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Abstract 
The major issues in system design are timing, synchronization, and control. In 
designing free-space optical computing architectures, the application of CAD 
tools is necessary because of the high degree of system complexity, parallelism 
and concurrency; in conjunction with the high cost and lack of availability of 
devices. Current CAD tools lack the expressiveness to model system structure and 
behavior of parallel and concurrent architectures. Thus, making them inefficient 
and ineffective. 

Petri nets, in comparison to other system modeling methodologies, are shown 
to be more efficient and effective at expressing the functional, behavioral, and 
structural properties of parallel and concurrent architectures. This paper shows 
how an extended version of the standard Petri net, a timed-colored Petri net 
(TCPN), is used to model and simulate free-space optoelectronic computing 
architectures. 
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1 INTRODUCTION 

1.1 Free-Space Optical Computing Architectures 

The attractiveness of applying optics to computing paradigms IS 1ts inherent 
advantage of speed, parallelism, and immunity to electromagnetic interference 
(EMI). Computing at the speed of light can push data rates to I OOs of Gb/s. With 
immunity to EMI, optical signals are not affected by electronic noise. The 
parallelism of optics can be exploited by simultaneously transmitting optical 
signals of different frequencies through the same medium without mutual 
interference; or by broadcasting (fanout) an optical signal to several receptors [1]. 

There are two classes of optical computing architectures -- guided wave and 
free-space. A guided wave system is analogous to an electrical system: optical 
signals propagate through wave guides like electrical signals through wires. These 
systems are viewed as two dimensional (2D) systems. In free-space architectures, 
the propagation of optical signals is not constrained in the path perpendicular to 
the direction of propagation. These systems are three-dimensional (3D) systems. 
The advantages of 3D over 2D architectures are higher-density in connectivity, no 
physical contact for interconnections, high spatial and temporal bandwidth, low 
signal dispersion (high speed data transfer), and massively parallel communication 
[1][11]. 

The basic architecture used in many free-space optical computing systems 
consists of a 2D array of optoelectronic logic devices (smart pixels) followed by 
holographic or diffractive elements that serve as interconnects to direct the signals 
[8][11]. Figure I shows an architecture with two stages. 
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Figure 1 A two stage free-space optoelectronic architecture with 2D smart pixel 
arrays and holographic interconnects. 

1.2 System Design Issues 

The major functional issues in system design are alignment, power budgeting, 
timing, synchronization, and control. The timing behavior is defined as the effect 
that the location of a particular signal has on the functioning of a system. Signal 
degradation, propagation path length, delays along the propagation path, and the 
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duration of the asserted value can cause variations in the behavior of the system. 
Synchronization defines the precise timing relationship between signals. The 
control behavior of a system is the order of occurrence of synchronized groups of 
signals. For optical architectures, predicting the timing, synchronization, and 
control behavior becomes increasingly difficult as the size and complexity of the 
system grows. 

1.3 Modeling Methodologies 

There are various modeling paradigms that span the graphical and mathematical 
domains. Mathematical models provide functional, behavioral, and temporal 
information, but do not show any structural details. Graphical models can provide 
functional, behavioral, structural, and temporal information, but can become large 
and unmanageable. Of the various system modeling methodologies, control flow 
diagrams (CFD), data flow diagrams (DFD), finite state machines (FSM), and 
state charts (SC), the Petri net (PN) is the best choice. The Petri net remains 
manageable in size compared to the growth rates for representation of parallel and 
composite systems for state machines and control flow diagrams. State based 
(CFD, FSM, and SC) and event driven (DFD, and FSM) methods lose structure 
due to the abstraction of state. For event driven models, timing is difficult to 
emulate [6][12]. This is summarized in Table 1. 

Table 1 Comparison of system design models 

#or Parallel Composite Shows 
Model Nodes System System Structure Time Synchron'z Control 

n 
PN p p PI +p2 Yes Yes Yes Yes 

DFD q q q. +q2 No No Yes No 
CFD r 2' f( * f2 No Yes Yes Yes 
FSM s 2. Si * S2 No No Yes Yes 
sc t t •• +l2 No Yes Yes Yes 

2 PETRINETS 

2.1 Basic Petri Nets 

Petri nets are a graphical and mathematical modeling tool for describing and 
studying information systems characterized as being concurrent, asynchronous, 
distributed, parallel, nondeterministic, and/or stochastic. Formally [3][10], a Petri 
net is a 5-tuple, PN = (P, T, F, W, Mo) where: 

P = {p~o P2• ... , Pm} is a finite set of places, 
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T = { t~o tz, ... , tn} is a finite set of transitions, 
F ~ (PxT) u (TxP) is a set of arcs (flow relation), 

W: F ~ { 1, 2, 3, ..... } is a weight function, 

M0: P ~ { 0, 1, 2, 3, ..... } is the initial marking, 

PnT= 0and PuT:t:-0. 
Places denote a state or parameter of the system -- a pre or post condition, a 
signal, input or output data, or a resource. A transition represents an event, a 
processing step, or a logical clause. Tokens are used to mark places in the net. 
Transitions simulate the system's behavior by removing and reassigning tokens to 
places. A distribution of the tokens in the net designates a state in the system. 

A Petri net structure N = (P, T, F, W) without an initial marking is denoted by 
N. A Petri net with a given initial marking is denoted by (N, M0). The weight of an 
arc from a transition to a place, denoted as w(p, t), represents the number of 
directed arcs in the net from place p to transition t. Likewise, w(t, p) denotes the 
weight of a directed arc from transition t to place p. An unlabeled arc has a weight 
of 1. 

The behavior of a Petri net is characterized by a change of state, or marking of 
the graph, by following a transition (firing) rule. The firing rules for the system are 
as follows: 

l. A transition is enabled if each input place, Pi• of transition, t, is marked with at 

least w(pi, t) tokens where w is the weight of the arc from Pi to t. 

2. An enabled transition may or may not fire. 
3. The firing of a transition removes w(pi, t) from each input place and places 

w(t, p0 ) tokens in each output place, p 0 . 

An example Petri net is shown in Figure 2. 

"' w ~ 

Figure 2 An example Petri net illustrating a transition (firing) rule: (a) The 
marking before firing the enabled transition h. (b) The marking after firing tJ. 

2.2 Colored Petri Nets 

A colored Petri net (CPN) is a type of high-level Petri net [9]. As shown in Figure 
3, the structure of a colored Petri net is identical to that of the standard 
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................................ 
......... .,. ;Tokens denote abstract: 

:' ;data values called token: 
:' ;colors; they have a type; 

:' :and a value · 

• ........................... · ............................... 
....... .,.;Places 

/ : Name/Label: p, . 
• .-" ; Color Set: Token colors: 

~ 
; accepted at the place. ; 

P• ; Initial Marking ; 
• ............................. · .................................... 

•• ......... .,.=Arcs : t . . 
1 •• : Name I Label: (p1, t,) : 

'., Arc Expression: ; 
\ f: (token)-+ (token) ; 

• ................................ · .................................. 
·. · · · · ·.,. ;Transitions 

Name I Label: t1 

Guard: 
Boolean Expression 
f: (token)-+ (T, F) 

• ................................. · 

net, with the addition that 
tokens have an attached 
attribute called a token color; 
and the places, arcs, and 
transitions have become token 
operators. A token color can 
be viewed as an abstract data 
type with values assigned to 
the variables. The color set of 
a place is the type or attribute 
of a token that may reside in 
the place. The transition guard 
is a Boolean expression that 
when it evaluates to TRUE, 
enables the transition for 
firing. The arc expression for 
arcs(p;, ti) consumes tokens. 
The arc expression for arcs(ti, 
Pi) generates tokens. 

Figure 3 Colored Petri net 
The action of a transition 

firing in a colored net is called 
a binding. A binding assigns a 

color (value) to each variable of a transition. The binding rules are as follows: 

1. A binding is enabled if and only if enough tokens of the correct colors are on 
each input place and the guard evaluates to true. 

2. A binding, when enabled, may or may not occur. 
3. When a binding occurs, a multiset of tokens is removed from each input place 

and a multiset of tokens is added to each output place, depending on the 
evaluation of the arc expression. 

2.3 Timed Petri Nets 

Time and determinism are not explicit concepts in the definition of the 
firing/binding rules in the preceding Petri nets. Yet, they are important in 
evaluating the performance of a dynamic system and in simulating systems that 
have definite temporal dependencies. By definition, a timed Petri net (TPN) is a 
net where time delays are associated with transitions, places, arcs, and/or tokens 
within the net model. The delays can be specified deterministically, or 
stochastically [3][10][13]. Transition delays specify the amount of time a 
transition takes to fire. Place delays specify the amount of time a token must wait 
in a place before it becomes active and can therefore enable a transition. The 
delay value of a timed token specifies the waiting period of a token at a place. 
Timed arcs assign delay values to tokens. 
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Our Petri net incorporates each timing method, and abandons non-determinism 
in favor of urgency semantics: when a transition is enabled, it is immediately 
fired. Modifying the binding rule in this manner enables the model to process all 
enabled tokens concurrently at the earliest time period when the tokens are active. 
This rule expresses the parallelism and the dynamic nature of optical architectures. 

3 FREE-SPACE OPTOELECTRONIC SYSTEM MODELING 

3.1 Device Modeling 

Tokens in our system model represent signals. In optical computing systems, a 
signal can be one of three types -- acoustical, electrical, or optical. The token 
color is a data attribute associated with its type. 

There are two types of devices: passive and active. Passive devices such as 
mirrors, lenses, beamsplitters, and holograms, behave reactively. Active devices 
such as emitters, detectors, spatial light modulators (SLMs ), acousto-optic 
devices, and smart pixels (optoelectronic logic gates) [7][5], behave dynamically. 
The arbitrary device model introduces hierarchical structure to the system model. 
The arbitrary device model can be an embedded system or some complex device. 
Figure 4 shows the model structures. 

~ . :-'- . .h.«mW;:~ ... A 
-~nm.. ~ ~ I ---·~c-.... I 

Emitter I Detector OR NOR I NOT T 
Figure 4 Optical and optoelectronic device models. 

The token color and device attributes are data structures that incorporate the 
three dimensional structure, the functional and behavioral characteristics of the 
object. The data structure templates are shown in Figures 5 and 6. 

3.2 Connectivity (Flow Relationship Between Devices) and Timing 

Devices in the system model are interconnected by performing an optical ray­
trace. A directed arc is added from the output transition of a source device to the 
input place of destination device if a directed beam light from the source device is 
incident to the input of the destination device. 



146 Systems Implementation 2000 

<Device_Name> 
{ 

Attributes 
Geometrical Attributes -- physical shape of the device. 
Functional Attributes -- device operation parameters. 

Color Set -- the types of token accepted at the input place. 
Guard -- Boolean expression to activate the transition. 
Arc (p;, ~) Expression 

All tokens in place p; that satisfy a function input condition. 
Arc(t;, Pi) Expression 

For each token input token, apply the function 
f: token~ {token} (for passive devices) 
f: { token } x { token } ~ { token } (for active devices) 

Figure 5 Device data structure. 

tokenj (signal) 

{ 
type= {acoustical, electrical, optical} 
acoustical I optical 
{ 

} 

direction vector, d = {x, y, z) 

origin, I = (x, y, z) 

radius, r 
power, e 
polarity, a 

frequency, 0) 

wavelength, A 

time stamp, s 
event time, -r 

Figure 6 Token data structure. 

electrical 
{ 

power e 

frequency, 0) 

wavelength, A 

The timing behavior of a system is reduced to three variables: the input latency 
of a device, the output latency of a device, and the propagation delay between 
devices. Place delays model device input latency, transition delays model device 
output latency, and arc delays model the propagation delay between devices. 

The temporal behavior of the system is based on timing information within the 
arcs that connect devices in the architecture. Let T b denote the time period when a 

binding is to occur. A token created at this time will have time stamp T b· The 

distance that light travels from one device to another is called the optical path 
length, abbreviated as OPL. Light propagates linearly at a definite speed. The 
event time, 't, of a token to a device is the cumulative sum from T b of the 

propagation and device delays along the optical path between devices. The arc 
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expression assigns the event time to the generated token in the following formula, 
where c is the speed of light in air: 

t = output_ device_latency + ( O:L) + Tb +input_ device_latency (I) 

4 SIMULATING OPTICAL COMPUTING ARCHITECTURES 

4.1 Discrete Event System 

The type of simulator which best suits the defined Petri net model of an 
optoelectronic computing architecture is a discrete event, block oriented, 
deterministic, dynamic system [4][3]. An event is defined as a change in the state 
of the system. An event in the TCPN model occurs at the firing of a transition or 
the activation (the arrival) of a token at a place. The method for generating 
successive markings in a TCPN is algorithmic, and is defined as follows: 

Repeat 
{ 

Find the set of enabled transitions. 
Fire all transitions concurrently. 

4.2 Simulation Example 

Figure 7 shows the optoelectronic diagram and Petri net model with an initial 
marking for a simple oscillator, a NOR gate with a feedback loop from output to 
input [7][5]. Figure 8(a) shows the timing diagram generated by simulating the 
oscillator. Figure S(b) shows the marking of the net as each event occurs. 

Output 

M~··-··-··-··-··-ffi .. _.::~~ 
5.5 an ! Beam Splitter 

~---··-··-··-··-··-··-··----~~ ... 
~ 15an 

Mimlr 
NORGaoe 

(a) (b) 

Figure 7 Models for a simple optoelectronic oscillator. (a) optoelectronic model, 
(b) Petri net model showing an initial marking (place p2) and the enabled 
transitions = { t2 } • 
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Marking#: 0 2 3 4 5 6 7 8 
.. .. : : . . 
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.. 

. . .. if Mirror .. 

. . r .. 
Mirror : i I 

.. 

I I : : 

NOR_ Gate 
: : 

(output) 
Device -t! it- a 
Latency : : 

.. 
Time (ns): 0.25 0.5 0.683 1.18+A 1.43+A 1.86+.<1 236+2.<1 2.6 

Period= 2.36+2a ns Frequency = 424 - 230 MHz (0 S a S 1) 

Figure 8(a) Oscillator timing analysis. The occurrence and sequence of events, 
indicated by the marking of the net is shown. 
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Figure 8(b) Petri net simulation of a simple optoelectronic oscillator. Each 
diagram shows the current marking obtained from the firing of transitions in the 
preceding net; and the transitions enabled by the current marking. 
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4.3 Analysis Techniques for Timing, Synchronization, and Control 
Behavior 

Most of the behavioral properties of the system that are expressed by the model 
can be analyzed by graphical analysis or by the concept of reachability in Petri 
nets [3][ 10]. A Petri net, N, with a given initial marking Mo is denoted (N, Mo)- A 

marking is denoted by M, an m-vector, where m is the total number of places in 
the net. The pth component of M, denoted by M(p) is the number of tokens in 
place p. 

Reachability: A marking Mn is said to be reachable from a marking M0 denoted 

as M0[>Mn or M0[t;, ... , tj>Mn (reachable via a firing sequence), if there exists a 
sequence of firings (or bindings) that transforms M0 to M0 • The notation Mn E 

R(M0) states that Mn is in the set of reachable markings from M0. 

Device placement and component alignment are behavioral aspects of 
reachability in the network model. Two components are aligned if the output 
token generated by one becomes part of the color set of the other. The system is 
aligned if all input places are reachable from their respective output transitions in 
the network. The placement of a device can be verified by checking its alignment 
within the system. 

Functional verification implies that the sequence of markings generated by the 
model, when given an initial marking, corresponds to the sequence of states the 
actual system exhibits. A reachability path for a system is a simulation trace. The 
functional behavior of an architecture is verified if there is a sequence of markings 
of the system that corresponds to the defined behavior for the architecture. 

Timing and performance measures of the architecture can be analyzed through 
reachability and/or graphical analysis. The Petri net model can be viewed as a 
weighted directed graph, where the weights correspond to signal delays 
(propagation and device latency) in the system. Questions regarding the timing of 
a signal and system performance are answered by formulating the question into a 
network flow problem and solving the flow relationship. For example, the 
minimum and maximum propagation delay of a signal from source to destination 
corresponds to the shortest and longest path in a weighted network. Measuring 
system performance becomes an optimization problem where the goal is to find 
the maximum marking (the maximum flow) in the network given the constrained 
behavior of the devices in the system [2]. 
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5 SUMMARY 

The modeling methodology described in this paper shows how to use a timed­
colored Petri net to simulate a free-space optoelectronic computing architecture. 
The model synthesizes the behavior of an optical device into a functional mapping 
of an input to an output. This synthesis of behavior is then mapped to the place, 
transition, and arc components of a Petri net. By associating delay values with the 
arcs, the places, and the transitions of the Petri net, propagation delay and device 
latency are incorporated into the structure of the model. The transmission property 
of light (straight path and constant speed) provides the means to specify the time 
and place of an optical signal in free-space. This was modeled in the consumption 
and production of tokens. By observing the process of consumption and 
production of tokens within the net, we can follow the propagation of signals 
throughout the system, analyze the timing, synchronization, and control behavior 
of the system, and synthesize parallel and concurrent activities within the system. 

This methodology of modeling and simulating optical computing architectures 
opens up possibilities for future research in several areas. These are the 
characterization and description of optical computing architectures via Petri net 
languages, design automation and optimization of optical computing architectures, 
and analysis of parallel and concurrent optical systems such as communication 
systems, network topologies, network switching systems, time multiplexed, and 
multithreaded architectures. 
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