
11

Modeling and simulating optical
computing architectures

I. R. Jones Jr. and V. P. Heuring
Department of Electrical and Computer Engineering
University of Colorado, Boulder, CO 80309-0425, USA.
Fax: 303-492-2758.
E-mail: jonesi@colorado.edu, heuring@colorado.edu

Abstract
The major issues in system design are timing, synchronization, and control. In
designing free-space optical computing architectures, the application of CAD
tools is necessary because of the high degree of system complexity, parallelism
and concurrency; in conjunction with the high cost and lack of availability of
devices. Current CAD tools lack the expressiveness to model system structure and
behavior of parallel and concurrent architectures. Thus, making them inefficient
and ineffective.

Petri nets, in comparison to other system modeling methodologies, are shown
to be more efficient and effective at expressing the functional, behavioral, and
structural properties of parallel and concurrent architectures. This paper shows
how an extended version of the standard Petri net, a timed-colored Petri net
(TCPN), is used to model and simulate free-space optoelectronic computing
architectures.

Keywords
Optical computing, Petri nets, timed Petri nets, colored Petri nets, system
modeling, simulation, discrete event systems.

Systems Implementation 2000 R. Nigel Horspool (Ed.)
Cll998 IFIP. Published by Chapman & Hall

Modelling and simulating optical computing architectures 141

1 INTRODUCTION

1.1 Free-Space Optical Computing Architectures

The attractiveness of applying optics to computing paradigms IS 1ts inherent
advantage of speed, parallelism, and immunity to electromagnetic interference
(EMI). Computing at the speed of light can push data rates to I OOs of Gb/s. With
immunity to EMI, optical signals are not affected by electronic noise. The
parallelism of optics can be exploited by simultaneously transmitting optical
signals of different frequencies through the same medium without mutual
interference; or by broadcasting (fanout) an optical signal to several receptors [1].

There are two classes of optical computing architectures -- guided wave and
free-space. A guided wave system is analogous to an electrical system: optical
signals propagate through wave guides like electrical signals through wires. These
systems are viewed as two dimensional (2D) systems. In free-space architectures,
the propagation of optical signals is not constrained in the path perpendicular to
the direction of propagation. These systems are three-dimensional (3D) systems.
The advantages of 3D over 2D architectures are higher-density in connectivity, no
physical contact for interconnections, high spatial and temporal bandwidth, low
signal dispersion (high speed data transfer), and massively parallel communication
[1][11].

The basic architecture used in many free-space optical computing systems
consists of a 2D array of optoelectronic logic devices (smart pixels) followed by
holographic or diffractive elements that serve as interconnects to direct the signals
[8][11]. Figure I shows an architecture with two stages.

Sman Pixel Array

Holographic
Interconnect

Smart Pixel Array

Holographic
Interconnect

Figure 1 A two stage free-space optoelectronic architecture with 2D smart pixel
arrays and holographic interconnects.

1.2 System Design Issues

The major functional issues in system design are alignment, power budgeting,
timing, synchronization, and control. The timing behavior is defined as the effect
that the location of a particular signal has on the functioning of a system. Signal
degradation, propagation path length, delays along the propagation path, and the

142 Systems Implementation 2000

duration of the asserted value can cause variations in the behavior of the system.
Synchronization defines the precise timing relationship between signals. The
control behavior of a system is the order of occurrence of synchronized groups of
signals. For optical architectures, predicting the timing, synchronization, and
control behavior becomes increasingly difficult as the size and complexity of the
system grows.

1.3 Modeling Methodologies

There are various modeling paradigms that span the graphical and mathematical
domains. Mathematical models provide functional, behavioral, and temporal
information, but do not show any structural details. Graphical models can provide
functional, behavioral, structural, and temporal information, but can become large
and unmanageable. Of the various system modeling methodologies, control flow
diagrams (CFD), data flow diagrams (DFD), finite state machines (FSM), and
state charts (SC), the Petri net (PN) is the best choice. The Petri net remains
manageable in size compared to the growth rates for representation of parallel and
composite systems for state machines and control flow diagrams. State based
(CFD, FSM, and SC) and event driven (DFD, and FSM) methods lose structure
due to the abstraction of state. For event driven models, timing is difficult to
emulate [6][12]. This is summarized in Table 1.

Table 1 Comparison of system design models

#or Parallel Composite Shows
Model Nodes System System Structure Time Synchron'z Control

n
PN p p PI +p2 Yes Yes Yes Yes

DFD q q q. +q2 No No Yes No
CFD r 2' f(* f2 No Yes Yes Yes
FSM s 2. Si * S2 No No Yes Yes
sc t t •• +l2 No Yes Yes Yes

2 PETRINETS

2.1 Basic Petri Nets

Petri nets are a graphical and mathematical modeling tool for describing and
studying information systems characterized as being concurrent, asynchronous,
distributed, parallel, nondeterministic, and/or stochastic. Formally [3][10], a Petri
net is a 5-tuple, PN = (P, T, F, W, Mo) where:

P = {p~o P2• ... , Pm} is a finite set of places,

Modelling and simulating optical computing architectures 143

T = { t~o tz, ... , tn} is a finite set of transitions,
F ~ (PxT) u (TxP) is a set of arcs (flow relation),

W: F ~ { 1, 2, 3, } is a weight function,

M0: P ~ { 0, 1, 2, 3, } is the initial marking,

PnT= 0and PuT:t:-0.
Places denote a state or parameter of the system -- a pre or post condition, a
signal, input or output data, or a resource. A transition represents an event, a
processing step, or a logical clause. Tokens are used to mark places in the net.
Transitions simulate the system's behavior by removing and reassigning tokens to
places. A distribution of the tokens in the net designates a state in the system.

A Petri net structure N = (P, T, F, W) without an initial marking is denoted by
N. A Petri net with a given initial marking is denoted by (N, M0). The weight of an
arc from a transition to a place, denoted as w(p, t), represents the number of
directed arcs in the net from place p to transition t. Likewise, w(t, p) denotes the
weight of a directed arc from transition t to place p. An unlabeled arc has a weight
of 1.

The behavior of a Petri net is characterized by a change of state, or marking of
the graph, by following a transition (firing) rule. The firing rules for the system are
as follows:

l. A transition is enabled if each input place, Pi• of transition, t, is marked with at

least w(pi, t) tokens where w is the weight of the arc from Pi to t.

2. An enabled transition may or may not fire.
3. The firing of a transition removes w(pi, t) from each input place and places

w(t, p0) tokens in each output place, p 0 .

An example Petri net is shown in Figure 2.

"' w ~

Figure 2 An example Petri net illustrating a transition (firing) rule: (a) The
marking before firing the enabled transition h. (b) The marking after firing tJ.

2.2 Colored Petri Nets

A colored Petri net (CPN) is a type of high-level Petri net [9]. As shown in Figure
3, the structure of a colored Petri net is identical to that of the standard

144 Systems Implementation 2000

................................
......... .,. ;Tokens denote abstract:

:' ;data values called token:
:' ;colors; they have a type;

:' :and a value ·

• ·
....... .,.;Places

/ : Name/Label: p, .
• .-" ; Color Set: Token colors:

~
; accepted at the place. ;

P• ; Initial Marking ;
• ·

••,.=Arcs : t . .
1 •• : Name I Label: (p1, t,) :

'., Arc Expression: ;
\ f: (token)-+ (token) ;

• ·
·. · · · · ·.,. ;Transitions

Name I Label: t1

Guard:
Boolean Expression
f: (token)-+ (T, F)

• ·

net, with the addition that
tokens have an attached
attribute called a token color;
and the places, arcs, and
transitions have become token
operators. A token color can
be viewed as an abstract data
type with values assigned to
the variables. The color set of
a place is the type or attribute
of a token that may reside in
the place. The transition guard
is a Boolean expression that
when it evaluates to TRUE,
enables the transition for
firing. The arc expression for
arcs(p;, ti) consumes tokens.
The arc expression for arcs(ti,
Pi) generates tokens.

Figure 3 Colored Petri net
The action of a transition

firing in a colored net is called
a binding. A binding assigns a

color (value) to each variable of a transition. The binding rules are as follows:

1. A binding is enabled if and only if enough tokens of the correct colors are on
each input place and the guard evaluates to true.

2. A binding, when enabled, may or may not occur.
3. When a binding occurs, a multiset of tokens is removed from each input place

and a multiset of tokens is added to each output place, depending on the
evaluation of the arc expression.

2.3 Timed Petri Nets

Time and determinism are not explicit concepts in the definition of the
firing/binding rules in the preceding Petri nets. Yet, they are important in
evaluating the performance of a dynamic system and in simulating systems that
have definite temporal dependencies. By definition, a timed Petri net (TPN) is a
net where time delays are associated with transitions, places, arcs, and/or tokens
within the net model. The delays can be specified deterministically, or
stochastically [3][10][13]. Transition delays specify the amount of time a
transition takes to fire. Place delays specify the amount of time a token must wait
in a place before it becomes active and can therefore enable a transition. The
delay value of a timed token specifies the waiting period of a token at a place.
Timed arcs assign delay values to tokens.

Modelling and simulating optical computing architectures 145

Our Petri net incorporates each timing method, and abandons non-determinism
in favor of urgency semantics: when a transition is enabled, it is immediately
fired. Modifying the binding rule in this manner enables the model to process all
enabled tokens concurrently at the earliest time period when the tokens are active.
This rule expresses the parallelism and the dynamic nature of optical architectures.

3 FREE-SPACE OPTOELECTRONIC SYSTEM MODELING

3.1 Device Modeling

Tokens in our system model represent signals. In optical computing systems, a
signal can be one of three types -- acoustical, electrical, or optical. The token
color is a data attribute associated with its type.

There are two types of devices: passive and active. Passive devices such as
mirrors, lenses, beamsplitters, and holograms, behave reactively. Active devices
such as emitters, detectors, spatial light modulators (SLMs), acousto-optic
devices, and smart pixels (optoelectronic logic gates) [7][5], behave dynamically.
The arbitrary device model introduces hierarchical structure to the system model.
The arbitrary device model can be an embedded system or some complex device.
Figure 4 shows the model structures.

~ . :-'- . .h.«mW;:~ ... A
-~nm.. ~ ~ I ---·~c-.... I

Emitter I Detector OR NOR I NOT T
Figure 4 Optical and optoelectronic device models.

The token color and device attributes are data structures that incorporate the
three dimensional structure, the functional and behavioral characteristics of the
object. The data structure templates are shown in Figures 5 and 6.

3.2 Connectivity (Flow Relationship Between Devices) and Timing

Devices in the system model are interconnected by performing an optical ray­
trace. A directed arc is added from the output transition of a source device to the
input place of destination device if a directed beam light from the source device is
incident to the input of the destination device.

146 Systems Implementation 2000

<Device_Name>
{

Attributes
Geometrical Attributes -- physical shape of the device.
Functional Attributes -- device operation parameters.

Color Set -- the types of token accepted at the input place.
Guard -- Boolean expression to activate the transition.
Arc (p;, ~) Expression

All tokens in place p; that satisfy a function input condition.
Arc(t;, Pi) Expression

For each token input token, apply the function
f: token~ {token} (for passive devices)
f: { token } x { token } ~ { token } (for active devices)

Figure 5 Device data structure.

tokenj (signal)

{
type= {acoustical, electrical, optical}
acoustical I optical
{

}

direction vector, d = {x, y, z)

origin, I = (x, y, z)

radius, r
power, e
polarity, a

frequency, 0)

wavelength, A

time stamp, s
event time, -r

Figure 6 Token data structure.

electrical
{

power e

frequency, 0)

wavelength, A

The timing behavior of a system is reduced to three variables: the input latency
of a device, the output latency of a device, and the propagation delay between
devices. Place delays model device input latency, transition delays model device
output latency, and arc delays model the propagation delay between devices.

The temporal behavior of the system is based on timing information within the
arcs that connect devices in the architecture. Let T b denote the time period when a

binding is to occur. A token created at this time will have time stamp T b· The

distance that light travels from one device to another is called the optical path
length, abbreviated as OPL. Light propagates linearly at a definite speed. The
event time, 't, of a token to a device is the cumulative sum from T b of the

propagation and device delays along the optical path between devices. The arc

Modelling and simulating optical computing architectures 147

expression assigns the event time to the generated token in the following formula,
where c is the speed of light in air:

t = output_ device_latency + (O:L) + Tb +input_ device_latency (I)

4 SIMULATING OPTICAL COMPUTING ARCHITECTURES

4.1 Discrete Event System

The type of simulator which best suits the defined Petri net model of an
optoelectronic computing architecture is a discrete event, block oriented,
deterministic, dynamic system [4][3]. An event is defined as a change in the state
of the system. An event in the TCPN model occurs at the firing of a transition or
the activation (the arrival) of a token at a place. The method for generating
successive markings in a TCPN is algorithmic, and is defined as follows:

Repeat
{

Find the set of enabled transitions.
Fire all transitions concurrently.

4.2 Simulation Example

Figure 7 shows the optoelectronic diagram and Petri net model with an initial
marking for a simple oscillator, a NOR gate with a feedback loop from output to
input [7][5]. Figure 8(a) shows the timing diagram generated by simulating the
oscillator. Figure S(b) shows the marking of the net as each event occurs.

Output

M~··-··-··-··-··-ffi .. _.::~~
5.5 an ! Beam Splitter

~---··-··-··-··-··-··-··----~~ ...
~ 15an

Mimlr
NORGaoe

(a) (b)

Figure 7 Models for a simple optoelectronic oscillator. (a) optoelectronic model,
(b) Petri net model showing an initial marking (place p2) and the enabled
transitions = { t2 } •

148 Systems Implementation 2000

Marking#: 0 2 3 4 5 6 7 8
.. .. : : . .

Output
..

. . .. if Mirror ..

. . r ..
Mirror : i I

..

I I : :

NOR_ Gate
: :

(output)
Device -t! it- a
Latency : :

..
Time (ns): 0.25 0.5 0.683 1.18+A 1.43+A 1.86+.<1 236+2.<1 2.6

Period= 2.36+2a ns Frequency = 424 - 230 MHz (0 S a S 1)

Figure 8(a) Oscillator timing analysis. The occurrence and sequence of events,
indicated by the marking of the net is shown.

Oui]JUI Outpul Oulpul

d d
[1] [2] [3]

Outpul Outpul

d
[4] [5] [6]

OulpUI Oulpul

[7] [8]

Figure 8(b) Petri net simulation of a simple optoelectronic oscillator. Each
diagram shows the current marking obtained from the firing of transitions in the
preceding net; and the transitions enabled by the current marking.

Modelling and simulating optical computing architectures 149

4.3 Analysis Techniques for Timing, Synchronization, and Control
Behavior

Most of the behavioral properties of the system that are expressed by the model
can be analyzed by graphical analysis or by the concept of reachability in Petri
nets [3][10]. A Petri net, N, with a given initial marking Mo is denoted (N, Mo)- A

marking is denoted by M, an m-vector, where m is the total number of places in
the net. The pth component of M, denoted by M(p) is the number of tokens in
place p.

Reachability: A marking Mn is said to be reachable from a marking M0 denoted

as M0[>Mn or M0[t;, ... , tj>Mn (reachable via a firing sequence), if there exists a
sequence of firings (or bindings) that transforms M0 to M0 • The notation Mn E

R(M0) states that Mn is in the set of reachable markings from M0.

Device placement and component alignment are behavioral aspects of
reachability in the network model. Two components are aligned if the output
token generated by one becomes part of the color set of the other. The system is
aligned if all input places are reachable from their respective output transitions in
the network. The placement of a device can be verified by checking its alignment
within the system.

Functional verification implies that the sequence of markings generated by the
model, when given an initial marking, corresponds to the sequence of states the
actual system exhibits. A reachability path for a system is a simulation trace. The
functional behavior of an architecture is verified if there is a sequence of markings
of the system that corresponds to the defined behavior for the architecture.

Timing and performance measures of the architecture can be analyzed through
reachability and/or graphical analysis. The Petri net model can be viewed as a
weighted directed graph, where the weights correspond to signal delays
(propagation and device latency) in the system. Questions regarding the timing of
a signal and system performance are answered by formulating the question into a
network flow problem and solving the flow relationship. For example, the
minimum and maximum propagation delay of a signal from source to destination
corresponds to the shortest and longest path in a weighted network. Measuring
system performance becomes an optimization problem where the goal is to find
the maximum marking (the maximum flow) in the network given the constrained
behavior of the devices in the system [2].

150 Systems Implementation 2000

5 SUMMARY

The modeling methodology described in this paper shows how to use a timed­
colored Petri net to simulate a free-space optoelectronic computing architecture.
The model synthesizes the behavior of an optical device into a functional mapping
of an input to an output. This synthesis of behavior is then mapped to the place,
transition, and arc components of a Petri net. By associating delay values with the
arcs, the places, and the transitions of the Petri net, propagation delay and device
latency are incorporated into the structure of the model. The transmission property
of light (straight path and constant speed) provides the means to specify the time
and place of an optical signal in free-space. This was modeled in the consumption
and production of tokens. By observing the process of consumption and
production of tokens within the net, we can follow the propagation of signals
throughout the system, analyze the timing, synchronization, and control behavior
of the system, and synthesize parallel and concurrent activities within the system.

This methodology of modeling and simulating optical computing architectures
opens up possibilities for future research in several areas. These are the
characterization and description of optical computing architectures via Petri net
languages, design automation and optimization of optical computing architectures,
and analysis of parallel and concurrent optical systems such as communication
systems, network topologies, network switching systems, time multiplexed, and
multithreaded architectures.

6 REFERENCES

[1] Cathey, W.T. (1993) Promises and Prospects of Optoelectronic Computing.
LEOS Conference Proceedings, IEEE Lasers and Electro-Optics Society
Annual Meeting, 69-70.

[2] Chen, W-K. (1990) Graphs and Networks, Maximum Flows in Networks.,
Theory of Nets: Flows in Networks, John Wiley & Sons.

[3] David, R. and Alia, H. (1992) Petri Nets and Grafcet --Tools for Modeling
Discrete Event Systems. Prentice-Hall.

[4] Denham, M. J. (1988) A Petri-Net Approach to the Control of Discrete­
Event Systems. Advanced Computing Concepts and Techniques in Control
Engineering. NATO ASI Series, F47, Springer-Verlag, 191-214.

[5] Ferrarini, L. (1992, May/June) An Incremental Approach to Logic
Controller Design with Petri Nets. IEEE Transactions on Systems, Man,
and Cybernetics, 22, 3.

[6] Gajski, D., Dutt, N., Wu, A .. and Lin, S .. (1992) Architectural Models in
Synthesis, Design Representation and Transformations, High-Level
Synthesis -- Introduction to Chip and System Design, Kluwer Academic
Publishers.

Modelling and simulating optical computing architectures 151

[7] Heuring, V.P. Ji, Lian H. Feuerstein, R.J. and V. Morozov. (1994,
November 10) Toward a Free-Space Parallel Optoelectronic Computer: A
300-Mhz Optoelectronic Counter using Holographic Interconnects. Applied
Optics, 33, 32,7579-7587.

[8] Hinton, H.S., Cloonan, T.J., McCormick, F.B., Tooley, F.A.P.and Lentine,
A.L. (1994, November) Free-Space Digital Optical Systems. Proceedings
of the IEEE-- Special Issue on Optical Computing, 82, 11, 1632-1649.

[9] Jensen, K. and Rosenberg, G. (1991) Coloured Petri Nets: A High Level
Language for System Design and Analysis, High-Level Petri Nets: Theory
and Applications, Springer-Verlag Berlin, Heidelberg.

[10] Murata, T. (1989, April) Petri Nets: Properties, Analysis and Applications.
Proceedings of the IEEE, 77, 4.

[11] Neff, J.A. (1992) Optoelectronic Arrays for Hybrid Optical/Electronic
Computing. Proceedings of SPIE -- Advances in Optical Information
Processing V, 1704, SPIE, 44-54.

[12] Waxman, R., Berge, J-M., Levia, 0., and Rouillard, J. (1996) High-Level
System Modeling: Specification and Design Methodologies, Kluwer
Academic Publishers.

[13] Zuberek, W. M. (1991) Timed Petri Nets: Definitions, Properties, and
Applications. Microelectronics and Reliability, 31, 4, 627-644.

7 BIOGRAPHIES

Irvin R. Jones Jr. received the B.S. degree in electrical engineering from Stanford
University in 1982, and M.S. degrees in computer engineering and in computer
science from the University of California at Santa Barbara in 1986 and 1988
respectively. He is currently pursuing his Ph.D. in computer engineering at the
University of Colorado at Boulder. His interests are computer architecture, optical
computing, system modeling and simulating.

Vincent P. Heuring received the B.S. degree from the University of Cincinnati in
1966, and the Ph.D. degree from the University of Florida in 1969. He held
various industrial and academic positions until 1984, when he joined the
University of Colorado at Boulder. He is an Associate Professor in the
Department of Electrical and Computer Engineering. His research interests
include optoelectronic computing, software engineering, and software in support
of training and education.

