Note
that the composition is at the semantic level and not only syntactic.

infixr <.> -- infix binary operator, right associative
(<.>) :: Alg_List b a -> Alg_List d c -> Alg_List (b,d) (a, c)
(a,f) <.> (c,g) = ((a,c), \(x,y) (xs,ys) -> (f x xs, g y ys))

Thus we use max_alg < . > list _ini t for synthesising the height of the row
paired with the list of widths of the elements of the row. We do the same at
the table level and obtain the algebra sum_alg <. > star max_alg.

Finally, the result of the computation for a table must be a pair, but we
obtain a list of widths from the application of p_list. Thus we need a fur­
ther transformation id 'x' sum. The product combinator x only applies its
argument functions to the corresponding left and right elements of the pair.
The new version of the program is shown in figure 5.

Let us note that: (a) we can have several synthesized attributes by grouping
them in tuples, (b) computations for such tuples can be constructed out of
computations for the elements(<.>, star, split and x), and (c) the operators

188 Systems Implementation 2000

on algebras: composition and star, and split and product are independent
of the problem at hand and could have been taken from a library (at link or
run time for example). It is even possible to define an algebra composition
combinator for table algebras, but we do not do it here.

5 FORMATTING

To format the table we do the following: elements are made to be the top-left
element of a quarter plane (we call them Boxes), extending to the east and
the south, see figure 6. The table layout is constructed by placing these boxes
besides and on top of each other.

~ tt..g lue

~ v_glue

~ frame boundary

Figure 6 Superposition of boxes

We follow the same line of reasoning as before for synthesising the 'format­
ted' table. Actually the table will be represented by a (partially parameterised)
function which creates the formatted table when its final height and width
(parameters) are passed to it. Another way of looking at it is that all nodes in
the parse tree accept two further inherited attributes indicating these values,
and which are used to compute one further synthesised attribute: the format­
ted table. The code for the semantic functions and the algebras is shown in
figure 7.

To simplify, we always place the element in the upper left corner of the
box. Additional horizontal and vertical glue - blank text lines - are padded
to the elements to fit in their actual layout space. All elements are furthermore

Attribute grammars in the functional style

layout_ table
(bot_right . mk_table
,v_eompose <.> sum_alg <.> star max_alg
,(apply2fst send) 'split' snd
,h_eompose <.> max_alg <.> init_list
,(mk_box. ((:[]) 'split' (eonst 1) 'split' length), mk_box)
)

apply2fst = lift ($) fst

send = fst snd
thid = snd snd

Figure 7 Computing the formatted table

189

equipped with a nice top left corner frame - delineating the quarter plane -
as you can see in figure 6.

At the row level, elements are h_composed, laying out one row of the table.
The composition is done as follows: concatenate the next text line from each
table, until there are no more lines. Because all the elements in the row have
been filled with vertical glue at the end, this process also creates blank spaces
if the element is not large enough to fill the vertical space.

FUrthermore, because when the processing of a row has finished, the final
height of the row is already known, and it can be applied to all the boxes,
shaping the row horizontally. This 'surgery' is performed by sem_row, applying
the computed height to the synthesised function (pattern captured by the
function apply2fst send).

At the table level, the rows already formatted are v_composed. This task is
reduced to concatenating text lines. Finally, once all rows have been processed,
the actual width of each column is known and thus, the table can be shaped
vertically. This is done in mk_table with apply2fst thid. Then the grid is
closed, with bot_right placing the bottom and right lines, and correcting of
the actual size of the table. The implementation of box manipulation functions
is given in figure 8.

Observe that the size of the boxes is flexible, but once we know the corre­
sponding height and width it is possible to actually obtain the nicely formatted
table. Even without noticing, we also put the grid in the table, placing the
elements besides and on top of each other. We only need to take care of closing
the grid, and providing each element with a top-left grid.

The simplicity of h_compose and v_compose is suspicious. Let us take a
look inside h_compose. In terms of text elements it's only string manipula­
tion, but let us take the attribute grammar view. At the Elems level we have
the situation depicted in figure 9{a): an Elems cons node has two inherited
attributes, the height and a list of widths, and one synthesised attribute, the
layout of the element. The inherited attributes are passed down to its chil-

190 Systems Implementation 2000

mk_box = to_box 'x' (+1) 'x' (+1)
to_box t rh rw = map (take rw) . take rh top_left . add_glue $ t
top_left t =map ('I':) (h_line:t)

mk_table = (apply2fst thid) 'split' send 'split' (sum . thid)
bot_right (t,(h,w)) = (close_grid, (h + 1, w + 1))

where close_grid =map (++"I") (t ++[take w ('l':h_line)])

h_compose
v_compose

nil_table, fork <I I> decons <=>> zipWith (++)
nil_row lift (++)

nil_table __ = repeat '"'
nil_row = []

h_glue
v_glue
add_glue
h_line

= repeat ' '
= repeat h_glue

t = map (++ h_glue) t ++ v_glue
= repeat '-'

Figure 8 Functions for manipulating boxes

dren, the height is distributed as it is (it is a global value for the row), but
the widths have to be split element by element. The synthesised attributes
are combined together using the zipWi th (++) (but in general any f). Thus
we have some patterns of attribute manipulation: pass down a global value
(fork), pass down and split a composed value (decons if the value is a list
and we want to decompose a list into its head and tail), combine inherited
attributes (<I I>) and combine synthesized attributes (<=»), see figure 9(b).

(a) (b)

Figure 9 Attribute computation: (a) example (b) combining patterns

Once more, thanks to the abstraction and higher orderness of the language,
these patterns can be abstracted and used in a compositional way to express
a computation of h_compose. The code of these combinators is:

lift op f g
fork

= \x -> (f x) 'op' (g x)
= id 'split' id

Attribute grammars in the functional style

de cons = head 'split' tail

(<II>) (a->(b,c)) -> (d->(e,f)) ->a-> d -> ((b,e),(c,f))
fork! <I I> forkr

= \inh_l inh_r -> let (inh_ll,inh_lr) = fork! inh_l
(inh_rl,inh_rr) = forkr inh_r

in ((inh_ll,inh_rl),(inh_lr,inh_rr))

(<=>>) (a-> d -> ((b,e),(c,f)))
-> (g -> h -> k) -> (b -> e -> g) -> (c -> f -> h)
-> a -> d -> k

fork <=>> merge_op
= \fsyn_l fsyn_r -> \inh_l inh_r

191

->let ((inh_ll,inh_rl),(inh_lr,inh_rr)) =fork inh_l inh_r
syn_l = fsyn_l inh_ll inh_rl
syn_r = fsyn_r inh_lr inh_rr

in merge_op syn_l syn_r

Note that there are no inherited attributes as such. We create partially pa­
rameterised functions and once we know the dependent value, we apply the
function(s) to the value(s). Thus some attributes play a double role: they are
synthesised (like the height of a row), but once their value have been com­
puted they can be used in a subsequent computation; thus acting as inherited
attributes.

We believe that this program clearly captures the notion of attribute gram­
mar: a context free grammar is represented by the use of parser combinators,
while attributes and attribute computations are expressed in terms of algebras
and parameterised functions.

Furthermore, the program can be generalised rather straightforward to a
polytypic function (Jeuring et al. 1996) because the constructors are general.
Although not presented here, the algebra composition operator < . > can be
defined for any arbitrary data type constructor f.

6 CONCLUSIONS

The techniques shown in this paper are being presented to students in courses
of compiler construction and formal languages. One of the advantages is to
present at the same time concepts and their implementations. Thus, the stu­
dents can immediately experience the ideas in their practical work.

The soundness of the underlying theory enables the compositional approach,
and the use of a pure functional language enables straightforward implemen­
tation (exemplified in the paper with the algebra composition combinator).
In the course of the paper we have shown some advantages of this composi­
tionality. By combining segments of programs in a semantic setting, we are

192 Systems Implementation 2000

closer to a compositional implementation of some of the so called design pat­
terns (Gamma et al. 1995). In fact, by implementing catamorphisms (which
are almost describable in Haskell) we have almost achieved this goal.

The abstraction mechanisms of the implementation language (in this case
Haskell) permit us to be abstract, and extend the language with abstract
constructions that immediately become a new additional vocabulary (like the
p_list combinator or the algebra composition).

These are properties we would expect to be supported in modern system
implementation languages.

Acknowledgments
The authors would like to thank Lambert Meertens, Eelco Dijkstra, Roland
Backhouse and Daan Heijen for their comments and corrections.

REFERENCES

Azero P. and Swierstra S.D. (1997) Design and implementation of a pretty
printing library. (In preparation)

Fokker J. (1995) Functional Parsers, in Advanced Functional Programming
(eds. J. Jeuring and E. Meijer), LNCS 925. Springer, Berlin.

Gamma E., Helm R., Johnson R. and Vlissides J. (1995) Design Patterns,
Addison-Wesley, Reading, Mass.

Hammond K. and Peterson J., eds (1997) Haskell 1.4 Report. Available at:
http://haskell.org

Hudak P. (1996) Haskore Music Thtorial, in Advanced Functional Program­
ming: Second International School (eds. J. Launchbury, E. Meijer and
T. Sheard), LNCS 1129. Springer, Berlin.

Hughes J. (1995) The design of a pretty-printing library, in Advanced Func­
tional Programming (eds. J. Jeuring and E. Meijer), LNCS 925.
Springer, Berlin.

Meijer E., Fokkinga M. and Paterson R. (1991) Functional Programming with
Bananas, Lenses, Envelopes and Barbed Wire, in Proceedings of the 5th
ACM Conference on Functional Programming Languages and Com­
puter Architecture (ed. J. Hughes).

Jeuring J. and Jansson P. (1996) Polytypic Programming, in Advanced Func­
tional Programming: Second International School (eds. J. Launchbury,
E. Meijer and T. Sheard), LNCS 1129. Springer, Berlin.

Swierstra S.D. and de Moor, 0. (1993) Virtual Data Structures, in Formal
Program Development (eds. B. Moller and H. Partsch and S. Schuman),
LNCS 755. Springer, Berlin.

Swierstra S.D. and Duponcheel L. (1996) Deterministic, Error Correcting
Combinator Parsers, in Advanced Functional Programming: Second
International School (eds. J. Launchbury, E. Meijer and T. Sheard),

Attribute grammars in the functional style 193

LNCS 1129. Springer, Berlin.
Wadler P. (1990) Deforestation: Transforming Programs to Eliminate Trees.

Theoretical Computer Science, 73, 231-48.

7 BIOGRAPHY

S. Doaitse Swierstra holds a master degree in theoretical physics (1976)
from the RijksUniversiteit Groningen, and a Ph.D. in Computer Science (1981)
from Twente University, both in the Netherlands. Since 1983 he holds a chair
in Computer Science at Utrecht University. He is a member of IFIP Working
Group 2.1, and chairman of the board of the Dutch Research School IPA. His
interests are: programming methodology, compiler construction, functional
programming, attribute grammars and formal verification of distributed algo­
rithms.
Pablo R. Azero has a degree in Computer Science from the Universidad
Nacional del Sur, Argentina; currently he is a second year PhD student at the
Computer Science Department at the Utrecht University. His current research
interests are the design and implementation of programming languages, with
emphasis on lazy functional languages and software tools.

